Paul Engstler
Initial commit
92f0e98
'''
Utilities for instrumenting a torch model.
InstrumentedModel will wrap a pytorch model and allow hooking
arbitrary layers to monitor or modify their output directly.
'''
import torch, numpy, types, copy, inspect
from collections import OrderedDict, defaultdict
class InstrumentedModel(torch.nn.Module):
'''
A wrapper for hooking, probing and intervening in pytorch Modules.
Example usage:
```
model = load_my_model()
with inst as InstrumentedModel(model):
inst.retain_layer(layername)
inst.edit_layer(layername, ablation=0.5, replacement=target_features)
inst(inputs)
original_features = inst.retained_layer(layername)
```
'''
def __init__(self, model):
super().__init__()
self.model = model
self._retained = OrderedDict()
self._detach_retained = {}
self._editargs = defaultdict(dict)
self._editrule = {}
self._hooked_layer = {}
self._old_forward = {}
if isinstance(model, torch.nn.Sequential):
self._hook_sequential()
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()
def forward(self, *inputs, **kwargs):
return self.model(*inputs, **kwargs)
def layer_names(self):
'''
Returns a list of layer names.
'''
return [name for name, _ in self.model.named_modules()]
def retain_layer(self, layername, detach=True):
'''
Pass a fully-qualified layer name (E.g., module.submodule.conv3)
to hook that layer and retain its output each time the model is run.
A pair (layername, aka) can be provided, and the aka will be used
as the key for the retained value instead of the layername.
'''
self.retain_layers([layername], detach=detach)
def retain_layers(self, layernames, detach=True):
'''
Retains a list of a layers at once.
'''
self.add_hooks(layernames)
for layername in layernames:
aka = layername
if not isinstance(aka, str):
layername, aka = layername
if aka not in self._retained:
self._retained[aka] = None
self._detach_retained[aka] = detach
def stop_retaining_layers(self, layernames):
'''
Removes a list of layers from the set retained.
'''
self.add_hooks(layernames)
for layername in layernames:
aka = layername
if not isinstance(aka, str):
layername, aka = layername
if aka in self._retained:
del self._retained[aka]
del self._detach_retained[aka]
def retained_features(self, clear=False):
'''
Returns a dict of all currently retained features.
'''
result = OrderedDict(self._retained)
if clear:
for k in result:
self._retained[k] = None
return result
def retained_layer(self, aka=None, clear=False):
'''
Retrieve retained data that was previously hooked by retain_layer.
Call this after the model is run. If clear is set, then the
retained value will return and also cleared.
'''
if aka is None:
# Default to the first retained layer.
aka = next(self._retained.keys().__iter__())
result = self._retained[aka]
if clear:
self._retained[aka] = None
return result
def edit_layer(self, layername, rule=None, **kwargs):
'''
Pass a fully-qualified layer name (E.g., module.submodule.conv3)
to hook that layer and modify its output each time the model is run.
The output of the layer will be modified to be a convex combination
of the replacement and x interpolated according to the ablation, i.e.:
`output = x * (1 - a) + (r * a)`.
'''
if not isinstance(layername, str):
layername, aka = layername
else:
aka = layername
# The default editing rule is apply_ablation_replacement
if rule is None:
rule = apply_ablation_replacement
self.add_hooks([(layername, aka)])
self._editargs[aka].update(kwargs)
self._editrule[aka] = rule
def remove_edits(self, layername=None):
'''
Removes edits at the specified layer, or removes edits at all layers
if no layer name is specified.
'''
if layername is None:
self._editargs.clear()
self._editrule.clear()
return
if not isinstance(layername, str):
layername, aka = layername
else:
aka = layername
if aka in self._editargs:
del self._editargs[aka]
if aka in self._editrule:
del self._editrule[aka]
def add_hooks(self, layernames):
'''
Sets up a set of layers to be hooked.
Usually not called directly: use edit_layer or retain_layer instead.
'''
needed = set()
aka_map = {}
for name in layernames:
aka = name
if not isinstance(aka, str):
name, aka = name
if self._hooked_layer.get(aka, None) != name:
aka_map[name] = aka
needed.add(name)
if not needed:
return
for name, layer in self.model.named_modules():
if name in aka_map:
needed.remove(name)
aka = aka_map[name]
self._hook_layer(layer, name, aka)
for name in needed:
raise ValueError('Layer %s not found in model' % name)
def _hook_layer(self, layer, layername, aka):
'''
Internal method to replace a forward method with a closure that
intercepts the call, and tracks the hook so that it can be reverted.
'''
if aka in self._hooked_layer:
raise ValueError('Layer %s already hooked' % aka)
if layername in self._old_forward:
raise ValueError('Layer %s already hooked' % layername)
self._hooked_layer[aka] = layername
self._old_forward[layername] = (layer, aka,
layer.__dict__.get('forward', None))
editor = self
original_forward = layer.forward
def new_forward(self, *inputs, **kwargs):
original_x = original_forward(*inputs, **kwargs)
x = editor._postprocess_forward(original_x, aka)
return x
layer.forward = types.MethodType(new_forward, layer)
def _unhook_layer(self, aka):
'''
Internal method to remove a hook, restoring the original forward method.
'''
if aka not in self._hooked_layer:
return
layername = self._hooked_layer[aka]
# Remove any retained data and any edit rules
if aka in self._retained:
del self._retained[aka]
del self._detach_retained[aka]
self.remove_edits(aka)
# Restore the unhooked method for the layer
layer, check, old_forward = self._old_forward[layername]
assert check == aka
if old_forward is None:
if 'forward' in layer.__dict__:
del layer.__dict__['forward']
else:
layer.forward = old_forward
del self._old_forward[layername]
del self._hooked_layer[aka]
def _postprocess_forward(self, x, aka):
'''
The internal method called by the hooked layers after they are run.
'''
# Retain output before edits, if desired.
if aka in self._retained:
if self._detach_retained[aka]:
# U-Net3D implementation fix
if not isinstance(x, tuple):
self._retained[aka] = x.detach()
else:
self._retained[aka] = x[0].detach()
else:
if not isinstance(x, tuple):
self._retained[aka] = x
else:
self._retained[aka] = x[0]
# Apply any edits requested.
rule = self._editrule.get(aka, None)
if rule is not None:
x = invoke_with_optional_args(
rule, x, self, name=aka, **(self._editargs[aka]))
return x
def _hook_sequential(self):
'''
Replaces 'forward' of sequential with a version that takes
additional keyword arguments: layer allows a single layer to be run;
first_layer and last_layer allow a subsequence of layers to be run.
'''
model = self.model
self._hooked_layer['.'] = '.'
self._old_forward['.'] = (model, '.',
model.__dict__.get('forward', None))
def new_forward(this, x, layer=None, first_layer=None, last_layer=None):
# TODO: decide whether to support hierarchical names here.
assert layer is None or (first_layer is None and last_layer is None)
first_layer, last_layer = [str(layer) if layer is not None
else str(d) if d is not None else None
for d in [first_layer, last_layer]]
including_children = (first_layer is None)
for name, layer in this._modules.items():
if name == first_layer:
first_layer = None
including_children = True
if including_children:
x = layer(x)
if name == last_layer:
last_layer = None
including_children = False
assert first_layer is None, '%s not found' % first_layer
assert last_layer is None, '%s not found' % last_layer
return x
model.forward = types.MethodType(new_forward, model)
def close(self):
'''
Unhooks all hooked layers in the model.
'''
for aka in list(self._old_forward.keys()):
self._unhook_layer(aka)
assert len(self._old_forward) == 0
def apply_ablation_replacement(x, imodel, **buffers):
if buffers is not None:
# Apply any edits requested.
a = make_matching_tensor(buffers, 'ablation', x)
if a is not None:
x = x * (1 - a)
v = make_matching_tensor(buffers, 'replacement', x)
if v is not None:
x += (v * a)
return x
def make_matching_tensor(valuedict, name, data):
'''
Converts `valuedict[name]` to be a tensor with the same dtype, device,
and dimension count as `data`, and caches the converted tensor.
'''
v = valuedict.get(name, None)
if v is None:
return None
if not isinstance(v, torch.Tensor):
# Accept non-torch data.
v = torch.from_numpy(numpy.array(v))
valuedict[name] = v
if not v.device == data.device or not v.dtype == data.dtype:
# Ensure device and type matches.
assert not v.requires_grad, '%s wrong device or type' % (name)
v = v.to(device=data.device, dtype=data.dtype)
valuedict[name] = v
if len(v.shape) < len(data.shape):
# Ensure dimensions are unsqueezed as needed.
assert not v.requires_grad, '%s wrong dimensions' % (name)
v = v.view((1,) + tuple(v.shape) +
(1,) * (len(data.shape) - len(v.shape) - 1))
valuedict[name] = v
return v
def subsequence(sequential, first_layer=None, last_layer=None,
after_layer=None, upto_layer=None, single_layer=None,
share_weights=False):
'''
Creates a subsequence of a pytorch Sequential model, copying over
modules together with parameters for the subsequence. Only
modules from first_layer to last_layer (inclusive) are included,
or modules between after_layer and upto_layer (exclusive).
Handles descent into dotted layer names as long as all references
are within nested Sequential models.
If share_weights is True, then references the original modules
and their parameters without copying them. Otherwise, by default,
makes a separate brand-new copy.
'''
assert ((single_layer is None) or
(first_layer is last_layer is after_layer is upto_layer is None))
if single_layer is not None:
first_layer = single_layer
last_layer = single_layer
first, last, after, upto = [None if d is None else d.split('.')
for d in [first_layer, last_layer, after_layer, upto_layer]]
return hierarchical_subsequence(sequential, first=first, last=last,
after=after, upto=upto, share_weights=share_weights)
def hierarchical_subsequence(sequential, first, last, after, upto,
share_weights=False, depth=0):
'''
Recursive helper for subsequence() to support descent into dotted
layer names. In this helper, first, last, after, and upto are
arrays of names resulting from splitting on dots. Can only
descend into nested Sequentials.
'''
assert (last is None) or (upto is None)
assert (first is None) or (after is None)
if first is last is after is upto is None:
return sequential if share_weights else copy.deepcopy(sequential)
assert isinstance(sequential, torch.nn.Sequential), ('.'.join(
(first or last or after or upto)[:depth] or 'arg') + ' not Sequential')
including_children = (first is None) and (after is None)
included_children = OrderedDict()
(F, FN), (L, LN), (A, AN), (U, UN) = [
(d[depth], (None if len(d) == depth+1 else d))
if d is not None else (None, None)
for d in [first, last, after, upto]]
for name, layer in sequential._modules.items():
if name == F:
first = None
including_children = True
if name == A and AN is not None:
after = None
including_children = True
if name == U and UN is None:
upto = None
including_children = False
if including_children:
FR, LR, AR, UR = [n if n is None or n[depth] == name else None
for n in [FN, LN, AN, UN]]
chosen = hierarchical_subsequence(layer,
first=FR, last=LR, after=AR, upto=UR,
share_weights=share_weights, depth=depth+1)
if chosen is not None:
included_children[name] = chosen
if name == L:
last = None
including_children = False
if name == U and UN is not None:
upto = None
including_children = False
if name == A and AN is None:
after = None
including_children = True
for name in [first, last, after, upto]:
if name is not None:
raise ValueError('Layer %s not found' % '.'.join(name))
# Omit empty subsequences except at the outermost level,
# where we should not return None.
if not len(included_children) and depth > 0:
return None
return torch.nn.Sequential(included_children)
def set_requires_grad(requires_grad, *models):
for model in models:
if isinstance(model, torch.nn.Module):
for param in model.parameters():
param.requires_grad = requires_grad
elif isinstance(model, (torch.nn.Parameter, torch.Tensor)):
model.requires_grad = requires_grad
else:
assert False, 'unknown type %r' % type(model)
def invoke_with_optional_args(fn, *args, **kwargs):
argspec = inspect.getfullargspec(fn)
kwtaken = 0
if argspec.varkw is None:
kwtaken = len([k for k in kwargs if k in argspec.args])
kwargs = {k: v for k, v in kwargs.items()
if k in argspec.args or
argspec.kwonlyargs and k in argspec.kwonlyargs}
if argspec.varargs is None:
args = args[:len(argspec.args) - kwtaken]
return fn(*args, **kwargs)