document-qna-chroma-azure / chat_interface.py
pgurazada1's picture
Update chat_interface.py
d735420 verified
raw
history blame
4.54 kB
import os
import uuid
import json
import chromadb
import gradio as gr
from dotenv import load_dotenv
from openai import OpenAI
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma
from huggingface_hub import CommitScheduler
from pathlib import Path
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-small')
load_dotenv()
tesla_10k_collection = 'tesla-10k-2019-to-2023'
anyscale_api_key = os.environ['ANYSCALE_API_KEY']
client = OpenAI(
base_url="https://api.endpoints.anyscale.com/v1",
api_key=anyscale_api_key
)
qna_model = 'meta-llama/Meta-Llama-3-8B-Instruct'
chromadb_client = chromadb.PersistentClient(path='./tesla_db')
vectorstore_persisted = Chroma(
client=chromadb_client,
collection_name=tesla_10k_collection,
embedding_function=embedding_model
)
retriever = vectorstore_persisted.as_retriever(
search_type='similarity',
search_kwargs={'k': 5}
)
# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent
scheduler = CommitScheduler(
repo_id="document-qna-chroma-anyscale-logs",
repo_type="dataset",
folder_path=log_folder,
path_in_repo="data",
every=2
)
qna_system_message = """
You are an assistant to a financial services firm who answers user queries on annual reports.
Users will ask questions delimited by triple backticks, that is, ```.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a document relevant to the user query.
Please answer only using the context provided in the input. However, do not mention anything about the context in your answer.
If the answer is not found in the context, respond "I don't know".
"""
qna_user_message_template = """
###Context
Here are some documents that are relevant to the question.
{context}
```
{question}
```
"""
def predict(input: str, history):
"""
Predict the response of the chatbot and complete a running list of chat history.
"""
relevant_document_chunks = retriever.invoke(input)
context_list = [d.page_content for d in relevant_document_chunks]
context_for_query = "\n".join(context_list)
user_message = [{
'role': 'user',
'content': qna_user_message_template.format(
context=context_for_query,
question=input
)
}]
prompt = [{'role':'system', 'content': qna_system_message}]
for entry in history:
prompt += (
[{'role': 'user', 'content': entry[0]}] +
[{'role': 'assistant', 'content': entry[1]}]
)
final_prompt = prompt + user_message
try:
response = client.chat.completions.create(
model=qna_model,
messages=final_prompt,
temperature=0
)
prediction = response.choices[0].message.content.strip()
except Exception as e:
prediction = f"Sorry, I cannot answer your question at this point. {e}"
# While the prediction is made, log both the inputs and outputs to a local log file
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
# access
with scheduler.lock:
with log_file.open("a") as f:
f.write(json.dumps(
{
'user_input': input,
'retrieved_context': context_for_query,
'model_response': prediction
}
))
f.write("\n")
return prediction
demo = gr.ChatInterface(
fn=predict,
title="AMA on Tesla 10-K statements",
description="This web API presents an interface to ask questions on contents of the Tesla 10-K reports for the period 2019 - 2023.",
examples=[["What was the total revenue of the company in 2022?"],
["Summarize the Management Discussion and Analysis section of the 2021 report in 50 words."],
["What was the company's debt level in 2020?"],
["Identify 5 key risks identified in the 2019 10k report?"],
["What is the view of the management on the future of electric vehicle batteries?"]
],
cache_examples=False,
theme=gr.themes.Base(),
concurrency_limit=8,
show_progress="full"
)
demo.launch(auth=("demouser", os.getenv('PASSWD')))