Create app.py
Browse filesAdding the app.py from the vscode
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
complaints_count = st.container() # contains the number of complaints in each bucket
|
5 |
+
graphs = st.container() # contains the graphs for the complaints
|
6 |
+
dataset = st.container() # shows the recent complaints
|
7 |
+
|
8 |
+
|
9 |
+
# TOTAL COUNT SECTION
|
10 |
+
with complaints_count:
|
11 |
+
st.header("Complaints counts")
|
12 |
+
data = "./data/complaints_v1.csv"
|
13 |
+
complaints_df = pd.read_csv(data,sep=",")
|
14 |
+
total_counts = len(complaints_df.index)
|
15 |
+
service_issues_counts = complaints_df['sub_cat'].value_counts()['service_issues']
|
16 |
+
product_issues_counts = complaints_df['sub_cat'].value_counts()['product_issues']
|
17 |
+
billing_issues_counts = complaints_df['sub_cat'].value_counts()['billing_issues']
|
18 |
+
|
19 |
+
col1,col2,col3,col4 = st.columns(4)
|
20 |
+
col1.metric(label="Total Complaints", value=total_counts, delta="1.2 %")
|
21 |
+
col2.metric(label="Total Billing Issues", value=service_issues_counts, delta="-1 %")
|
22 |
+
col3.metric(label="Total Product Issues", value=product_issues_counts, delta="-1.3 %")
|
23 |
+
col4.metric(label="Total Service Issues ", value=billing_issues_counts, delta="+1.2 ")
|
24 |
+
|
25 |
+
|
26 |
+
#Graphs SECTION
|
27 |
+
with graphs:
|
28 |
+
st.header("Gprahs")
|
29 |
+
|
30 |
+
|
31 |
+
# RECENT COMPLAINTS SECTION
|
32 |
+
with dataset:
|
33 |
+
st.header("Recent Complaints")
|
34 |
+
ground_truth_data = pd.read_csv("./data/ground_truth.csv")
|
35 |
+
ground_truth_data.rename(columns= {'audio_id':'Audio ID','file_name':'File Name', 'transcription':'Complaints', 'sub_cat':'Complaint Category'}, inplace = True)
|
36 |
+
columns = ['Audio ID','File Name', 'Complaints', 'Complaint Category']
|
37 |
+
st.dataframe(ground_truth_data[columns].iloc[15:23],
|
38 |
+
hide_index=True
|
39 |
+
)
|