Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -28,9 +28,10 @@ if torch.cuda.is_available():
|
|
28 |
model_id = "patched-codes/patched-mix-4x7B"
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
30 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
31 |
-
tokenizer.
|
32 |
-
|
33 |
-
|
|
|
34 |
@spaces.GPU(duration=60)
|
35 |
def generate(
|
36 |
message: str,
|
@@ -49,33 +50,38 @@ def generate(
|
|
49 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
50 |
conversation.append({"role": "user", "content": message})
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
#num_beams=1,
|
70 |
#repetition_penalty=1.2,
|
71 |
-
)
|
72 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
73 |
-
t.start()
|
74 |
-
|
75 |
-
outputs = []
|
76 |
-
for text in streamer:
|
77 |
-
outputs.append(text)
|
78 |
-
yield "".join(outputs)
|
79 |
|
80 |
example1='''You are a senior software engineer who is best in the world at fixing vulnerabilities.
|
81 |
Users will give you vulnerable code and you will generate a fix based on the provided INSTRUCTION.
|
|
|
28 |
model_id = "patched-codes/patched-mix-4x7B"
|
29 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
|
30 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
31 |
+
tokenizer.padding_side = 'right'
|
32 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
33 |
+
# tokenizer.use_default_system_prompt = False
|
34 |
+
|
35 |
@spaces.GPU(duration=60)
|
36 |
def generate(
|
37 |
message: str,
|
|
|
50 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
51 |
conversation.append({"role": "user", "content": message})
|
52 |
|
53 |
+
prompt = pipe.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
54 |
+
outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p,
|
55 |
+
eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id)
|
56 |
+
|
57 |
+
return outputs[0]['generated_text'][len(prompt):].strip()
|
58 |
+
# input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
59 |
+
# if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
60 |
+
# input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
61 |
+
# gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
62 |
+
# input_ids = input_ids.to(model.device)
|
63 |
+
|
64 |
+
# streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
65 |
+
# generate_kwargs = dict(
|
66 |
+
# {"input_ids": input_ids},
|
67 |
+
# streamer=streamer,
|
68 |
+
# max_new_tokens=max_new_tokens,
|
69 |
+
# do_sample=True,
|
70 |
+
# top_p=top_p,
|
71 |
+
# #top_k=top_k,
|
72 |
+
# temperature=temperature,
|
73 |
+
# eos_token_id=tokenizer.eos_token_id,
|
74 |
+
# pad_token_id=tokenizer.pad_token_id,
|
75 |
#num_beams=1,
|
76 |
#repetition_penalty=1.2,
|
77 |
+
# )
|
78 |
+
# t = Thread(target=model.generate, kwargs=generate_kwargs)
|
79 |
+
# t.start()
|
80 |
+
|
81 |
+
# outputs = []
|
82 |
+
# for text in streamer:
|
83 |
+
# outputs.append(text)
|
84 |
+
# yield "".join(outputs)
|
85 |
|
86 |
example1='''You are a senior software engineer who is best in the world at fixing vulnerabilities.
|
87 |
Users will give you vulnerable code and you will generate a fix based on the provided INSTRUCTION.
|