pgurazada1's picture
Complete upgrade to Open AI
e70ffe8 verified
raw
history blame
2.03 kB
import os
import gradio as gr
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI
from sklearn.datasets import fetch_openml
gpt35 = ChatOpenAI(
model_name="gpt-3.5-turbo",
api_key=os.environ["OPENAI_API_KEY"],
temperature=0
)
bank_data, _ = fetch_openml(data_id=43718, return_X_y=True, parser="auto")
pandas_agent = create_pandas_dataframe_agent(
llm=gpt35,
df=bank_data,
verbose=False,
agent_type=AgentType.OPENAI_FUNCTIONS,
)
def predict(user_input):
try:
response = pandas_agent.invoke(user_input)
prediction = response['output']
except Exception as e:
prediction = e
return prediction
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
schema = """
The schema of the table you can query on is presented below:
| Column | Type |
|-----------|--------|
| age | int |
| job | str |
| marital | str |
| education | str |
| default | yes/no |
| balance | int |
| housing | yes/no |
| loan | yes/no |
| contact | str |
| day | int |
| month | str |
| duration | int |
| campaign | int |
| pdays | int |
| poutcome | str |
| deposit | yes/no |
"""
interface = gr.Interface(
inputs=textbox, fn=predict, outputs="text",
title="Query BFSI customer information",
description="This web API presents an interface to ask questions on customer information stored in a database.",
article=schema,
examples=[["What is the average balance maintained by our customers?", ""],
["How many customers have subscribed to a term deposit?", ""],
["How many customers have defaulted on loans?", ""],
["Do customers who default maintain a low balance?", ""]
],
concurrency_limit=8
)
with gr.Blocks() as demo:
interface.launch()
demo.queue()
demo.launch()