File size: 4,294 Bytes
e6af5e0 9aefd9e e355279 e6af5e0 52077c3 e6af5e0 24af045 82ba273 e6af5e0 592ad4f e6af5e0 52077c3 da545f1 e6af5e0 24af045 e6af5e0 592ad4f e4f9add 592ad4f e6af5e0 e4f9add e6af5e0 269de0b e6af5e0 dc79538 e6af5e0 592ad4f 852f1ba 592ad4f e6af5e0 e4f9add e6af5e0 bdae1d4 e4f9add 1799d45 46ac6e3 e4f9add e6af5e0 e4f9add b6489dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import os
import uuid
import json
import gradio as gr
from openai import AzureOpenAI
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from huggingface_hub import CommitScheduler
from pathlib import Path
client = AzureOpenAI(
api_key=os.environ["AZURE_OPENAI_KEY"],
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
api_version="2024-02-01"
)
embedding_model = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
tesla_10k_collection = 'tesla-10k-2019-to-2023'
vectorstore_persisted = Chroma(
collection_name=tesla_10k_collection,
persist_directory='./tesla_db',
embedding_function=embedding_model
)
retriever = vectorstore_persisted.as_retriever(
search_type='similarity',
search_kwargs={'k': 5}
)
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="document-qna-chroma-anyscale-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
qna_system_message = """
You are an assistant to a financial services firm who answers user queries on annual reports.
Users will ask questions delimited by triple backticks, that is, ```.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.
Please answer only using the context provided in the input. However, do not mention anything about the context in your answer.
If the answer is not found in the context, respond "I don't know".
"""
qna_user_message_template = """
###Context
Here are some documents that are relevant to the question.
{context}
```
{question}
```
"""
# Define the predict function that runs when 'Submit' is clicked or when a API request is made
def predict(user_input):
relevant_document_chunks = retriever.invoke(user_input)
context_list = [d.page_content for d in relevant_document_chunks]
context_for_query = ".".join(context_list)
prompt = [
{'role':'system', 'content': qna_system_message},
{'role': 'user', 'content': qna_user_message_template.format(
context=context_for_query,
question=user_input
)
}
]
try:
response = client.chat.completions.create(
model='gpt-4o-mini',
messages=prompt,
temperature=0
)
prediction = response.choices[0].message.content
except Exception as e:
prediction = e
# While the prediction is made, log both the inputs and outputs to a local log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'user_input': user_input,
'retrieved_context': context_for_query,
'model_response': prediction
}
))
f.write("\n")
return prediction
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
# Create the interface
demo = gr.Interface(
inputs=textbox, fn=predict, outputs="text",
title="AMA on Tesla 10-K statements",
description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
article="Note that questions that are not relevant to the Tesla 10-K report will not be answered.",
examples=[["What was the total revenue of the company in 2022?", "$ 81.46 Billion"],
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words.", ""],
["What was the company's debt level in 2020?", ""],
["Identify 5 key risks identified in the 2019 10k report? Respond with bullet point summaries.", ""],
["What is the view of the management on the future of electric vehicle batteries?",""]
],
cache_examples=False,
theme=gr.themes.Base(),
concurrency_limit=16
)
demo.queue()
demo.launch(auth=("demouser", os.getenv('PASSWD'))) |