patrickbdevaney
upload of demo to hf spaces
35a837e
import streamlit as st
import joblib
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
# Load the model and tokenizer
try:
model = load_model('sentiment_analysis_model.h5')
except Exception as e:
st.error(f"Error loading model: {e}")
try:
with open('tokenizer.pickle', 'rb') as handle:
tokenizer = pickle.load(handle)
except Exception as e:
st.error(f"Error loading tokenizer: {e}")
# Define a function to predict the sentiment of input text
def predict_sentiment(text):
# Tokenize and pad the input text
text_sequence = tokenizer.texts_to_sequences([text])
text_sequence = pad_sequences(text_sequence, maxlen=100)
# Make a prediction using the trained model
predicted_rating = model.predict(text_sequence)[0]
if np.argmax(predicted_rating) == 0:
return 'Negative'
elif np.argmax(predicted_rating) == 1:
return 'Neutral'
else:
return 'Positive'
st.title('Sentiment Analysis')
comment = st.text_area('Enter your comment:')
if st.button('Analyze Sentiment'):
if 'model' in globals() and 'tokenizer' in globals():
sentiment = predict_sentiment(comment)
st.write(f'Sentiment: {sentiment}')
else:
st.error("Model or tokenizer not loaded properly.")