Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
4 |
+
from diffusers.utils import export_to_gif
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from safetensors.torch import load_file
|
7 |
+
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
dtype = torch.float16
|
10 |
+
|
11 |
+
# 加載模型
|
12 |
+
step = 4 # Options: [1, 2, 4, 8]
|
13 |
+
repo = "ByteDance/AnimateDiff-Lightning"
|
14 |
+
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
15 |
+
base = "emilianJR/epiCRealism"
|
16 |
+
|
17 |
+
adapter = MotionAdapter().to(device, dtype)
|
18 |
+
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
|
19 |
+
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
20 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
21 |
+
|
22 |
+
# 定義生成 GIF 的函數
|
23 |
+
def text_to_gif(prompt):
|
24 |
+
output = pipe(prompt, guidance_scale=1.0, num_inference_steps=step)
|
25 |
+
gif_path = "animation.gif"
|
26 |
+
export_to_gif(output.frames[0], gif_path)
|
27 |
+
return gif_path
|
28 |
+
|
29 |
+
# 設置 Gradio 界面
|
30 |
+
with gr.Blocks() as demo:
|
31 |
+
gr.Markdown("# Text to GIF Generator using AnimateDiff")
|
32 |
+
prompt = gr.Textbox(label="Enter your prompt", placeholder="Describe the animation you want to create")
|
33 |
+
gif_output = gr.Image(label="Generated GIF")
|
34 |
+
generate_btn = gr.Button("Generate GIF")
|
35 |
+
|
36 |
+
generate_btn.click(fn=text_to_gif, inputs=prompt, outputs=gif_output)
|
37 |
+
|
38 |
+
# 啟動 Gradio 應用
|
39 |
+
demo.launch()
|