Spaces:
Sleeping
Sleeping
File size: 6,224 Bytes
293421b ee8c78e 293421b 4bee8c6 604dd69 293421b 8717155 293421b 8717155 293421b 8717155 293421b 8717155 293421b 8717155 293421b d1a91c6 293421b 4333018 293421b 8717155 d1a91c6 4333018 293421b 8717155 293421b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
import cshogi
from IPython.display import display
from transformers import T5ForConditionalGeneration, T5Tokenizer
import pandas as pd
#モデルの読み込み
tokenizer = T5Tokenizer.from_pretrained("pizzagatakasugi/shogi_t5", is_fast=True)
model = T5ForConditionalGeneration.from_pretrained("pizzagatakasugi/shogi_t5_v2")
model.eval()
st.title("将棋解説文の自動生成")
df = pd.read_csv("./demo.csv")
num = st.text_input("0から9の数字を入力")
KIFU_TO_SQUARE_NAMES = [
'1一', '1二', '1三', '1四', '1五', '1六', '1七', '1八', '1九',
'2一', '2二', '2三', '2四', '2五', '2六', '2七', '2八', '2九',
'3一', '3二', '3三', '3四', '3五', '3六', '3七', '3八', '3九',
'4一', '4二', '4三', '4四', '4五', '4六', '4七', '4八', '4九',
'5一', '5二', '5三', '5四', '5五', '5六', '5七', '5八', '5九',
'6一', '6二', '6三', '6四', '6五', '6六', '6七', '6八', '6九',
'7一', '7二', '7三', '7四', '7五', '7六', '7七', '7八', '7九',
'8一', '8二', '8三', '8四', '8五', '8六', '8七', '8八', '8九',
'9一', '9二', '9三', '9四', '9五', '9六', '9七', '9八', '9九',
]
KIFU_FROM_SQUARE_NAMES = [
'11', '12', '13', '14', '15', '16', '17', '18', '19',
'21', '22', '23', '24', '25', '26', '27', '28', '29',
'31', '32', '33', '34', '35', '36', '37', '38', '39',
'41', '42', '43', '44', '45', '46', '47', '48', '49',
'51', '52', '53', '54', '55', '56', '57', '58', '59',
'61', '62', '63', '64', '65', '66', '67', '68', '69',
'71', '72', '73', '74', '75', '76', '77', '78', '79',
'81', '82', '83', '84', '85', '86', '87', '88', '89',
'91', '92', '93', '94', '95', '96', '97', '98', '99',
]
if num in [str(x) for x in list(range(10))]:
df = df.iloc[int(num)]
st.write(df["game_type"],df["precedence_name"],df["follower_name"])
sfen = df["sfen"].split("\n")
bestlist = eval(df["bestlist"])
best2list = eval(df["best2list"])
te = []
te_sf = []
movelist = []
#文字の正規化
for x in range(len(sfen)):
if x < 2:
continue
if len(sfen[x]) > 30:
te_sf.append(sfen[x])
else:
#te.append(sfen[x])
temp = sfen[x].split()
num = temp[1][0] + temp[1][1]
for y in range(len(KIFU_FROM_SQUARE_NAMES)):
if num == KIFU_FROM_SQUARE_NAMES[y]:
sq = KIFU_TO_SQUARE_NAMES[y]
word = sq+temp[1][2:]
word = word.replace("竜","龍").replace("成銀","全").replace("成桂","圭").replace("成香","杏")
if sfen[x].split()[1] not in ["投了" , "千日手" , "持将棋" , "反則勝ち"]:
te.append(temp[0]+" "+word)
movelist.append(word)
else:
movelist.append(sfen[x].split()[1])
#盤面表示
s = st.selectbox(label="手数を選択",options=te)
with st.expander("parameter"):
beams = st.slider("num_beams",min_value=1,max_value=10,step=1,value=5,key=2)
tokens = st.slider("min_new_tokens",min_value=0,max_value=50,step=1,value=20,key=3)
top_p = st.slider("top_p",min_value=0.50,max_value=1.00,value=0.90,step=0.01)
top_k = st.slider("top_k",min_value=5,max_value=50,value=30,step=1)
reload = st.button('盤面生成',key=0)
if s in te and reload == True:
reload = False
idx = te.index(s)
board = cshogi.Board(sfen=te_sf[idx+1])
st.markdown(board.to_svg(),unsafe_allow_html=True)
#入力文作成
kifs="解説文生成:"
cnt = 0
teban = "▲"
for kif in movelist:
if cnt > idx:
break
kif = kif.split("(")[0]
kifs += kif.replace("▲","").replace("△","")
cnt += 1
if teban == "▲":
teban = "△"
else:
teban = "▲"
teban2 = teban
best = ""
cnt = 0
for x in bestlist[idx]:
best += teban+x.split("(")[0]
cnt += 1
if teban == "▲":
teban = "△"
else:
teban = "▲"
if cnt == 3:
break
best2 = ""
for y in best2list[idx]:
best2 += teban2+y.split("(")[0]
break
#st.write(idx,"入力",input)
with st.spinner("推論中です..."):
input = kifs+"。最善手は"+best+"。次善手は"+best2
tokenized_inputs = tokenizer.encode(
input, max_length= 512, truncation=True,
padding="max_length", return_tensors="pt"
)
output_ids = model.generate(input_ids=tokenized_inputs,
max_length=512,
repetition_penalty=10.0, # 同じ文の繰り返しへのペナルティ
do_sample = True,
num_beams = beams,
min_new_tokens = tokens,
top_p = top_p,
top_k = top_k,
num_return_sequences = beams,
)
output_list = []
# st.write(input)
for x in range(beams):
output_text = tokenizer.decode(output_ids[x], skip_special_tokens=True,
clean_up_tokenization_spaces=False)
output_list.append(output_text)
st.write(output_list)
|