File size: 5,207 Bytes
9fa6437
7d2f336
 
 
 
 
b5dcb77
7d2f336
 
710b787
b962a46
b5dcb77
 
b962a46
7d2f336
 
 
 
9fa6437
7d2f336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710b787
7d2f336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5dcb77
7d2f336
 
 
 
b5dcb77
7d2f336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
862cd29
7d2f336
 
7bc15eb
9fa6437
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import pypandoc
import glob
import shutil
import os
import tqdm
from huggingface_hub import snapshot_download
import tempfile
import re
import pdfminer

print("pdfminer", pdfminer.__version__)
print("pandoc", pypandoc.__version__)

#from docx import Document
#document = Document()
#document.add_heading('Labels for ', level=1)
RESULTS_FOLDER = "./results"

CAT_TO_CODEWORDS = {
    "Prejudices": ["prejudice", "judge", "preconceive", "stigma", "assumption", "assume", "misunderstanding", "unexamined", "distorted", "clear", "compar"],
    "Self-knowledge": ["self-knowledge", "self-awareness", "introspection", "examined", "myself", "realization", "belief"],
    "Similarities": ["similarity", "same", "similar", "equal", "related", "together"],
    "Diversity": ["diverse", "different", "diverse", "particular", "range", "multiplicity"],
    "Business school": ["ESADE", "competitive", "business school", "education", "study", "university", "student", "consulting", "professional", "pressure", "performance", "institution"],
    "Courage": ["courage", "brave", "dare", "step", "determine"],
    "Change": ["change", "finally", "at last", "decided", "chose", "concluded", "want to", "swap", "different", "not the same", "replace", "convert", "trade", "future", "decision"],
    "Coherence": ["coherent", "align", "incoherent", "consistent"],
    "Voicing": ["speak", "express", "voice", "talk", "say", "open up", "articulate", "communicate", "convey", "reveal", "show", "verbalize", "phrase", "word"],
    "Listening": ["listen", "pay attention", "quiet", "silence", "process", "hear", "attend"],
    "Understanding": ["learn", "understand", "realize", "see", "believe", "question", "critical", "thought", "reasonable", "logical", "rational", "comprehensible", "accept"],
    "Relationships": ["relationship", "relate", "bond", "connection", "bond", "others", "appreciate", "appreciation", "recognize", "recognition", "acknowledge"],
    "Emotions": ["emotions", "felt", "feel", "a feeling of", "sense", "sensation", "instinct", "sentiment", "gut feeling", "intense", "wave"],
    "The course": ["first time", "never", "always", "course", "elective", "Socratic Dialogue", "dialogue", "debate", "enroll", "arguments"],
}

CATEGORIES = CAT_TO_CODEWORDS.keys()

def retrieve_lines(filename):
    extension = filename.split(".")[-1]

    if extension == "pdf":
        text = pdfminer.high_level.extract_text(filename)
        lines = text.split("\n")
    elif extension in ["docx", "doc"]:
        with tempfile.TemporaryDirectory() as tmpdirname:
            outfile = os.path.join(tmpdirname, "temp.txt")
            pypandoc.convert_file(filename, 'plain', outputfile=outfile)
            with open(outfile, "r") as f:
                lines = f.readlines()
        
        lines = [l.strip() for l in lines]

    lines = " ".join(lines)
    lines = lines.split(".")

    return lines

def match_code(lines, codewords):
    match_dict = {}
    keywords_to_match = re.compile(fr'\b(?:{"|".join(codewords)})\b')
    for i, _ in enumerate(lines):
        line = lines[i]
        matches = list(keywords_to_match.finditer(line))

        if len(matches) > 0:
            for m in matches:
                span = m.span()
                line = line[:span[0]] + line[span[0]:span[1]].upper() + line[span[1]:]

            match_dict[i] = " ".join(line.rstrip().lstrip().split())

    return match_dict

def main(filename, codewords_mapping):
    lines = retrieve_lines(filename)

    for label, codewords in codewords_mapping.items():
        match = match_code(lines, codewords)
        
        out = ""
        if len(match) > 0:
            result_file = ".".join(['_'.join(label.split()), "result", "txt"])
            result_file = os.path.join(RESULTS_FOLDER, result_file)
            if not os.path.exists(result_file):
                out += f"# Code: {label}\n"
                out += 25 * "="
                out += "\n\n"
    
            out += f"## Source: {filename}\n"
            out += 25 * "-"
            out += "\n"
            out += "\n".join([f'-{v}' for k,v in match.items()])
            out += "\n"
            out += 25 * "-"
            out += "\n\n"

            with open(result_file, "a") as f:
                f.write(out)

def convert(*keywords):
    # cached_folder = snapshot_download("claudiag/atlas", token=os.environ.get("HF_TOKEN"))
    codewords_mapping = {k: v for k,v in zip(CATEGORIES, keywords)}

    num_files = 0

    return "_".join(codewords_mapping.values())

    for folder in tqdm.tqdm(glob.glob("./*")):
        shutil.rmtree(RESULTS_FOLDER, ignore_errors=True)
        os.makedirs(RESULTS_FOLDER)

        all_files = tqdm.tqdm(glob.glob(f"./{folder}/*"))
        num_files += len(all_files)

        for filename in all_files:
            try:
                main(filename)
            except Exception as e:
                print(f"{filename} not working because \n {e}")

        return f"Retrieved from {num_files}"

inputs = [gr.Textbox(label=f"Enter your keywords for {k}", max_lines=2, placeholder=CAT_TO_CODEWORDS[k]) for k in CATEGORIES]

iface = gr.Interface(
        fn=convert, inputs=inputs, outputs="text")
iface.launch()