Spaces:
Sleeping
Sleeping
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
import locale | |
import re | |
import json | |
import torch | |
from tqdm.auto import tqdm | |
import numpy as np | |
from donut import JSONParseEvaluator | |
from datasets import load_dataset | |
from functools import lru_cache | |
import os | |
import time | |
from config import settings | |
locale.getpreferredencoding = lambda: "UTF-8" | |
def prepare_model(): | |
processor = DonutProcessor.from_pretrained(settings.processor) | |
model = VisionEncoderDecoderModel.from_pretrained(settings.model) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.eval() | |
model.to(device) | |
dataset = load_dataset(settings.dataset, split="test") | |
return processor, model, device, dataset | |
def run_evaluate_donut(): | |
worker_pid = os.getpid() | |
print(f"Handling evaluation request with worker PID: {worker_pid}") | |
start_time = time.time() | |
output_list = [] | |
accs = [] | |
processor, model, device, dataset = prepare_model() | |
for idx, sample in tqdm(enumerate(dataset), total=len(dataset)): | |
# prepare encoder inputs | |
pixel_values = processor(sample["image"].convert("RGB"), return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
# prepare decoder inputs | |
task_prompt = "<s_cord-v2>" | |
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids | |
decoder_input_ids = decoder_input_ids.to(device) | |
# autoregressively generate sequence | |
outputs = model.generate( | |
pixel_values, | |
decoder_input_ids=decoder_input_ids, | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
# turn into JSON | |
seq = processor.batch_decode(outputs.sequences)[0] | |
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") | |
seq = re.sub(r"<.*?>", "", seq, count=1).strip() # remove first task start token | |
seq = processor.token2json(seq) | |
ground_truth = json.loads(sample["ground_truth"]) | |
ground_truth = ground_truth["gt_parse"] | |
evaluator = JSONParseEvaluator() | |
score = evaluator.cal_acc(seq, ground_truth) | |
accs.append(score) | |
output_list.append(seq) | |
end_time = time.time() | |
processing_time = end_time - start_time | |
scores = {"accuracies": accs, "mean_accuracy": np.mean(accs)} | |
print(scores, f"length : {len(accs)}") | |
print("Mean accuracy:", np.mean(accs)) | |
print(f"Evaluation done, worker PID: {worker_pid}") | |
return scores, np.mean(accs), processing_time | |