shogiapp / app.py
pizzagatakasugi's picture
Rename pre_app.py to app.py
f40a5d6
raw
history blame
5.76 kB
import streamlit as st
import cshogi
from IPython.display import display
from transformers import T5ForConditionalGeneration, T5Tokenizer
import pandas as pd
#モデルの読み込み
tokenizer = T5Tokenizer.from_pretrained("pizzagatakasugi/shogi_t5", is_fast=True)
model = T5ForConditionalGeneration.from_pretrained("pizzagatakasugi/shogi_t5")
model.eval()
st.title("将棋解説文の自動生成")
df = pd.read_csv("./dataset10.csv")
num = st.text_input("0から9の数字を入力")
KIFU_TO_SQUARE_NAMES = [
'1一', '1二', '1三', '1四', '1五', '1六', '1七', '1八', '1九',
'2一', '2二', '2三', '2四', '2五', '2六', '2七', '2八', '2九',
'3一', '3二', '3三', '3四', '3五', '3六', '3七', '3八', '3九',
'4一', '4二', '4三', '4四', '4五', '4六', '4七', '4八', '4九',
'5一', '5二', '5三', '5四', '5五', '5六', '5七', '5八', '5九',
'6一', '6二', '6三', '6四', '6五', '6六', '6七', '6八', '6九',
'7一', '7二', '7三', '7四', '7五', '7六', '7七', '7八', '7九',
'8一', '8二', '8三', '8四', '8五', '8六', '8七', '8八', '8九',
'9一', '9二', '9三', '9四', '9五', '9六', '9七', '9八', '9九',
]
KIFU_FROM_SQUARE_NAMES = [
'11', '12', '13', '14', '15', '16', '17', '18', '19',
'21', '22', '23', '24', '25', '26', '27', '28', '29',
'31', '32', '33', '34', '35', '36', '37', '38', '39',
'41', '42', '43', '44', '45', '46', '47', '48', '49',
'51', '52', '53', '54', '55', '56', '57', '58', '59',
'61', '62', '63', '64', '65', '66', '67', '68', '69',
'71', '72', '73', '74', '75', '76', '77', '78', '79',
'81', '82', '83', '84', '85', '86', '87', '88', '89',
'91', '92', '93', '94', '95', '96', '97', '98', '99',
]
if num in [str(x) for x in list(range(10))]:
df = df.iloc[int(num)]
st.write(df["game_type"],df["precedence_name"],df["follower_name"])
sfen = df["sfen"].split("\n")
bestlist = eval(df["bestlist"])
best2list = eval(df["best2list"])
te = []
te_sf = []
movelist = []
#文字の正規化
for x in range(len(sfen)):
if x < 2:
continue
if len(sfen[x]) > 30:
te_sf.append(sfen[x])
else:
#te.append(sfen[x])
temp = sfen[x].split()
num = temp[1][0] + temp[1][1]
for y in range(len(KIFU_FROM_SQUARE_NAMES)):
if num == KIFU_FROM_SQUARE_NAMES[y]:
sq = KIFU_TO_SQUARE_NAMES[y]
word = sq+temp[1][2:]
word = word.replace("竜","龍").replace("成銀","全").replace("成桂","圭").replace("成香","杏")
if sfen[x].split()[1] not in ["投了" , "千日手" , "持将棋" , "反則勝ち"]:
te.append(temp[0]+" "+word)
movelist.append(word)
else:
movelist.append(sfen[x].split()[1])
#盤面表示
s = st.selectbox(label="手数を選択",options=te)
with st.expander("parameter"):
temp = st.slider("temperature",min_value=0.0,max_value=1.0,step=0.01,value=0.3,key=1)
beams = st.slider("num_beams",min_value=1,max_value=5,step=1,value=1,key=2)
tokens = st.slider("min_new_tokens",min_value=0,max_value=50,value=20,key=3)
reload = st.button('盤面生成',key=0)
if s in te and reload == True:
reload = False
idx = te.index(s)
board = cshogi.Board(sfen=te_sf[idx+1])
st.markdown(board.to_svg(),unsafe_allow_html=True)
#入力文作成
kifs=""
cnt = 0
for kif in movelist:
if cnt > idx:
break
kif = kif.split("(")[0]
kifs += kif
cnt += 1
best = ""
for x in bestlist[idx]:
best += x.split("(")[0]
best2 = ""
for y in best2list[idx]:
best2 += y.split("(")[0]
#st.write(idx,"入力",input)
with st.spinner("推論中です..."):
input = sfen[0]+sfen[1]+kifs+"最善手の予測手順は"+best+"次善手の予測手順は"+best2
tokenized_inputs = tokenizer.encode(
input, max_length= 512, truncation=True,
padding="max_length", return_tensors="pt"
)
output_ids = model.generate(input_ids=tokenized_inputs,
max_length=512,
repetition_penalty=10.0, # 同じ文の繰り返しへのペナルティ
temperature = temp,
num_beams = beams,
min_new_tokens = tokens,
)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True,
clean_up_tokenization_spaces=False)
st.write(output_text)
# temperature = st.slider("temperature",min_value=0.0,max_value=1.0,step=0.01,value=0.3,key=1)
# num_beams = st.slider("num_beams",min_value=1,max_value=5,step=1,value=1,key=2)
# min_new_tokens = st.slider("min_new_tokens",min_value=0,max_value=100,value=30,key=3)