piralocoplasticone's picture
Create app.py
9db4f63
import torch
import gradio as gr
import torch.nn as nn
import torch.nn.functional as F
class NeuralNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
"""
Initializes a neural network model.
Args:
input_size (int): The size of the input layer.
hidden_size (int): The size of the hidden layer.
output_size (int): The size of the output layer.
"""
super(NeuralNetwork, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, input_image):
"""
Performs a forward pass through the neural network.
Args:
input_image (torch.Tensor): The input image tensor.
Returns:
torch.Tensor: The output tensor of the neural network.
"""
input_image = self.relu(self.fc1(input_image))
input_image = self.fc2(input_image)
return input_image
# Load the pre-trained model
model = NeuralNetwork(14, 64, 2)
model.load_state_dict(torch.load("model.pth"))
# List of all Valorant agents
maps = [
'Ascent',
'Bind',
'Breeze',
'Fracture',
'Haven',
'Icebox',
'Lotus',
'Pearl',
'Split',
'Sunset',
]
agents = [
'Brimstone',
'Viper',
'Omen',
'Killjoy',
'Cypher',
'Sova',
'Sage',
'Phoenix',
'Jett',
'Reyna',
'Raze',
'Breach',
'Skye',
'Yoru',
'Astra',
'Kayo',
'Chamber',
'Neon',
'Fade',
'Harbor',
'Gekko',
'Deadlock',
'Iso',
]
# Define the prediction function
def predict(*args):
def test_convert(test):
test[3] = maps.index(test[3])
test[4:9] = [agents.index(index) for index in test[4:9]]
test[9:14] = [agents.index(index) for index in test[9:14]]
return test
data = list(args)
data = test_convert(data)
data = torch.tensor(data, dtype=torch.float32)
outputs = model(data)
highest_score = (torch.max(outputs), torch.argmax(outputs).item())
if highest_score[0] < 13:
outputs[highest_score[1]] = 13
else:
if outputs[1-highest_score[1]] < highest_score[0] - 2:
outputs[1-highest_score[1]] = highest_score[0] - 2
score_a = round(outputs[0].item())
score_b = round(outputs[1].item())
return f'Predicted score: {score_a} - {score_b}'
# Define the output component
with gr.Blocks() as demo:
# Frame for date and map
with gr.Row():
with gr.Column(min_width="0px", scale=1):
year_input = gr.Number(label="Year", value=23)
with gr.Column(min_width="0px", scale=1):
month_input = gr.Number(label="Month", value=2)
with gr.Column(min_width="0px", scale=1):
day_input = gr.Number(label="Day", value=23)
with gr.Column(scale=3):
map_input = gr.Dropdown(maps, label="Map", value='Ascent')
with gr.Column(scale=3):
pass
# Frames for agents' dropdowns
with gr.Row():
with gr.Column():
# Team 1 agent dropdowns
team1_agent1_input = gr.Dropdown(choices=agents, label="Team 1 - Agent 1", value='Brimstone')
team1_agent2_input = gr.Dropdown(choices=agents, label="Team 1 - Agent 2", value='Viper')
team1_agent3_input = gr.Dropdown(choices=agents, label="Team 1 - Agent 3", value='Omen')
team1_agent4_input = gr.Dropdown(choices=agents, label="Team 1 - Agent 4", value='Killjoy')
team1_agent5_input = gr.Dropdown(choices=agents, label="Team 1 - Agent 5", value='Cypher')
with gr.Column():
# Team 2 agent dropdowns
team2_agent1_input = gr.Dropdown(choices=agents, label="Team 2 - Agent 1", value='Sova')
team2_agent2_input = gr.Dropdown(choices=agents, label="Team 2 - Agent 2", value='Sage')
team2_agent3_input = gr.Dropdown(choices=agents, label="Team 2 - Agent 3", value='Phoenix')
team2_agent4_input = gr.Dropdown(choices=agents, label="Team 2 - Agent 4", value='Jett')
team2_agent5_input = gr.Dropdown(choices=agents, label="Team 2 - Agent 5", value='Reyna')
# ... add all dropdowns for Team 2
with gr.Column():
translate_btn = gr.Button(value="Translate")
# Add any outputs you have
score_difference_output = gr.Textbox(label="Score Difference")
translate_btn.click(fn=predict, inputs=[year_input, month_input, day_input, map_input, team1_agent1_input, team1_agent2_input, team1_agent3_input, team1_agent4_input, team1_agent5_input, team2_agent1_input, team2_agent2_input, team2_agent3_input, team2_agent4_input, team2_agent5_input], outputs=score_difference_output)
print('Lauching interface!')
demo.launch()