File size: 11,850 Bytes
c3e525b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
import comfy.ops
ops = comfy.ops.manual_cast

def exists(val):
    return val is not None


def uniq(arr):
    return{el: True for el in arr}.keys()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = ops.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * torch.nn.functional.gelu(gate)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(
            ops.Linear(dim, inner_dim),
            nn.GELU()
        ) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(
            project_in,
            nn.Dropout(dropout),
            ops.Linear(inner_dim, dim_out)
        )

    def forward(self, x):
        return self.net(x)


class GatedCrossAttentionDense(nn.Module):
    def __init__(self, query_dim, context_dim, n_heads, d_head):
        super().__init__()

        self.attn = CrossAttention(
            query_dim=query_dim,
            context_dim=context_dim,
            heads=n_heads,
            dim_head=d_head,
            operations=ops)
        self.ff = FeedForward(query_dim, glu=True)

        self.norm1 = ops.LayerNorm(query_dim)
        self.norm2 = ops.LayerNorm(query_dim)

        self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
        self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))

        # this can be useful: we can externally change magnitude of tanh(alpha)
        # for example, when it is set to 0, then the entire model is same as
        # original one
        self.scale = 1

    def forward(self, x, objs):

        x = x + self.scale * \
            torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
        x = x + self.scale * \
            torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))

        return x


class GatedSelfAttentionDense(nn.Module):
    def __init__(self, query_dim, context_dim, n_heads, d_head):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj
        # feature
        self.linear = ops.Linear(context_dim, query_dim)

        self.attn = CrossAttention(
            query_dim=query_dim,
            context_dim=query_dim,
            heads=n_heads,
            dim_head=d_head,
            operations=ops)
        self.ff = FeedForward(query_dim, glu=True)

        self.norm1 = ops.LayerNorm(query_dim)
        self.norm2 = ops.LayerNorm(query_dim)

        self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
        self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))

        # this can be useful: we can externally change magnitude of tanh(alpha)
        # for example, when it is set to 0, then the entire model is same as
        # original one
        self.scale = 1

    def forward(self, x, objs):

        N_visual = x.shape[1]
        objs = self.linear(objs)

        x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
            self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
        x = x + self.scale * \
            torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))

        return x


class GatedSelfAttentionDense2(nn.Module):
    def __init__(self, query_dim, context_dim, n_heads, d_head):
        super().__init__()

        # we need a linear projection since we need cat visual feature and obj
        # feature
        self.linear = ops.Linear(context_dim, query_dim)

        self.attn = CrossAttention(
            query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
        self.ff = FeedForward(query_dim, glu=True)

        self.norm1 = ops.LayerNorm(query_dim)
        self.norm2 = ops.LayerNorm(query_dim)

        self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
        self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))

        # this can be useful: we can externally change magnitude of tanh(alpha)
        # for example, when it is set to 0, then the entire model is same as
        # original one
        self.scale = 1

    def forward(self, x, objs):

        B, N_visual, _ = x.shape
        B, N_ground, _ = objs.shape

        objs = self.linear(objs)

        # sanity check
        size_v = math.sqrt(N_visual)
        size_g = math.sqrt(N_ground)
        assert int(size_v) == size_v, "Visual tokens must be square rootable"
        assert int(size_g) == size_g, "Grounding tokens must be square rootable"
        size_v = int(size_v)
        size_g = int(size_g)

        # select grounding token and resize it to visual token size as residual
        out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
            :, N_visual:, :]
        out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
        out = torch.nn.functional.interpolate(
            out, (size_v, size_v), mode='bicubic')
        residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)

        # add residual to visual feature
        x = x + self.scale * torch.tanh(self.alpha_attn) * residual
        x = x + self.scale * \
            torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))

        return x


class FourierEmbedder():
    def __init__(self, num_freqs=64, temperature=100):

        self.num_freqs = num_freqs
        self.temperature = temperature
        self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)

    @torch.no_grad()
    def __call__(self, x, cat_dim=-1):
        "x: arbitrary shape of tensor. dim: cat dim"
        out = []
        for freq in self.freq_bands:
            out.append(torch.sin(freq * x))
            out.append(torch.cos(freq * x))
        return torch.cat(out, cat_dim)


class PositionNet(nn.Module):
    def __init__(self, in_dim, out_dim, fourier_freqs=8):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
        self.position_dim = fourier_freqs * 2 * 4  # 2 is sin&cos, 4 is xyxy

        self.linears = nn.Sequential(
            ops.Linear(self.in_dim + self.position_dim, 512),
            nn.SiLU(),
            ops.Linear(512, 512),
            nn.SiLU(),
            ops.Linear(512, out_dim),
        )

        self.null_positive_feature = torch.nn.Parameter(
            torch.zeros([self.in_dim]))
        self.null_position_feature = torch.nn.Parameter(
            torch.zeros([self.position_dim]))

    def forward(self, boxes, masks, positive_embeddings):
        B, N, _ = boxes.shape
        masks = masks.unsqueeze(-1)
        positive_embeddings = positive_embeddings

        # embedding position (it may includes padding as placeholder)
        xyxy_embedding = self.fourier_embedder(boxes)  # B*N*4 --> B*N*C

        # learnable null embedding
        positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
        xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)

        # replace padding with learnable null embedding
        positive_embeddings = positive_embeddings * \
            masks + (1 - masks) * positive_null
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

        objs = self.linears(
            torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
        assert objs.shape == torch.Size([B, N, self.out_dim])
        return objs


class Gligen(nn.Module):
    def __init__(self, modules, position_net, key_dim):
        super().__init__()
        self.module_list = nn.ModuleList(modules)
        self.position_net = position_net
        self.key_dim = key_dim
        self.max_objs = 30
        self.current_device = torch.device("cpu")

    def _set_position(self, boxes, masks, positive_embeddings):
        objs = self.position_net(boxes, masks, positive_embeddings)
        def func(x, extra_options):
            key = extra_options["transformer_index"]
            module = self.module_list[key]
            return module(x, objs.to(device=x.device, dtype=x.dtype))
        return func

    def set_position(self, latent_image_shape, position_params, device):
        batch, c, h, w = latent_image_shape
        masks = torch.zeros([self.max_objs], device="cpu")
        boxes = []
        positive_embeddings = []
        for p in position_params:
            x1 = (p[4]) / w
            y1 = (p[3]) / h
            x2 = (p[4] + p[2]) / w
            y2 = (p[3] + p[1]) / h
            masks[len(boxes)] = 1.0
            boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
            positive_embeddings += [p[0]]
        append_boxes = []
        append_conds = []
        if len(boxes) < self.max_objs:
            append_boxes = [torch.zeros(
                [self.max_objs - len(boxes), 4], device="cpu")]
            append_conds = [torch.zeros(
                [self.max_objs - len(boxes), self.key_dim], device="cpu")]

        box_out = torch.cat(
            boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
        masks = masks.unsqueeze(0).repeat(batch, 1)
        conds = torch.cat(positive_embeddings +
                          append_conds).unsqueeze(0).repeat(batch, 1, 1)
        return self._set_position(
            box_out.to(device),
            masks.to(device),
            conds.to(device))

    def set_empty(self, latent_image_shape, device):
        batch, c, h, w = latent_image_shape
        masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
        box_out = torch.zeros([self.max_objs, 4],
                              device="cpu").repeat(batch, 1, 1)
        conds = torch.zeros([self.max_objs, self.key_dim],
                            device="cpu").repeat(batch, 1, 1)
        return self._set_position(
            box_out.to(device),
            masks.to(device),
            conds.to(device))


def load_gligen(sd):
    sd_k = sd.keys()
    output_list = []
    key_dim = 768
    for a in ["input_blocks", "middle_block", "output_blocks"]:
        for b in range(20):
            k_temp = filter(lambda k: "{}.{}.".format(a, b)
                            in k and ".fuser." in k, sd_k)
            k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)

            n_sd = {}
            for k in k_temp:
                n_sd[k[1]] = sd[k[0]]
            if len(n_sd) > 0:
                query_dim = n_sd["linear.weight"].shape[0]
                key_dim = n_sd["linear.weight"].shape[1]

                if key_dim == 768:  # SD1.x
                    n_heads = 8
                    d_head = query_dim // n_heads
                else:
                    d_head = 64
                    n_heads = query_dim // d_head

                gated = GatedSelfAttentionDense(
                    query_dim, key_dim, n_heads, d_head)
                gated.load_state_dict(n_sd, strict=False)
                output_list.append(gated)

    if "position_net.null_positive_feature" in sd_k:
        in_dim = sd["position_net.null_positive_feature"].shape[0]
        out_dim = sd["position_net.linears.4.weight"].shape[0]

        class WeightsLoader(torch.nn.Module):
            pass
        w = WeightsLoader()
        w.position_net = PositionNet(in_dim, out_dim)
        w.load_state_dict(sd, strict=False)

    gligen = Gligen(output_list, w.position_net, key_dim)
    return gligen