File size: 4,350 Bytes
134c1b2 345aaf6 134c1b2 8d273e9 31c44c1 134c1b2 cf9fce4 134c1b2 832c70d 4c2de11 134c1b2 832c70d 134c1b2 4c2de11 cf9fce4 fb3ffbe 134c1b2 8d273e9 134c1b2 60e605a 4c2de11 134c1b2 60e605a 134c1b2 60e605a 134c1b2 e86b31c 134c1b2 e86b31c 134c1b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import AutoPipelineForText2Image, AutoencoderTiny
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_token = os.getenv('HF_TOKEN')
if torch.cuda.is_available():
dtype = torch.float16
torch.cuda.empty_cache()
else:
dtype = torch.float32
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", token=hf_token, torch_dtype=torch.bfloat16)
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors')
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
seed=2110073662,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"plugilo prompt:minimalist icon illustration in solid azure blue (#0099FF), ultra clean lines, flat 2D geometric shapes, negative space design, perfect symmetry, vector art style, corporate tech icon, pure white background, perfect smooth edges --no texture --no gradient --no shadows --no depth --stylize 750 --v 6 --ar 1:1",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|