# import pandas as pd # import numpy as np import streamlit as st # import os # import time # import pickle # import seaborn as sns # import matplotlib.pyplot as plt # import pip try: #insert headers st.header(" Welcome to Sales Prediction Using Prophet ") st.subheader("To help you know your future sales📈...") st.image("future.png", width=500, caption="Sales Prediction") Disp_results = pd.DataFrame() # Initialize for download # Take input with st.form("This form", clear_on_submit=True): st.subheader("Enter the number of day(s)/Week(s) you want to predict, And the frequency as D for Daily or W for weekly ") frequency = str(st.text_input("Frequency 'D' for Daily 'W' for weekly ")).upper() # convert to string and change to upper Number_of_days = int(st.number_input("Number of day(s)/Week(s)")) # convert to int submit = st.form_submit_button("Predict your sales") # process the input if submit: # check if we have the right data type if frequency == "D" or frequency == 'W': st.success("Inputs received successfully ✅") # import model with open('prophet_model.pkl', 'rb') as f: model = pickle.load(f) # pass inputs to the model(To make predictions, prophet requires number of days and frequency) future = model.make_future_dataframe(periods=Number_of_days, freq=str(frequency), include_history=False) # Make prediction forecast = model.predict(future) # show results print(f'[INFO]: The whole results {forecast}') # pick the relevant columns from the forecast sales_forecast = forecast[['ds', 'yhat_lower', 'yhat_upper', 'yhat']] # rename the columns Disp_results = sales_forecast.rename(columns={'ds': 'Date', 'yhat_lower': 'lowest Expected sales', 'yhat_upper': 'Highest Expected Sales', 'yhat': 'Expected Sales'}) # print result dataframe to terminal print(f'[INFO]: results dataframe {Disp_results}') # show progress with st.spinner("Prediction in progress..."): time.sleep(2) st.balloons() st.success("Great✅") # Display results if frequency == "W": output_frequency = 'Week(s)' else: output_frequency = 'Day(s)' # Check frequency st.write(f"These are your predicted sales in the next {Number_of_days} {output_frequency}") st.dataframe(Disp_results) # Display the graph of sales st.title(f"Line Graph Of Predicted Sales Over {Number_of_days} {output_frequency} ") # Line Graph st.line_chart(data=Disp_results, x='Date', y='Expected Sales') print('[INFO]: Line Chart displayed') else: st.error("Input the right frequency or Days ⚠") # Print input to the terminal print(f'[INFO]: These are the inputs to the model {Number_of_days},{frequency}') print(f"[INFO]: Inputs received") # Create a function to convert df to csv def convert_to_csv(df): return df.to_csv() # Create an expander expand = st.expander('Download Results as CSV') with expand: st.download_button( 'Download results', convert_to_csv(Disp_results), 'prediction_results.csv', 'text/csv', 'download' ) # Create Sidebar for Description sidebar = st.sidebar.title('Sales Prediction') # first option option1 = st.sidebar.button('About', key="About") # second option option2 = st.sidebar.button('About the sales prediction', key="sales prediction") # Display text for a selected option if option1: st.sidebar.write('This is a Sales prediction app Using Prophet(Developed by meta), this project was done under the Azubi Africa Data Analysis Training program ') elif option2: st.sidebar.write('This is a time series analysis & forecasting problem. In this project, we shalll predict store sales on data from Corporation Favorita, a large Ecuadorian-based grocery retailer. Specifically, this app predicts the sales for up to weeks in advance for Corporation Favorita ') except: st.error('''something went wrong: Make sure you entered the correct number of days otherwise contact admin! ''' )