Spaces:
Sleeping
Sleeping
File size: 7,015 Bytes
938e515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
from typing import Any, Dict, List, Tuple
import torch
from detectron2.data import MetadataCatalog
from detectron2.data import detection_utils as utils
from detectron2.data import transforms as T
from detectron2.layers import ROIAlign
from detectron2.structures import BoxMode
from detectron2.utils.file_io import PathManager
from densepose.structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData
def build_augmentation(cfg, is_train):
logger = logging.getLogger(__name__)
result = utils.build_augmentation(cfg, is_train)
if is_train:
random_rotation = T.RandomRotation(
cfg.INPUT.ROTATION_ANGLES, expand=False, sample_style="choice"
)
result.append(random_rotation)
logger.info("DensePose-specific augmentation used in training: " + str(random_rotation))
return result
class DatasetMapper:
"""
A customized version of `detectron2.data.DatasetMapper`
"""
def __init__(self, cfg, is_train=True):
self.augmentation = build_augmentation(cfg, is_train)
# fmt: off
self.img_format = cfg.INPUT.FORMAT
self.mask_on = (
cfg.MODEL.MASK_ON or (
cfg.MODEL.DENSEPOSE_ON
and cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS)
)
self.keypoint_on = cfg.MODEL.KEYPOINT_ON
self.densepose_on = cfg.MODEL.DENSEPOSE_ON
assert not cfg.MODEL.LOAD_PROPOSALS, "not supported yet"
# fmt: on
if self.keypoint_on and is_train:
# Flip only makes sense in training
self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
else:
self.keypoint_hflip_indices = None
if self.densepose_on:
densepose_transform_srcs = [
MetadataCatalog.get(ds).densepose_transform_src
for ds in cfg.DATASETS.TRAIN + cfg.DATASETS.TEST
]
assert len(densepose_transform_srcs) > 0
# TODO: check that DensePose transformation data is the same for
# all the datasets. Otherwise one would have to pass DB ID with
# each entry to select proper transformation data. For now, since
# all DensePose annotated data uses the same data semantics, we
# omit this check.
densepose_transform_data_fpath = PathManager.get_local_path(densepose_transform_srcs[0])
self.densepose_transform_data = DensePoseTransformData.load(
densepose_transform_data_fpath
)
self.is_train = is_train
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
image, transforms = T.apply_transform_gens(self.augmentation, image)
image_shape = image.shape[:2] # h, w
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))
if not self.is_train:
dataset_dict.pop("annotations", None)
return dataset_dict
for anno in dataset_dict["annotations"]:
if not self.mask_on:
anno.pop("segmentation", None)
if not self.keypoint_on:
anno.pop("keypoints", None)
# USER: Implement additional transformations if you have other types of data
# USER: Don't call transpose_densepose if you don't need
annos = [
self._transform_densepose(
utils.transform_instance_annotations(
obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
),
transforms,
)
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
if self.mask_on:
self._add_densepose_masks_as_segmentation(annos, image_shape)
instances = utils.annotations_to_instances(annos, image_shape, mask_format="bitmask")
densepose_annotations = [obj.get("densepose") for obj in annos]
if densepose_annotations and not all(v is None for v in densepose_annotations):
instances.gt_densepose = DensePoseList(
densepose_annotations, instances.gt_boxes, image_shape
)
dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()]
return dataset_dict
def _transform_densepose(self, annotation, transforms):
if not self.densepose_on:
return annotation
# Handle densepose annotations
is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation)
if is_valid:
densepose_data = DensePoseDataRelative(annotation, cleanup=True)
densepose_data.apply_transform(transforms, self.densepose_transform_data)
annotation["densepose"] = densepose_data
else:
# logger = logging.getLogger(__name__)
# logger.debug("Could not load DensePose annotation: {}".format(reason_not_valid))
DensePoseDataRelative.cleanup_annotation(annotation)
# NOTE: annotations for certain instances may be unavailable.
# 'None' is accepted by the DensePostList data structure.
annotation["densepose"] = None
return annotation
def _add_densepose_masks_as_segmentation(
self, annotations: List[Dict[str, Any]], image_shape_hw: Tuple[int, int]
):
for obj in annotations:
if ("densepose" not in obj) or ("segmentation" in obj):
continue
# DP segmentation: torch.Tensor [S, S] of float32, S=256
segm_dp = torch.zeros_like(obj["densepose"].segm)
segm_dp[obj["densepose"].segm > 0] = 1
segm_h, segm_w = segm_dp.shape
bbox_segm_dp = torch.tensor((0, 0, segm_h - 1, segm_w - 1), dtype=torch.float32)
# image bbox
x0, y0, x1, y1 = (
v.item() for v in BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
)
segm_aligned = (
ROIAlign((y1 - y0, x1 - x0), 1.0, 0, aligned=True)
.forward(segm_dp.view(1, 1, *segm_dp.shape), bbox_segm_dp)
.squeeze()
)
image_mask = torch.zeros(*image_shape_hw, dtype=torch.float32)
image_mask[y0:y1, x0:x1] = segm_aligned
# segmentation for BitMask: np.array [H, W] of bool
obj["segmentation"] = image_mask >= 0.5
|