|
import gradio as gr |
|
|
|
import nltk |
|
import string |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GenerationConfig, set_seed |
|
import random |
|
|
|
nltk.download('punkt') |
|
|
|
response_length = 200 |
|
|
|
sentence_detector = nltk.data.load('tokenizers/punkt/english.pickle') |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium") |
|
tokenizer.truncation_side = 'right' |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained('coffeeee/nsfw-story-generator2') |
|
generation_config = GenerationConfig.from_pretrained('gpt2-medium') |
|
generation_config.max_new_tokens = response_length |
|
generation_config.pad_token_id = generation_config.eos_token_id |
|
def generate_response(outputs, new_prompt): |
|
|
|
story_so_far = "\n".join(outputs[:int(1024 / response_length + 1)]) if outputs else "" |
|
|
|
set_seed(random.randint(0, 4000000000)) |
|
inputs = tokenizer.encode(story_so_far + "\n" + new_prompt if story_so_far else new_prompt, |
|
return_tensors='pt', truncation=True, |
|
max_length=1024 - response_length) |
|
|
|
output = model.generate(inputs, do_sample=True, generation_config=generation_config) |
|
|
|
response = clean_paragraph(tokenizer.batch_decode(output)[0][(len(story_so_far) + 1 if story_so_far else 0):]) |
|
outputs.append(response) |
|
return { |
|
user_outputs: outputs, |
|
story: (story_so_far + "\n" if story_so_far else "") + response, |
|
prompt: None |
|
} |
|
|
|
def undo(outputs): |
|
|
|
outputs = outputs[:-1] if outputs else [] |
|
return { |
|
user_outputs: outputs, |
|
story: "\n".join(outputs) if outputs else None |
|
} |
|
|
|
def clean_paragraph(entry): |
|
paragraphs = entry.split('\n') |
|
|
|
for i in range(len(paragraphs)): |
|
split_sentences = nltk.tokenize.sent_tokenize(paragraphs[i], language='english') |
|
if i == len(paragraphs) - 1 and split_sentences[:1][-1] not in string.punctuation: |
|
paragraphs[i] = " ".join(split_sentences[:-1]) |
|
|
|
return capitalize_first_char("\n".join(paragraphs)) |
|
|
|
def reset(): |
|
return { |
|
user_outputs: [], |
|
story: None |
|
} |
|
|
|
def capitalize_first_char(entry): |
|
for i in range(len(entry)): |
|
if entry[i].isalpha(): |
|
return entry[:i] + entry[i].upper() + entry[i + 1:] |
|
return entry |
|
|
|
with gr.Blocks(theme=gr.themes.Default(text_size='lg', font=[gr.themes.GoogleFont("Bitter"), "Arial", "sans-serif"])) as demo: |
|
|
|
placeholder_text = ''' |
|
Disclaimer: everything this model generates is a work of fiction. |
|
Content from this model WILL generate inappropriate and potentially offensive content. |
|
|
|
Use at your own discretion. Please respect the Huggingface code of conduct.''' |
|
|
|
story = gr.Textbox(label="Story", interactive=False, lines=20, placeholder=placeholder_text) |
|
story.style(show_copy_button=True) |
|
|
|
user_outputs = gr.State([]) |
|
|
|
prompt = gr.Textbox(label="Prompt", placeholder="Start a new story, or continue your current one!", lines=3, max_lines=3) |
|
|
|
with gr.Row(): |
|
gen_button = gr.Button('Generate') |
|
undo_button = gr.Button("Undo") |
|
res_button = gr.Button("Reset") |
|
|
|
prompt.submit(generate_response, [user_outputs, prompt], [user_outputs, story, prompt], scroll_to_output=True) |
|
gen_button.click(generate_response, [user_outputs, prompt], [user_outputs, story, prompt], scroll_to_output=True) |
|
undo_button.click(undo, user_outputs, [user_outputs, story], scroll_to_output=True) |
|
res_button.click(reset, [], [user_outputs, story], scroll_to_output=True) |
|
|
|
|
|
|
|
demo.launch(inbrowser=True, server_name='0.0.0.0') |
|
|
|
|
|
|