import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline MAX_MAX_NEW_TOKENS = 1024 DEFAULT_MAX_NEW_TOKENS = 512 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Chat with Patched Coder """ LICENSE = """\ --- This space is powered by the patched-coder-7b model, which was created by [patched](https://patched.codes). """ if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" if torch.cuda.is_available(): model_id = "patched-codes/patched-coder-7b" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.padding_side = 'right' # pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) # tokenizer.use_default_system_prompt = False @spaces.GPU(duration=60) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.2, top_p: float = 0.95, # top_k: int = 50, # repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) # prompt = pipe.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) # outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, # eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.pad_token_id) # return outputs[0]['generated_text'][len(prompt):].strip() input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, #top_k=top_k, temperature=temperature, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, #num_beams=1, #repetition_penalty=1.2, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) example1='''Fix vulnerability CWE-327: Use of a Broken or Risky Cryptographic Algorithm in the following code snippet. ``` def md5_hash(path): with open(path, "rb") as f: content = f.read() return hashlib.md5(content).hexdigest() ``` ''' example2='''You are a software engineer who is best in the world at summarizing code changes. Carefully analyze the given old code and new code and generate a summary of the changes. Old Code: ``` #include