patrickblanks's picture
Update app.py
60e605a verified
raw
history blame
4.35 kB
import gradio as gr
import numpy as np
import random
import os
import spaces #[uncomment to use ZeroGPU]
from diffusers import AutoPipelineForText2Image, AutoencoderTiny
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_token = os.getenv('HF_TOKEN')
if torch.cuda.is_available():
dtype = torch.float16
torch.cuda.empty_cache()
else:
dtype = torch.float32
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", token=hf_token, torch_dtype=torch.bfloat16)
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors')
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
seed=2110073662,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"plugilo prompt:minimalist icon illustration in solid azure blue (#0099FF), ultra clean lines, flat 2D geometric shapes, negative space design, perfect symmetry, vector art style, corporate tech icon, pure white background, perfect smooth edges --no texture --no gradient --no shadows --no depth --stylize 750 --v 6 --ar 1:1",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()