import numpy as np import pandas as pd import pickle import gradio as gr from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestRegressor # Load the saved full pipeline from the file model_file = 'Random-Forest-Regressor.pkl' with open(model_file, 'rb') as f_in: scaler, model = pickle.load(f_in) # Define the predict function def predict(SPX, USO, SLV, EUR_USD): # Create a DataFrame from the input data input_data = pd.DataFrame({ 'SPX': [SPX] if SPX is not None else [0], # Replace None with default value 'USO': [USO] if USO is not None else [0], # Replace None with default value 'SLV': [SLV] if SLV is not None else [0], # Replace None with default value 'EUR_USD': [EUR_USD] if EUR_USD is not None else [0], # Replace None with default value }) # Make predictions using the loaded logistic regression model #predict probabilities predictions = model.predict(input_data) #take the index of the maximum probability #return predictions[0] return(f'[Info] Predicted probabilities{predictions}') # Setting Gradio App Interface with gr.Blocks(css=".gradio-container {background-color:grey }",theme=gr.themes.Base(primary_hue='blue'),title='Uriel') as demo: gr.Markdown("# Gold Price prediction #\n*This App allows the user to predict the price of Gold.*") # Receiving ALL Input Data here gr.Markdown("**Demographic Data**") with gr.Row(): gender = gr.Number(label="Standard & Poor's Index") SeniorCitizen = gr.Number(label="United State Oil Fund") Partner = gr.Number(label="Silver Price") Dependents = gr.Number(label="EURO_Dollar Exchange") # Output Prediction output = gr.Text(label="Outcome") submit_button = gr.Button("Predict") submit_button.click(fn= predict, outputs= output, inputs=[gender, SeniorCitizen, Partner, Dependents], ), # Add the reset and flag buttons def clear(): output.value = "" return 'Predicted values have been reset' clear_btn = gr.Button("Reset", variant="primary") clear_btn.click(fn=clear, inputs=None, outputs=output) demo.launch(inbrowser = True)