Spaces:
Runtime error
Runtime error
File size: 20,810 Bytes
e28c01f 3875a6e e28c01f 3875a6e f025569 3875a6e e28c01f 3875a6e 587fb65 e28c01f 3875a6e f025569 e28c01f f025569 e28c01f f025569 e28c01f f025569 e28c01f 3875a6e e28c01f 3875a6e f025569 bae1c0e e28c01f 3875a6e e28c01f f025569 5e43d22 f025569 3875a6e f025569 3875a6e e28c01f 51d00a8 3875a6e e28c01f 3875a6e f025569 3875a6e f025569 3875a6e e28c01f f025569 e28c01f 407ace8 e28c01f 51d00a8 3875a6e 51d00a8 3875a6e 51d00a8 e28c01f 51d00a8 e28c01f 407ace8 e28c01f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import gradio as gr
import torch
import open_clip
import torchvision
from huggingface_hub import hf_hub_download
from PIL import Image
from open_clip import tokenizer
from Paella.utils.modules import Paella
from arroz import Diffuzz, PriorModel
from transformers import AutoTokenizer, T5EncoderModel
from Paella.src.vqgan import VQModel
from Paella.utils.alter_attention import replace_attention_layers
model_repo = "dome272/Paella"
model_file = "paella_v3.pt"
prior_file = "prior_v1.pt"
vqgan_file = "vqgan_f4.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 4
latent_shape = (batch_size, 64, 64) # latent shape of the generated image, we are using an f4 vqgan and thus sampling 64x64 will result in 256x256
prior_timesteps, prior_cfg, prior_sampler, clip_embedding_shape = 60, 3.0, "ddpm", (batch_size, 1024)
generator_timesteps = 12
generator_cfg = 5
prior_timesteps = 60
prior_cfg = 3.0
prior_sampler = 'ddpm'
clip_embedding_shape = (batch_size, 1024)
def to_pil(images):
images = images.permute(0, 2, 3, 1).cpu().numpy()
images = (images * 255).round().astype("uint8")
images = [Image.fromarray(image) for image in images]
return images
def log(t, eps=1e-20):
return torch.log(t + eps)
def gumbel_noise(t):
noise = torch.zeros_like(t).uniform_(0, 1)
return -log(-log(noise))
def gumbel_sample(t, temperature=1., dim=-1):
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
def sample(model, c, x=None, negative_embeddings=None, mask=None, T=12, size=(32, 32), starting_t=0, temp_range=[1.0, 1.0], typical_filtering=True, typical_mass=0.2, typical_min_tokens=1, classifier_free_scale=-1, renoise_steps=11, renoise_mode='start'):
with torch.inference_mode():
r_range = torch.linspace(0, 1, T+1)[:-1][:, None].expand(-1, c.size(0)).to(c.device)
temperatures = torch.linspace(temp_range[0], temp_range[1], T)
preds = []
if x is None:
x = torch.randint(0, model.num_labels, size=(c.size(0), *size), device=c.device)
elif mask is not None:
noise = torch.randint(0, model.num_labels, size=(c.size(0), *size), device=c.device)
x = noise * mask + (1-mask) * x
init_x = x.clone()
for i in range(starting_t, T):
if renoise_mode == 'prev':
prev_x = x.clone()
r, temp = r_range[i], temperatures[i]
logits = model(x, c, r)
if classifier_free_scale >= 0:
if negative_embeddings is not None:
logits_uncond = model(x, negative_embeddings, r)
else:
logits_uncond = model(x, torch.zeros_like(c), r)
logits = torch.lerp(logits_uncond, logits, classifier_free_scale)
x = logits
x_flat = x.permute(0, 2, 3, 1).reshape(-1, x.size(1))
if typical_filtering:
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
x_flat_norm_p = torch.exp(x_flat_norm)
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
x_flat_cumsum = x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(1, last_ind.view(-1, 1))
if typical_min_tokens > 1:
sorted_indices_to_remove[..., :typical_min_tokens] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, x_flat_indices, sorted_indices_to_remove)
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
x_flat = torch.multinomial(x_flat.div(temp).softmax(-1), num_samples=1)[:, 0]
x = x_flat.view(x.size(0), *x.shape[2:])
if mask is not None:
x = x * mask + (1-mask) * init_x
if i < renoise_steps:
if renoise_mode == 'start':
x, _ = model.add_noise(x, r_range[i+1], random_x=init_x)
elif renoise_mode == 'prev':
x, _ = model.add_noise(x, r_range[i+1], random_x=prev_x)
else: # 'rand'
x, _ = model.add_noise(x, r_range[i+1])
preds.append(x.detach())
return preds
# Model loading
# Load T5 on CPU
t5_tokenizer = AutoTokenizer.from_pretrained("google/byt5-xl")
t5_model = T5EncoderModel.from_pretrained("google/byt5-xl")
# Load other models on GPU
clip_model, _, _ = open_clip.create_model_and_transforms('ViT-H-14', pretrained='laion2b_s32b_b79k')
clip_model = clip_model.to(device).half().eval().requires_grad_(False)
clip_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
torchvision.transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
])
vqgan_path = hf_hub_download(repo_id=model_repo, filename=vqgan_file)
vqmodel = VQModel().to(device)
vqmodel.load_state_dict(torch.load(vqgan_path, map_location=device))
vqmodel.eval().requires_grad_(False)
prior_path = hf_hub_download(repo_id=model_repo, filename=prior_file)
prior = PriorModel().to(device).half()
prior.load_state_dict(torch.load(prior_path, map_location=device))
prior.eval().requires_grad_(False)
model_path = hf_hub_download(repo_id=model_repo, filename=model_file)
model = Paella(byt5_embd=2560)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval().requires_grad_().half()
replace_attention_layers(model)
model.to(device)
diffuzz = Diffuzz(device=device)
@torch.inference_mode()
def decode(img_seq):
return vqmodel.decode_indices(img_seq)
@torch.inference_mode()
def embed_t5(text, t5_tokenizer, t5_model, final_device="cuda"):
device = t5_model.device
t5_tokens = t5_tokenizer(text, padding="longest", return_tensors="pt", max_length=768, truncation=True).input_ids.to(device)
t5_embeddings = t5_model(input_ids=t5_tokens).last_hidden_state.to(final_device)
return t5_embeddings
@torch.inference_mode()
def sample(model, model_inputs, latent_shape,
unconditional_inputs=None, init_x=None, steps=12, renoise_steps=None,
temperature = (0.7, 0.3), cfg=(8.0, 8.0),
mode = 'multinomial', # 'quant', 'multinomial', 'argmax'
t_start=1.0, t_end=0.0,
sampling_conditional_steps=None, sampling_quant_steps=None, attn_weights=None
):
device = unconditional_inputs["byt5"].device
if sampling_conditional_steps is None:
sampling_conditional_steps = steps
if sampling_quant_steps is None:
sampling_quant_steps = steps
if renoise_steps is None:
renoise_steps = steps-1
if unconditional_inputs is None:
unconditional_inputs = {k: torch.zeros_like(v) for k, v in model_inputs.items()}
init_noise = torch.randint(0, model.num_labels, size=latent_shape, device=device)
if init_x != None:
sampled = init_x
else:
sampled = init_noise.clone()
t_list = torch.linspace(t_start, t_end, steps+1)
temperatures = torch.linspace(temperature[0], temperature[1], steps)
cfgs = torch.linspace(cfg[0], cfg[1], steps)
for i, tv in enumerate(t_list[:steps]):
if i >= sampling_quant_steps:
mode = "quant"
t = torch.ones(latent_shape[0], device=device) * tv
logits = model(sampled, t, **model_inputs, attn_weights=attn_weights)
if cfg is not None and i < sampling_conditional_steps:
logits = logits * cfgs[i] + model(sampled, t, **unconditional_inputs) * (1-cfgs[i])
scores = logits.div(temperatures[i]).softmax(dim=1)
if mode == 'argmax':
sampled = logits.argmax(dim=1)
elif mode == 'multinomial':
sampled = scores.permute(0, 2, 3, 1).reshape(-1, logits.size(1))
sampled = torch.multinomial(sampled, 1)[:, 0].view(logits.size(0), *logits.shape[2:])
elif mode == 'quant':
sampled = scores.permute(0, 2, 3, 1) @ vqmodel.vquantizer.codebook.weight.data
sampled = vqmodel.vquantizer.forward(sampled, dim=-1)[-1]
else:
raise Exception(f"Mode '{mode}' not supported, use: 'quant', 'multinomial' or 'argmax'")
if i < renoise_steps:
t_next = torch.ones(latent_shape[0], device=device) * t_list[i+1]
sampled = model.add_noise(sampled, t_next, random_x=init_noise)[0]
return sampled
# -----
def infer(prompt, negative_prompt):
text = tokenizer.tokenize([prompt] * latent_shape[0]).to(device)
with torch.inference_mode():
if negative_prompt:
clip_text_tokens_uncond = tokenizer.tokenize([negative_prompt] * len(text)).to(device)
t5_embeddings_uncond = embed_t5([negative_prompt] * len(text), t5_tokenizer, t5_model)
else:
clip_text_tokens_uncond = tokenizer.tokenize([""] * len(text)).to(device)
t5_embeddings_uncond = embed_t5([""] * len(text), t5_tokenizer, t5_model)
t5_embeddings = embed_t5([prompt] * latent_shape[0], t5_tokenizer, t5_model)
clip_text_embeddings = clip_model.encode_text(text)
clip_text_embeddings_uncond = clip_model.encode_text(clip_text_tokens_uncond)
with torch.autocast(device_type="cuda"):
clip_image_embeddings = diffuzz.sample(
prior, {'c': clip_text_embeddings}, clip_embedding_shape,
timesteps=prior_timesteps, cfg=prior_cfg, sampler=prior_sampler
)[-1]
attn_weights = torch.ones((t5_embeddings.shape[1]))
attn_weights[-4:] = 0.4 # reweigh attention weights for image embeddings --> less influence
attn_weights[:-4] = 1.2 # reweigh attention weights for the rest --> more influence
attn_weights = attn_weights.to(device)
sampled_tokens = sample(model,
model_inputs={'byt5': t5_embeddings, 'clip': clip_text_embeddings, 'clip_image': clip_image_embeddings}, unconditional_inputs={'byt5': t5_embeddings_uncond, 'clip': clip_text_embeddings_uncond, 'clip_image': None},
temperature=(1.2, 0.2), cfg=(8,8), steps=32, renoise_steps=26, latent_shape=latent_shape, t_start=1.0, t_end=0.0,
mode="multinomial", sampling_conditional_steps=20, attn_weights=attn_weights)
sampled = decode(sampled_tokens)
return to_pil(sampled.clamp(0, 1))
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
"""
block = gr.Blocks(css=css)
with block:
gr.HTML(
f"""
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Paella Demo
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Paella is a novel text-to-image model that uses a compressed quantized latent space, based on a VQGAN, and a masked training objective to achieve fast generation in ~10 inference steps.
This version builds on top of our initial paper, bringing Paella to a similar level as other state-of-the-art models, while preserving the compactness and clarity of the previous implementations. Please, refer to the resources below for details.
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
with gr.Column():
text = gr.Textbox(
label="Enter your prompt",
show_label=False,
max_lines=1,
placeholder="an image of a shiba inu, donning a spacesuit and helmet, traversing the uncharted terrain of a distant, extraterrestrial world, as a symbol of the intrepid spirit of exploration and the unrelenting curiosity that drives humanity to push beyond the bounds of the known",
elem_id="prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
negative = gr.Textbox(
label="Enter your negative prompt",
show_label=False,
max_lines=1,
placeholder="low quality, low resolution, bad image, blurry, blur",
elem_id="negative-prompt-text-input",
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("Generate image").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
text.submit(infer, inputs=[text, negative], outputs=gallery)
btn.click(infer, inputs=[text, negative], outputs=gallery)
gr.HTML(
"""
<div class="footer">
</div>
<div class="acknowledgments">
<p><h4>Resources</h4>
<a href="https://arxiv.org/abs/2211.07292" style="text-decoration: underline;">Paper</a>, <a href="https://github.com/dome272/Paella" style="text-decoration: underline;">official implementation</a>, <a href="https://huggingface.co/dome272/Paella" style="text-decoration: underline;">Model Card</a>.
</p>
<p><h4>LICENSE</h4>
<a href="https://github.com/dome272/Paella/blob/main/LICENSE" style="text-decoration: underline;">MIT</a>.
</p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on 600 million images from the improved <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B aesthetic</a> dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes.
</p>
</div>
"""
)
block.launch()
|