Spaces:
Runtime error
Runtime error
File size: 12,402 Bytes
5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea 1d59f5a 5febdea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Segmentation scores evaluation metrics"""
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This module computes segmentation scores for a list of predicted segmentations and gold segmentations.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predicted segmentations, using boundary, token and type scores.
Args:
predictions: list of segmented utterances to score. Each predictions
should be a string with phonemes separated by spaces and estimated word boundaries
denoted by the token ';eword'.
references: list of segmented utterances to score. Each predictions
should be a string with phonemes separated by spaces and gold word boundaries
denoted by the token ';eword'.
Returns:
type_fscore: lexicon f1 score
type_precision: lexicon precision
type_recall: lexicon recall
token_fscore: token f1 score
token_precision: token precision
token_recall: token recall
boundary_all_fscore: boundary f1 score, including utterance boundaries
boundary_all_precision: boundary precision, including utterance boundaries
boundary_all_recall: boundary recall, including utterance boundaries
boundary_noedge_fscore: boundary f1 score, excluding utterance boundaries
boundary_noedge_precision: boundary precision, excluding utterance boundaries
boundary_noedge_recall: boundary recall, excluding utterance boundaries
Examples:
>>> segmentation_scores = evaluate.load("transformersegmentation/segmentation_scores")
>>> results = segmentation_scores.compute(references=["w ɛ ɹ ;eword ɪ z ;eword ð ɪ s ;eword", "l ɪ ɾ əl ;eword aɪ z ;eword"], predictions=["w ɛ ɹ ;eword ɪ z ;eword ð ɪ s ;eword", "l ɪ ɾ əl ;eword aɪ z ;eword"])
>>> print(results)
{'type_fscore': 1.0, 'type_precision': 1.0, 'type_recall': 1.0, 'token_fscore': 1.0, 'token_precision': 1.0, 'token_recall': 1.0, 'boundary_all_fscore': 1.0, 'boundary_all_precision': 1.0, 'boundary_all_recall': 1.0, 'boundary_noedge_fscore': 1.0, 'boundary_noedge_precision': 1.0, 'boundary_noedge_recall': 1.0}
"""
class TokenEvaluation(object):
"""Evaluation of token f-score, precision and recall"""
def __init__(self):
self.test = 0
self.gold = 0
self.correct = 0
self.n = 0
self.n_exactmatch = 0
def precision(self):
return float(self.correct) / self.test if self.test != 0 else None
def recall(self):
return float(self.correct) / self.gold if self.gold != 0 else None
def fscore(self):
total = self.test + self.gold
return float(2 * self.correct) / total if total != 0 else None
def exact_match(self):
return float(self.n_exactmatch) / self.n if self.n else None
def update(self, test_set, gold_set):
self.n += 1
if test_set == gold_set:
self.n_exactmatch += 1
# omit empty items for type scoring (should not affect token
# scoring). Type lists are prepared with '_' where there is no
# match, to keep list lengths the same
self.test += len([x for x in test_set if x != "_"])
self.gold += len([x for x in gold_set if x != "_"])
self.correct += len(test_set & gold_set)
def update_lists(self, test_sets, gold_sets):
if len(test_sets) != len(gold_sets):
raise ValueError(
"#words different in test and gold: {} != {}".format(
len(test_sets), len(gold_sets)
)
)
for t, g in zip(test_sets, gold_sets):
self.update(t, g)
class TypeEvaluation(TokenEvaluation):
"""Evaluation of type f-score, precision and recall"""
@staticmethod
def lexicon_check(textlex, goldlex):
"""Compare hypothesis and gold lexicons"""
textlist = []
goldlist = []
for w in textlex:
if w in goldlex:
# set up matching lists for the true positives
textlist.append(w)
goldlist.append(w)
else:
# false positives
textlist.append(w)
# ensure matching null element in text list
goldlist.append("_")
for w in goldlex:
if w not in goldlist:
# now for the false negatives
goldlist.append(w)
# ensure matching null element in text list
textlist.append("_")
textset = [{w} for w in textlist]
goldset = [{w} for w in goldlist]
return textset, goldset
def update_lists(self, text, gold):
lt, lg = self.lexicon_check(text, gold)
super(TypeEvaluation, self).update_lists(lt, lg)
class BoundaryEvaluation(TokenEvaluation):
@staticmethod
def get_boundary_positions(stringpos):
return [{idx for pair in line for idx in pair} for line in stringpos]
def update_lists(self, text, gold):
lt = self.get_boundary_positions(text)
lg = self.get_boundary_positions(gold)
super(BoundaryEvaluation, self).update_lists(lt, lg)
class BoundaryNoEdgeEvaluation(BoundaryEvaluation):
@staticmethod
def get_boundary_positions(stringpos):
return [{left for left, _ in line if left > 0} for line in stringpos]
class _StringPos(object):
"""Compute start and stop index of words in an utterance"""
def __init__(self):
self.idx = 0
def __call__(self, n):
"""Return the position of the current word given its length `n`"""
start = self.idx
self.idx += n
return start, self.idx
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class segmentation_scores(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/transformersegmentation/segmentation_scores",
# Additional links to the codebase or references
codebase_urls=["http://github.com/codebyzeb/transformersegmentation"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _process_data(self, text):
""" Load text data for evaluation
Parameters
----------
text : list of str
The list of utterances to read for the evaluation.
Returns
-------
(words, positions, lexicon) : three lists
where `words` are the input utterances with word separators
removed, `positions` stores the start/stop index of each word
for each utterance, and `lexicon` is the list of words.
"""
words = []
positions = []
lexicon = {}
# ignore empty lines
for utt in (utt for utt in text if utt.strip()):
# list of phones in the utterance with word seperator removed
phone_in_utterance = [
phone for phone in utt.split(" ") if phone != ";eword"
]
words_in_utterance = (
"".join(
" " if phone == ";eword" else phone for phone in utt.split(" ")
)
.strip()
.split(" ")
)
words.append(phone_in_utterance)
for word in words_in_utterance:
lexicon[word] = 1
idx = _StringPos()
positions.append({idx(len(word)) for word in words_in_utterance})
# return the words lexicon as a sorted list
lexicon = sorted([k for k in lexicon.keys()])
return words, positions, lexicon
def _compute(self, predictions, references):
"""Scores a segmented text against its gold version
Parameters
----------
predictions : sequence of str
A suite of word utterances, each string using ';eword' as as word separator.
references : sequence of str
A suite of word utterances, each string using ';eword' as as word separator.
Returns
-------
scores : dict
A dictionary with the following entries:
* 'type_fscore'
* 'type_precision'
* 'type_recall'
* 'token_fscore'
* 'token_precision'
* 'token_recall'
* 'boundary_all_fscore'
* 'boundary_all_precision'
* 'boundary_all_recall'
* 'boundary_noedge_fscore'
* 'boundary_noedge_precision'
* 'boundary_noedge_recall'
Raises
------
ValueError
If `gold` and `text` have different size or differ in tokens
"""
text_words, text_stringpos, text_lex = self._process_data(predictions)
gold_words, gold_stringpos, gold_lex = self._process_data(references)
if len(gold_words) != len(text_words):
raise ValueError(
"gold and train have different size: len(gold)={}, len(train)={}".format(
len(gold_words), len(text_words)
)
)
for i, (g, t) in enumerate(zip(gold_words, text_words)):
if g != t:
raise ValueError(
'gold and train differ at line {}: gold="{}", train="{}"'.format(
i + 1, g, t
)
)
# token evaluation
token_eval = TokenEvaluation()
token_eval.update_lists(text_stringpos, gold_stringpos)
# type evaluation
type_eval = TypeEvaluation()
type_eval.update_lists(text_lex, gold_lex)
# boundary evaluation (with edges)
boundary_eval = BoundaryEvaluation()
boundary_eval.update_lists(text_stringpos, gold_stringpos)
# boundary evaluation (no edges)
boundary_noedge_eval = BoundaryNoEdgeEvaluation()
boundary_noedge_eval.update_lists(text_stringpos, gold_stringpos)
return {
"token_precision": token_eval.precision(),
"token_recall": token_eval.recall(),
"token_fscore": token_eval.fscore(),
"type_precision": type_eval.precision(),
"type_recall": type_eval.recall(),
"type_fscore": type_eval.fscore(),
"boundary_all_precision": boundary_eval.precision(),
"boundary_all_recall": boundary_eval.recall(),
"boundary_all_fscore": boundary_eval.fscore(),
"boundary_noedge_precision": boundary_noedge_eval.precision(),
"boundary_noedge_recall": boundary_noedge_eval.recall(),
"boundary_noedge_fscore": boundary_noedge_eval.fscore(),
} |