from fastapi import FastAPI from transformers import AutoModelForCausalLM, AutoTokenizer from pydantic import BaseModel device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-72B-Instruct", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-72B-Instruct") class ChatRequest(BaseModel): prompt: str app = FastAPI() @app.get("/") def greet_json(): return {"Hello": "World!"} @app.post("/generate_chat") def generateAi(request: ChatRequest): messages = [ {"role": "system", "content": "You are a Mandarin language learning assistant that only answers in Mandarin."}, {"role": "user", "content": request.prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return {"answer": "Hello"}