Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,906 Bytes
f3566c2 dc95170 f3566c2 3ed51fd f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 dc95170 f3566c2 c038666 dc95170 f3566c2 2077884 f3566c2 221fef4 f3566c2 221fef4 f3566c2 221fef4 f3566c2 221fef4 f3566c2 221fef4 f3566c2 221fef4 f3566c2 221fef4 f3566c2 c038666 f3566c2 c038666 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All rights reserved.
import spaces
import os
import logging
import shlex
import time
from dataclasses import dataclass
from typing import Optional
import gradio as gr
import simple_parsing
import yaml
from einops import rearrange, repeat
import numpy as np
import torch
from huggingface_hub import snapshot_download
from pathlib import Path
from transformers import T5ForConditionalGeneration
from torchvision.utils import make_grid
from ml_mdm import helpers, reader
from ml_mdm.config import get_arguments, get_model, get_pipeline
from ml_mdm.language_models import factory
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Download destination
models = Path("models")
logging.basicConfig(
level=getattr(logging, "INFO", None),
format="[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s",
datefmt="%H:%M:%S",
)
def download_all_models():
# Cache language model in the standard location
_ = T5ForConditionalGeneration.from_pretrained("google/flan-t5-xl")
# Download the vision models we use in the demo
snapshot_download("pcuenq/mdm-flickr-64", local_dir=models/"mdm-flickr-64")
snapshot_download("pcuenq/mdm-flickr-256", local_dir=models/"mdm-flickr-256")
snapshot_download("pcuenq/mdm-flickr-1024", local_dir=models/"mdm-flickr-1024")
def dividable(n):
for i in range(int(np.sqrt(n)), 0, -1):
if n % i == 0:
break
return i, n // i
def generate_lm_outputs(device, sample, tokenizer, language_model, args):
with torch.no_grad():
lm_outputs, lm_mask = language_model(sample, tokenizer)
sample["lm_outputs"] = lm_outputs
sample["lm_mask"] = lm_mask
return sample
def setup_models(args, device):
input_channels = 3
# load the language model
tokenizer, language_model = factory.create_lm(args, device=device)
language_model_dim = language_model.embed_dim
args.unet_config.conditioning_feature_dim = language_model_dim
denoising_model = get_model(args.model)(
input_channels, input_channels, args.unet_config
).to(device)
diffusion_model = get_pipeline(args.model)(
denoising_model, args.diffusion_config
).to(device)
# denoising_model.print_size(args.sample_image_size)
return tokenizer, language_model, diffusion_model
def plot_logsnr(logsnrs, total_steps):
import matplotlib.pyplot as plt
x = 1 - np.arange(len(logsnrs)) / (total_steps - 1)
plt.plot(x, np.asarray(logsnrs))
plt.xlabel("timesteps")
plt.ylabel("LogSNR")
plt.grid(True)
plt.xlim(0, 1)
plt.ylim(-20, 10)
plt.gca().invert_xaxis()
# Convert the plot to a numpy array
fig = plt.gcf()
fig.canvas.draw()
image = np.array(fig.canvas.renderer._renderer)
plt.close()
return image
@dataclass
class GLOBAL_DATA:
reader_config: Optional[reader.ReaderConfig] = None
tokenizer = None
args = None
language_model = None
diffusion_model = None
override_args = ""
ckpt_name = ""
global_config = GLOBAL_DATA()
def stop_run():
return (
gr.update(value="Run", variant="primary", visible=True),
gr.update(visible=False),
)
def get_model_type(config_file):
with open(config_file, "r") as f:
d = yaml.safe_load(f)
return d.get("model", d.get("vision_model", "unet"))
@spaces.GPU
def generate(
ckpt_name="mdm-flickr-64",
prompt="a chair",
input_template="",
negative_prompt="",
negative_template="",
batch_size=20,
guidance_scale=7.5,
threshold_function="clip",
num_inference_steps=250,
eta=0,
save_diffusion_path=False,
show_diffusion_path=False,
show_xt=False,
reader_config="",
seed=10,
comment="",
override_args="",
output_inner=False,
):
np.random.seed(seed)
torch.random.manual_seed(seed)
if len(input_template) > 0:
prompt = input_template.format(prompt=prompt)
if len(negative_template) > 0:
negative_prompt = negative_prompt + negative_template
print(f"Postive: {prompt} / Negative: {negative_prompt}")
vision_model_file = models/ckpt_name/"vis_model.pth"
if not os.path.exists(vision_model_file):
logging.info(f"Did not generate because {vision_model_file} does not exist")
return None, None, f"{vision_model_file} does not exist", None, None
if (
global_config.ckpt_name != ckpt_name
or global_config.override_args != override_args
):
# Identify model type
model_type = get_model_type(models/ckpt_name/"config.yaml")
# reload the arguments
args = get_arguments(
shlex.split(override_args + f" --model {model_type}"),
mode="demo",
additional_config_paths=[models/ckpt_name/"config.yaml"],
)
helpers.print_args(args)
# setup model when the parent task changed.
args.vocab_file = str(models/ckpt_name/args.vocab_file)
tokenizer, language_model, diffusion_model = setup_models(args, device)
try:
other_items = diffusion_model.model.load(vision_model_file)
except Exception as e:
logging.error(f"failed to load {vision_model_file}", exc_info=e)
return None, None, "Loading Model Error", None, None
# setup global configs
global_config.batch_num = -1 # reset batch num
global_config.args = args
global_config.override_args = override_args
global_config.tokenizer = tokenizer
global_config.language_model = language_model
global_config.diffusion_model = diffusion_model
global_config.reader_config = args.reader_config
global_config.ckpt_name = ckpt_name
else:
args = global_config.args
tokenizer = global_config.tokenizer
language_model = global_config.language_model
diffusion_model = global_config.diffusion_model
tokenizer = global_config.tokenizer
sample = {}
sample["text"] = [negative_prompt, prompt] if guidance_scale != 1 else [prompt]
sample["tokens"] = np.asarray(
reader.process_text(sample["text"], tokenizer, args.reader_config)
)
sample = generate_lm_outputs(device, sample, tokenizer, language_model, args)
assert args.sample_image_size != -1
# set up thresholding
from samplers import ThresholdType
diffusion_model.sampler._config.threshold_function = {
"clip": ThresholdType.CLIP,
"dynamic (Imagen)": ThresholdType.DYNAMIC,
"dynamic (DeepFloyd)": ThresholdType.DYNAMIC_IF,
"none": ThresholdType.NONE,
}[threshold_function]
output_comments = f"{comment}\n"
bsz = batch_size
with torch.no_grad():
if bsz > 1:
sample["lm_outputs"] = repeat(
sample["lm_outputs"], "b n d -> (b r) n d", r=bsz
)
sample["lm_mask"] = repeat(sample["lm_mask"], "b n -> (b r) n", r=bsz)
num_samples = bsz
original, outputs, logsnrs = [], [], []
logging.info(f"Starting to sample from the model")
start_time = time.time()
for step, result in enumerate(
diffusion_model.sample(
num_samples,
sample,
args.sample_image_size,
device,
return_sequence=False,
num_inference_steps=num_inference_steps,
ddim_eta=eta,
guidance_scale=guidance_scale,
resample_steps=True,
disable_bar=False,
yield_output=True,
yield_full=True,
output_inner=output_inner,
)
):
x0, x_t, extra = result
if step < num_inference_steps:
g = extra[0][0, 0, 0, 0].cpu()
logsnrs += [torch.log(g / (1 - g))]
output = x0 if not show_xt else x_t
output = torch.clamp(output * 0.5 + 0.5, min=0, max=1).cpu()
original += [
output if not output_inner else output[..., -args.sample_image_size :]
]
output = (
make_grid(output, nrow=dividable(bsz)[0]).permute(1, 2, 0).numpy() * 255
).astype(np.uint8)
outputs += [output]
output_video_path = None
if step == num_inference_steps and save_diffusion_path:
import imageio
writer = imageio.get_writer("temp_output.mp4", fps=32)
for output in outputs:
writer.append_data(output)
writer.close()
output_video_path = "temp_output.mp4"
if any(diffusion_model.model.vision_model.is_temporal):
data = rearrange(
original[-1],
"(a b) c (n h) (m w) -> (n m) (a h) (b w) c",
a=dividable(bsz)[0],
n=4,
m=4,
)
data = (data.numpy() * 255).astype(np.uint8)
writer = imageio.get_writer("temp_output.mp4", fps=4)
for d in data:
writer.append_data(d)
writer.close()
if show_diffusion_path or (step == num_inference_steps):
yield output, plot_logsnr(
logsnrs, num_inference_steps
), output_comments + f"Step ({step} / {num_inference_steps}) Time ({time.time() - start_time:.4}s)", output_video_path, gr.update(
value="Run",
variant="primary",
visible=(step == num_inference_steps),
), gr.update(
value="Stop", variant="stop", visible=(step != num_inference_steps)
)
def main():
download_all_models()
# get the language model outputs
example_texts = open("data/prompts_demo.tsv").readlines()
css = """
#config-accordion, #logs-accordion {color: black !important;}
.dark #config-accordion, .dark #logs-accordion {color: white !important;}
.stop {background: darkred !important;}
"""
with gr.Blocks(
title="Demo of Text-to-Image Diffusion",
theme="EveryPizza/Cartoony-Gradio-Theme",
css=css,
) as demo:
with gr.Row(equal_height=True):
header = """
# Matryoshka MDM – Text-to-Image Diffusion Model Web Demo by MLR
This is a demo of model `mdm-flickr-64`. For additional models, please check [our repo](https://github.com/apple/ml-mdm).
### Usage
- Select examples below or manually input prompt
- Change more advanced settings such as inference steps.
"""
gr.Markdown(header)
with gr.Row(equal_height=False):
pid = gr.State()
ckpt_name = gr.Label("mdm-flickr-64", visible=False)
# with gr.Row():
prompt_input = gr.Textbox(label="Input prompt")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
with gr.Row(equal_height=False):
guidance_scale = gr.Slider(
value=7.5,
minimum=0.0,
maximum=50,
step=0.1,
label="Guidance scale",
)
with gr.Row(equal_height=False):
batch_size = gr.Slider(
value=4, minimum=1, maximum=32, step=1, label="Number of images"
)
with gr.Column(scale=1):
with gr.Row(equal_height=False):
with gr.Column(scale=1):
save_diffusion_path = gr.Checkbox(
value=True, label="Show diffusion path as a video"
)
show_diffusion_path = gr.Checkbox(
value=False, label="Show diffusion progress"
)
show_xt = gr.Checkbox(value=False, label="Show predicted x_t")
with gr.Column(scale=1):
output_inner = gr.Checkbox(
value=False,
label="Output inner UNet (High-res models Only)",
visible=False,
)
with gr.Row(equal_height=False):
comment = gr.Textbox(value="", label="Comments to the model (optional)")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
output_image = gr.Image(value=None, label="Output image")
with gr.Column(scale=2):
output_video = gr.Video(value=None, label="Diffusion Path")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
with gr.Accordion(
"Advanced settings", open=False, elem_id="config-accordion"
):
input_template = gr.Dropdown(
[
"",
"breathtaking {prompt}. award-winning, professional, highly detailed",
"anime artwork {prompt}. anime style, key visual, vibrant, studio anime, highly detailed",
"concept art {prompt}. digital artwork, illustrative, painterly, matte painting, highly detailed",
"ethereal fantasy concept art of {prompt}. magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"cinematic photo {prompt}. 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"cinematic film still {prompt}. shallow depth of field, vignette, highly detailed, high budget Hollywood movie, bokeh, cinemascope, moody",
"analog film photo {prompt}. faded film, desaturated, 35mm photo, grainy, vignette, vintage, Kodachrome, Lomography, stained, highly detailed, found footage",
"vaporwave synthwave style {prompt}. cyberpunk, neon, vibes, stunningly beautiful, crisp, detailed, sleek, ultramodern, high contrast, cinematic composition",
"isometric style {prompt}. vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
"low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
"claymation style {prompt}. sculpture, clay art, centered composition, play-doh",
"professional 3d model {prompt}. octane render, highly detailed, volumetric, dramatic lighting",
"origami style {prompt}. paper art, pleated paper, folded, origami art, pleats, cut and fold, centered composition",
"pixel-art {prompt}. low-res, blocky, pixel art style, 16-bit graphics",
],
value="",
label="Positive Template (by default, not use)",
)
with gr.Row(equal_height=False):
with gr.Column(scale=1):
negative_prompt_input = gr.Textbox(
value="", label="Negative prompt"
)
with gr.Column(scale=1):
negative_template = gr.Dropdown(
[
"",
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry",
"photo, deformed, black and white, realism, disfigured, low contrast",
"photo, photorealistic, realism, ugly",
"photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
"drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
"painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
"illustration, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
"deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic",
"noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo",
"ugly, deformed, noisy, low poly, blurry, painting",
],
value="",
label="Negative Template (by default, not use)",
)
with gr.Row(equal_height=False):
with gr.Column(scale=1):
threshold_function = gr.Dropdown(
[
"clip",
"dynamic (Imagen)",
"dynamic (DeepFloyd)",
"none",
],
value="dynamic (DeepFloyd)",
label="Thresholding",
)
with gr.Column(scale=1):
reader_config = gr.Dropdown(
["configs/datasets/reader_config.yaml"],
value="configs/datasets/reader_config.yaml",
label="Reader Config",
)
with gr.Row(equal_height=False):
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
value=50,
minimum=1,
maximum=2000,
step=1,
label="# of steps",
)
with gr.Column(scale=1):
eta = gr.Slider(
value=0,
minimum=0,
maximum=1,
step=0.05,
label="DDIM eta",
)
seed = gr.Slider(
value=137,
minimum=0,
maximum=2147483647,
step=1,
label="Random seed",
)
override_args = gr.Textbox(
value="--reader_config.max_token_length 128 --reader_config.max_caption_length 512",
label="Override model arguments (optional)",
)
run_btn = gr.Button(value="Run", variant="primary")
stop_btn = gr.Button(value="Stop", variant="stop", visible=False)
with gr.Column(scale=2):
with gr.Accordion(
"Addditional outputs", open=False, elem_id="output-accordion"
):
with gr.Row(equal_height=True):
output_text = gr.Textbox(value=None, label="System output")
with gr.Row(equal_height=True):
logsnr_fig = gr.Image(value=None, label="Noise schedule")
run_event = run_btn.click(
fn=generate,
inputs=[
ckpt_name,
prompt_input,
input_template,
negative_prompt_input,
negative_template,
batch_size,
guidance_scale,
threshold_function,
num_inference_steps,
eta,
save_diffusion_path,
show_diffusion_path,
show_xt,
reader_config,
seed,
comment,
override_args,
output_inner,
],
outputs=[
output_image,
logsnr_fig,
output_text,
output_video,
run_btn,
stop_btn,
],
)
stop_btn.click(
fn=stop_run,
outputs=[run_btn, stop_btn],
cancels=[run_event],
queue=False,
)
# example0 = gr.Examples(
# [
# ["mdm-flickr-64", 64, 50, 0],
# ["mdm-flickr-256", 16, 100, 0],
# ["mdm-flickr-1024", 4, 250, 1],
# ],
# inputs=[ckpt_name, batch_size, num_inference_steps, eta],
# )
example1 = gr.Examples(
examples=[[t.strip()] for t in example_texts],
inputs=[prompt_input],
)
launch_args = {}
demo.queue(default_concurrency_limit=1).launch(**launch_args)
if __name__ == "__main__":
main()
|