Spaces:
Sleeping
Sleeping
File size: 7,237 Bytes
565028a 1081955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import pandas as pd
KIFU_TO_SQUARE_NAMES = [
'1一', '1二', '1三', '1四', '1五', '1六', '1七', '1八', '1九',
'2一', '2二', '2三', '2四', '2五', '2六', '2七', '2八', '2九',
'3一', '3二', '3三', '3四', '3五', '3六', '3七', '3八', '3九',
'4一', '4二', '4三', '4四', '4五', '4六', '4七', '4八', '4九',
'5一', '5二', '5三', '5四', '5五', '5六', '5七', '5八', '5九',
'6一', '6二', '6三', '6四', '6五', '6六', '6七', '6八', '6九',
'7一', '7二', '7三', '7四', '7五', '7六', '7七', '7八', '7九',
'8一', '8二', '8三', '8四', '8五', '8六', '8七', '8八', '8九',
'9一', '9二', '9三', '9四', '9五', '9六', '9七', '9八', '9九',
]
KIFU_FROM_SQUARE_NAMES = [
'11', '12', '13', '14', '15', '16', '17', '18', '19',
'21', '22', '23', '24', '25', '26', '27', '28', '29',
'31', '32', '33', '34', '35', '36', '37', '38', '39',
'41', '42', '43', '44', '45', '46', '47', '48', '49',
'51', '52', '53', '54', '55', '56', '57', '58', '59',
'61', '62', '63', '64', '65', '66', '67', '68', '69',
'71', '72', '73', '74', '75', '76', '77', '78', '79',
'81', '82', '83', '84', '85', '86', '87', '88', '89',
'91', '92', '93', '94', '95', '96', '97', '98', '99',
]
def nomalize_precedence_name(df):
#先手の対局者の名前から段位、タイトル名を削除する
for x in range(len(df)):
df["precedence_name"].iloc[x] = df["precedence_name"].iloc[x].replace(" ","").replace(" ","").replace("\u3000","")
if df["precedence_name"].iloc[x].endswith("段"):
df["precedence_name"].iloc[x] = df["precedence_name"].iloc[x][:-2]
df["precedence_name"].iloc[x] = df["precedence_name"].iloc[x].replace("十七世名人","").replace("十八世名人","").replace("十九世名人","")
df["precedence_name"].iloc[x] = df["precedence_name"].iloc[x].replace("王将","").replace("王座","").replace("名人","").replace("竜王","").replace("棋聖","").replace("叡王","").replace("王位","").replace("棋王","")
df["precedence_name"].iloc[x] = df["precedence_name"].iloc[x].replace("・","").replace("二冠","").replace("三冠","")
return df
def nomalize_kif(df):
for x in range(len(df)):
kif = eval(df.iloc[x]["kif"])
#kifの正規化処理 手数、消費時間を削除する
cnt = -1
for y in kif:
cnt += 1
while(1):
if "0" <= y[0] <= "9":
y = y[1:]
kif[cnt] = y
else:
break
kif[cnt] = kif[cnt].replace("\u3000","")
for z in range(len(y)):
if y[z] == "(":
kif[cnt] = y[:z]
break
kifs = ""
for i in kif:
kifs += i.replace("\u3000","")
df["kif"].iloc[x] = kifs
return df
def nomalize_comment(df):
#文章中のword省略処理
for cnt in range(len(df["output"])):
x = df["output"].iloc[cnt]
read = x.split("。")
#print(read)
line = ""
for z in read:
if "期" in z or "出身" in z or "優勝" in z or "受賞" in z or "回" in z or "記録" in z or "棋士番号" in z or "勝" in z or "敗" in z or "名人" in z:
pass
elif "時" in z or "分" in z or "成績" in z or "棋戦" in z or "段" in z or "本日" in z or "立会" in z or "ABEMA" in z or "第" in z or "本局" in z:
pass
elif "対局" in z or "永世" in z:
pass
elif z == "":
pass
else:
#print(z)
line += z+"。"
df["output"].iloc[cnt] = line
return df
def accuracy_bestlist(df):
cnt2 = 0
num = 0
for z in range(len(df)):
blist = eval(df["bestlist"].iloc[z])
b2list = eval(df["best2list"].iloc[z])
te = eval(df["kif"].iloc[z])
#print(blist[0][0])
#print(b2list[0][0])
cnt = 0
for x in range(1,len(te)):
try:
if blist[x-1][0] in te[x] or b2list[x-1][0] in te[x]:
cnt += 1
#print(te[x],blist[x][0],b2list[x][0])
except Exception as e:
pass
if cnt == 0:
print("accuracy = 0",z)
print("z = ",z," accuracy = ",cnt/len(te))
cnt2 += cnt/len(te)
num += 1
print("mean_acuuracy",cnt2/num)
def nomalize_sfen(s):
flag = 0
movelist = []
for x in range(len(s)):
if x < 2:
continue
if len(s[x]) < 30 and flag == 0:
#半角の指し手を全角に変換する
temp = s[x].split()
num = temp[1][0] + temp[1][1]
for y in range(len(KIFU_FROM_SQUARE_NAMES)):
if num == KIFU_FROM_SQUARE_NAMES[y]:
sq = KIFU_TO_SQUARE_NAMES[y]
word = sq+temp[1][2:]
word = word.replace("竜","龍").replace("成銀","全").replace("成桂","圭").replace("成香","杏")
if s[x].split()[1] not in ["投了" , "千日手" , "持将棋" , "反則勝ち"]:
movelist.append(word)
else:
movelist.append(s[x].split()[1])
flag = 1
return movelist
def make_triplets(df, column):
# 重複を除いたユニークな文章リストを作成
triplets = []
for x in range(len(df)):
anchor = df.iloc[x]
# Anchorと同じではない文章をPositiveとして選択
num = df.loc[(df[column] == anchor[column]) & (df["kif"] != anchor["kif"])].sample(n=1).index
# print(df.loc[num])
positive = df.loc[num]["kif"].values[0]
# Anchorと異なる文章をNegativeとして選択
num2 = df.loc[(df[column] != anchor[column]) & (df["kif"] != anchor["kif"])].sample(n=1).index
# print(df.loc[num2])
negative = df.loc[num2]["kif"].values[0]
triplets.append((anchor["kif"], positive, negative,df.loc[num][column].values[0],df.loc[num2][column].values[0]))
def add_symbol(df,column):
teban ="▲"
kif = ""
for x in range(len(df)):
for y in df[column].iloc[x]:
if y in ["0","1","2","3","4","5","6","7","8","9","同",0,1,2,3,4,5,6,7,8,9]:
kif += teban + y
if teban =="▲":
teban = "△"
else:
teban = "▲"
else:
kif += y
df[column].iloc[x] = kif
kif = ""
return df
|