File size: 6,911 Bytes
9fa6437
7d2f336
 
 
 
 
 
 
b962a46
 
 
7d2f336
9fa6437
7d2f336
 
 
 
9fa6437
7d2f336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa6437
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import pypandoc
import glob
import shutil
import os
import tqdm
import tempfile
import re

print("pdfminer", print(pdfminer.__version__))

from pdfminer.high_level import extract_text

#from docx import Document
#document = Document()
#document.add_heading('Labels for ', level=1)
RESULTS_FOLDER = "./results"

CAT_TO_CODEWORDS = {
    "Prejudices": ["prejudice", "judge", "preconceive", "stigma", "assumption", "assume", "misunderstanding", "unexamined", "distorted", "clear", "compar"],
    "Self-knowledge": ["self-knowledge", "self-awareness", "introspection", "examined", "myself", "realization", "belief"],
    "Similarities": ["similarity", "same", "similar", "equal", "related", "together"],
    "Diversity": ["diverse", "different", "diverse", "particular", "range", "multiplicity"],
    "Business school": ["ESADE", "competitive", "business school", "education", "study", "university", "student", "consulting", "professional", "pressure", "performance", "institution"],
    "Courage": ["courage", "brave", "dare", "step", "determine"],
    "Change": ["change", "finally", "at last", "decided", "chose", "concluded", "want to", "swap", "different", "not the same", "replace", "convert", "trade", "future", "decision"],
    "Coherence": ["coherent", "align", "incoherent", "consistent"],
    "Voicing": ["speak", "express", "voice", "talk", "say", "open up", "articulate", "communicate", "convey", "reveal", "show", "verbalize", "phrase", "word"],
    "Listening": ["listen", "pay attention", "quiet", "silence", "process", "hear", "attend"],
    "Understanding": ["learn", "understand", "realize", "see", "believe", "question", "critical", "thought", "reasonable", "logical", "rational", "comprehensible", "accept"],
    "Relationships": ["relationship", "relate", "bond", "connection", "bond", "others", "appreciate", "appreciation", "recognize", "recognition", "acknowledge"],
    "Emotions": ["emotions", "felt", "feel", "a feeling of", "sense", "sensation", "instinct", "sentiment", "gut feeling", "intense", "wave"],
    "The course": ["first time", "never", "always", "course", "elective", "Socratic Dialogue", "dialogue", "debate", "enroll", "arguments"],
}


CAT_TO_CODEWORDS = {
    "Prejudices": ["prejudice", "judge", "preconceive", "stigma", "assumption", "assume", "misunderstanding", "unexamined", "distorted", "clear", "compar"],
    "Self-knowledge": ["self-knowledge", "self-awareness", "introspection", "examined", "myself", "realization", "belief"],
    "Similarities": ["similarity", "same", "similar", "equal", "related", "together"],
    "Diversity": ["diverse", "different", "diverse", "particular", "range", "multiplicity"],
    "Business school": ["ESADE", "competitive", "business school", "education", "study", "university", "student", "consulting", "professional", "pressure", "performance", "institution"],
    "Courage": ["courage", "brave", "dare", "step", "determine"],
    "Change": ["change", "finally", "at last", "decided", "chose", "concluded", "want to", "swap", "different", "not the same", "replace", "convert", "trade", "future", "decision"],
    "Coherence": ["coherent", "align", "incoherent", "consistent"],
    "Voicing": ["speak", "express", "voice", "talk", "say", "open up", "articulate", "communicate", "convey", "reveal", "show", "verbalize", "phrase", "word"],
    "Listening": ["listen", "pay attention", "quiet", "silence", "process", "hear", "attend"],
    "Understanding": ["learn", "understand", "realize", "see", "believe", "question", "critical", "thought", "reasonable", "logical", "rational", "comprehensible", "accept"],
    "Relationships": ["relationship", "relate", "bond", "connection", "bond", "others", "appreciate", "appreciation", "recognize", "recognition", "acknowledge"],
    "Emotions": ["emotions", "felt", "feel", "a feeling of", "sense", "sensation", "instinct", "sentiment", "gut feeling", "intense", "wave"],
    "The course": ["first time", "never", "always", "course", "elective", "Socratic Dialogue", "dialogue", "debate", "enroll", "arguments"],
}

CATEGORIES = CAT_TO_CODEWORDS.keys()

def retrieve_lines(filename):
    extension = filename.split(".")[-1]

    if extension == "pdf":
        text = extract_text(filename)
        lines = text.split("\n")
    elif extension in ["docx", "doc"]:
        with tempfile.TemporaryDirectory() as tmpdirname:
            outfile = os.path.join(tmpdirname, "temp.txt")
            pypandoc.convert_file(filename, 'plain', outputfile=outfile)
            with open(outfile, "r") as f:
                lines = f.readlines()
        
        lines = [l.strip() for l in lines]

    lines = " ".join(lines)
    lines = lines.split(".")

    return lines

def match_code(lines, codewords):
    match_dict = {}
    keywords_to_match = re.compile(fr'\b(?:{"|".join(codewords)})\b')
    for i, _ in enumerate(lines):
        line = lines[i]
        matches = list(keywords_to_match.finditer(line))

        if len(matches) > 0:
            for m in matches:
                span = m.span()
                line = line[:span[0]] + line[span[0]:span[1]].upper() + line[span[1]:]

            match_dict[i] = " ".join(line.rstrip().lstrip().split())

    return match_dict

def main(filename, codewords_mapping):
    lines = retrieve_lines(filename)

    for label, codewords in codewords_mapping.items():
        match = match_code(lines, codewords)
        
        out = ""
        if len(match) > 0:
            result_file = ".".join(['_'.join(label.split()), "result", "txt"])
            result_file = os.path.join(RESULTS_FOLDER, result_file)
            if not os.path.exists(result_file):
                out += f"# Code: {label}\n"
                out += 25 * "="
                out += "\n\n"
    
            out += f"## Source: {filename}\n"
            out += 25 * "-"
            out += "\n"
            out += "\n".join([f'-{v}' for k,v in match.items()])
            out += "\n"
            out += 25 * "-"
            out += "\n\n"

            with open(result_file, "a") as f:
                f.write(out)

def convert(*keywords):
    codewords_mapping = {k: v for k,v in zip(CATEGORIES, keywords)}

    num_files = 0

    print(codewords_mapping)

    return "Yes"

    for folder in tqdm.tqdm(glob.glob("./*")):
        shutil.rmtree(RESULTS_FOLDER, ignore_errors=True)
        os.makedirs(RESULTS_FOLDER)

        all_files = tqdm.tqdm(glob.glob(f"./{folder}/*"))
        num_files += len(all_files)

        for filename in all_files:
            try:
                main(filename)
            except Exception as e:
                print(f"{filename} not working because \n {e}")

        return f"Retrieved from {num_files}"

inputs = [gr.Textbox(label=f"Enter your keywords for {k}", max_lines=2, placeholders=CAT_TO_CODEWORDS[k]) for k in CATEGORIES]

iface = gr.Interface(
        fn=greet, inputs=inputs, outputs="text")
iface.launch()