Spaces:
Running
Running
File size: 9,711 Bytes
c3e525b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import comfy.utils
LORA_CLIP_MAP = {
"mlp.fc1": "mlp_fc1",
"mlp.fc2": "mlp_fc2",
"self_attn.k_proj": "self_attn_k_proj",
"self_attn.q_proj": "self_attn_q_proj",
"self_attn.v_proj": "self_attn_v_proj",
"self_attn.out_proj": "self_attn_out_proj",
}
def load_lora(lora, to_load):
patch_dict = {}
loaded_keys = set()
for x in to_load:
alpha_name = "{}.alpha".format(x)
alpha = None
if alpha_name in lora.keys():
alpha = lora[alpha_name].item()
loaded_keys.add(alpha_name)
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid))
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2))
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2))
#glora
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha))
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x)
w_norm = lora.get(w_norm_name, None)
b_norm = lora.get(b_norm_name, None)
if w_norm is not None:
loaded_keys.add(w_norm_name)
patch_dict[to_load[x]] = ("diff", (w_norm,))
if b_norm is not None:
loaded_keys.add(b_norm_name)
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
diff_name = "{}.diff".format(x)
diff_weight = lora.get(diff_name, None)
if diff_weight is not None:
patch_dict[to_load[x]] = ("diff", (diff_weight,))
loaded_keys.add(diff_name)
diff_bias_name = "{}.diff_b".format(x)
diff_bias = lora.get(diff_bias_name, None)
if diff_bias is not None:
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
loaded_keys.add(diff_bias_name)
for x in lora.keys():
if x not in loaded_keys:
print("lora key not loaded", x)
return patch_dict
def model_lora_keys_clip(model, key_map={}):
sdk = model.state_dict().keys()
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
clip_l_present = False
for b in range(32): #TODO: clean up
for c in LORA_CLIP_MAP:
k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = k
lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
clip_l_present = True
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
if clip_l_present:
lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
key_map[lora_key] = k
lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
else:
lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
key_map[lora_key] = k
lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
key_map[lora_key] = k
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
key_map[lora_key] = k
k = "clip_g.transformer.text_projection.weight"
if k in sdk:
key_map["lora_prior_te_text_projection"] = k #cascade lora?
# key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
# key_map["lora_te_text_projection"] = k
return key_map
def model_lora_keys_unet(model, key_map={}):
sdk = model.state_dict().keys()
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:
if k.endswith(".weight"):
unet_key = "diffusion_model.{}".format(diffusers_keys[k])
key_lora = k[:-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = unet_key
diffusers_lora_prefix = ["", "unet."]
for p in diffusers_lora_prefix:
diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
if diffusers_lora_key.endswith(".to_out.0"):
diffusers_lora_key = diffusers_lora_key[:-2]
key_map[diffusers_lora_key] = unet_key
return key_map
|