File size: 38,853 Bytes
3362754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
from chain_img_processor import ChainImgProcessor, ChainImgPlugin
import os
from PIL import Image
from numpy import asarray

import torch
import torch.nn as nn
import torch.nn.functional as F
import scipy.io as sio
import numpy as np
import torch.nn.utils.spectral_norm as SpectralNorm
from torchvision.ops import roi_align

from math import sqrt
import os

import cv2 
import os
from torchvision.transforms.functional import normalize
import copy
import threading

modname = os.path.basename(__file__)[:-3] # calculating modname

oDMDNet = None
device = None

THREAD_LOCK_DMDNET = threading.Lock()



# start function
def start(core:ChainImgProcessor):
    manifest = { # plugin settings
        "name": "DMDNet", # name
        "version": "1.0", # version

        "default_options": {},
        "img_processor": {
            "dmdnet": DMDNETPlugin
        }
    }
    return manifest

def start_with_options(core:ChainImgProcessor, manifest:dict):
    pass


class DMDNETPlugin(ChainImgPlugin):

    # https://stackoverflow.com/a/67174339
    def landmarks106_to_68(self, pt106):
        map106to68=[1,10,12,14,16,3,5,7,0,23,21,19,32,30,28,26,17,
                        43,48,49,51,50,
                        102,103,104,105,101,
                        72,73,74,86,78,79,80,85,84,
                        35,41,42,39,37,36,
                        89,95,96,93,91,90,
                        52,64,63,71,67,68,61,58,59,53,56,55,65,66,62,70,69,57,60,54
                        ]
      
        pt68 = []
        for i in range(68):
            index = map106to68[i]
            pt68.append(pt106[index])
        return pt68

    def init_plugin(self):
        global create
        
        if oDMDNet == None:
            create(self.device)


    def process(self, frame, params:dict):
        if "face_detected" in params:
            if not params["face_detected"]:
                return frame

        temp_frame = copy.copy(frame)
        if "processed_faces" in params:
            for face in params["processed_faces"]:
                start_x, start_y, end_x, end_y = map(int, face['bbox'])
                # padding_x = int((end_x - start_x) * 0.5)
                # padding_y = int((end_y - start_y) * 0.5)
                padding_x = 0
                padding_y = 0

                start_x = max(0, start_x - padding_x)
                start_y = max(0, start_y - padding_y)
                end_x = max(0, end_x + padding_x)
                end_y = max(0, end_y + padding_y)
                temp_face = temp_frame[start_y:end_y, start_x:end_x]
                if temp_face.size:
                    temp_face = self.enhance_face(temp_face, face)
                    temp_face = cv2.resize(temp_face, (end_x - start_x,end_y - start_y), interpolation = cv2.INTER_LANCZOS4)
                    temp_frame[start_y:end_y, start_x:end_x] = temp_face

        temp_frame = Image.blend(Image.fromarray(frame), Image.fromarray(temp_frame), params["blend_ratio"])
        return asarray(temp_frame)


    def enhance_face(self, clip, face):
        global device

        lm106 = face.landmark_2d_106
        lq_landmarks = asarray(self.landmarks106_to_68(lm106))
        lq = read_img_tensor(clip, False)

        LQLocs = get_component_location(lq_landmarks)
        # generic
        SpMem256Para, SpMem128Para, SpMem64Para = None, None, None

        with torch.no_grad():
            with THREAD_LOCK_DMDNET:
                try:
                    GenericResult, SpecificResult = oDMDNet(lq = lq.to(device), loc = LQLocs.unsqueeze(0), sp_256 = SpMem256Para, sp_128 = SpMem128Para, sp_64 = SpMem64Para)
                except Exception as e:
                    print(f'Error {e} there may be something wrong with the detected component locations.')
                    return clip
        save_generic = GenericResult * 0.5 + 0.5
        save_generic = save_generic.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
        save_generic = np.clip(save_generic.float().cpu().numpy(), 0, 1) * 255.0

        check_lq = lq * 0.5 + 0.5
        check_lq = check_lq.squeeze(0).permute(1, 2, 0).flip(2) # RGB->BGR
        check_lq = np.clip(check_lq.float().cpu().numpy(), 0, 1) * 255.0
        enhanced_img =  np.hstack((check_lq, save_generic))
        temp_frame =  save_generic.astype("uint8")
        # temp_frame = save_generic.astype("uint8")
        return temp_frame
    

def create(devicename):
    global device, oDMDNet

    test = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(devicename)
    oDMDNet = DMDNet().to(device)
    weights = torch.load('./models/DMDNet.pth') 
    oDMDNet.load_state_dict(weights, strict=True)

    oDMDNet.eval()
    num_params = 0
    for param in oDMDNet.parameters():
        num_params += param.numel()

    # print('{:>8s} : {}'.format('Using device', device))
    # print('{:>8s} : {:.2f}M'.format('Model params', num_params/1e6))



def read_img_tensor(Img=None, return_landmark=True): #rgb -1~1 
#    Img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)  # BGR or G
    if Img.ndim == 2:
        Img = cv2.cvtColor(Img, cv2.COLOR_GRAY2RGB)  # GGG
    else:
        Img = cv2.cvtColor(Img, cv2.COLOR_BGR2RGB)  # RGB
    
    if Img.shape[0] < 512 or Img.shape[1] < 512:
        Img = cv2.resize(Img, (512,512), interpolation = cv2.INTER_AREA)
    # ImgForLands = Img.copy()

    Img = Img.transpose((2, 0, 1))/255.0
    Img = torch.from_numpy(Img).float()
    normalize(Img, [0.5,0.5,0.5], [0.5,0.5,0.5], inplace=True)
    ImgTensor = Img.unsqueeze(0)
    return ImgTensor


def get_component_location(Landmarks, re_read=False):
    if re_read:
        ReadLandmark = []
        with open(Landmarks,'r') as f:
            for line in f:
                tmp = [float(i) for i in line.split(' ') if i != '\n']
                ReadLandmark.append(tmp)
        ReadLandmark = np.array(ReadLandmark) #
        Landmarks = np.reshape(ReadLandmark, [-1, 2]) # 68*2
    Map_LE_B = list(np.hstack((range(17,22), range(36,42))))
    Map_RE_B = list(np.hstack((range(22,27), range(42,48))))
    Map_LE = list(range(36,42))
    Map_RE = list(range(42,48))
    Map_NO = list(range(29,36))
    Map_MO = list(range(48,68))

    Landmarks[Landmarks>504]=504
    Landmarks[Landmarks<8]=8
    
    #left eye
    Mean_LE = np.mean(Landmarks[Map_LE],0)
    L_LE1 = Mean_LE[1] - np.min(Landmarks[Map_LE_B,1])
    L_LE1 = L_LE1 * 1.3
    L_LE2 = L_LE1 / 1.9
    L_LE_xy = L_LE1 + L_LE2
    L_LE_lt = [L_LE_xy/2, L_LE1]
    L_LE_rb = [L_LE_xy/2, L_LE2]
    Location_LE = np.hstack((Mean_LE - L_LE_lt + 1, Mean_LE + L_LE_rb)).astype(int)

    #right eye
    Mean_RE = np.mean(Landmarks[Map_RE],0)
    L_RE1 = Mean_RE[1] - np.min(Landmarks[Map_RE_B,1])
    L_RE1 = L_RE1 * 1.3
    L_RE2 = L_RE1 / 1.9
    L_RE_xy = L_RE1 + L_RE2
    L_RE_lt = [L_RE_xy/2, L_RE1]
    L_RE_rb = [L_RE_xy/2, L_RE2]
    Location_RE = np.hstack((Mean_RE - L_RE_lt + 1, Mean_RE + L_RE_rb)).astype(int)

    #nose
    Mean_NO = np.mean(Landmarks[Map_NO],0)
    L_NO1 =( np.max([Mean_NO[0] - Landmarks[31][0], Landmarks[35][0] - Mean_NO[0]])) * 1.25
    L_NO2 = (Landmarks[33][1] - Mean_NO[1]) * 1.1
    L_NO_xy = L_NO1 * 2
    L_NO_lt = [L_NO_xy/2, L_NO_xy - L_NO2]
    L_NO_rb = [L_NO_xy/2, L_NO2]
    Location_NO = np.hstack((Mean_NO - L_NO_lt + 1, Mean_NO + L_NO_rb)).astype(int)
    
    #mouth
    Mean_MO = np.mean(Landmarks[Map_MO],0)
    L_MO = np.max((np.max(np.max(Landmarks[Map_MO],0) - np.min(Landmarks[Map_MO],0))/2,16)) * 1.1
    MO_O = Mean_MO - L_MO + 1
    MO_T = Mean_MO + L_MO
    MO_T[MO_T>510]=510
    Location_MO = np.hstack((MO_O, MO_T)).astype(int)
    return torch.cat([torch.FloatTensor(Location_LE).unsqueeze(0), torch.FloatTensor(Location_RE).unsqueeze(0), torch.FloatTensor(Location_NO).unsqueeze(0), torch.FloatTensor(Location_MO).unsqueeze(0)], dim=0)




def calc_mean_std_4D(feat, eps=1e-5):
    # eps is a small value added to the variance to avoid divide-by-zero.
    size = feat.size()
    assert (len(size) == 4)
    N, C = size[:2]
    feat_var = feat.view(N, C, -1).var(dim=2) + eps
    feat_std = feat_var.sqrt().view(N, C, 1, 1)
    feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
    return feat_mean, feat_std

def adaptive_instance_normalization_4D(content_feat, style_feat): # content_feat is ref feature, style is degradate feature
    size = content_feat.size()
    style_mean, style_std = calc_mean_std_4D(style_feat)
    content_mean, content_std = calc_mean_std_4D(content_feat)
    normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
    return normalized_feat * style_std.expand(size) + style_mean.expand(size)


def convU(in_channels, out_channels,conv_layer, norm_layer, kernel_size=3, stride=1,dilation=1, bias=True):
    return nn.Sequential(
        SpectralNorm(conv_layer(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
        nn.LeakyReLU(0.2),
        SpectralNorm(conv_layer(out_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((kernel_size-1)//2)*dilation, bias=bias)),
    )
    

class MSDilateBlock(nn.Module):
    def __init__(self, in_channels,conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, kernel_size=3, dilation=[1,1,1,1], bias=True):
        super(MSDilateBlock, self).__init__()
        self.conv1 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[0], bias=bias)
        self.conv2 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[1], bias=bias)
        self.conv3 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[2], bias=bias)
        self.conv4 =  convU(in_channels, in_channels,conv_layer, norm_layer, kernel_size,dilation=dilation[3], bias=bias)
        self.convi =  SpectralNorm(conv_layer(in_channels*4, in_channels, kernel_size=kernel_size, stride=1, padding=(kernel_size-1)//2, bias=bias))
    def forward(self, x):
        conv1 = self.conv1(x)
        conv2 = self.conv2(x)
        conv3 = self.conv3(x)
        conv4 = self.conv4(x)
        cat  = torch.cat([conv1, conv2, conv3, conv4], 1)
        out = self.convi(cat) + x
        return out


class AdaptiveInstanceNorm(nn.Module):
    def __init__(self, in_channel):
        super().__init__()
        self.norm = nn.InstanceNorm2d(in_channel)

    def forward(self, input, style):
        style_mean, style_std = calc_mean_std_4D(style)
        out = self.norm(input)
        size = input.size()
        out = style_std.expand(size) * out + style_mean.expand(size)
        return out

class NoiseInjection(nn.Module):
    def __init__(self, channel):
        super().__init__()
        self.weight = nn.Parameter(torch.zeros(1, channel, 1, 1))
    def forward(self, image, noise):
        if noise is None:
            b, c, h, w = image.shape
            noise = image.new_empty(b, 1, h, w).normal_()
        return image + self.weight * noise

class StyledUpBlock(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size=3, padding=1,upsample=False, noise_inject=False):
        super().__init__()

        self.noise_inject = noise_inject
        if upsample:
            self.conv1 = nn.Sequential(
                nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
            )
        else:
            self.conv1 = nn.Sequential(
                SpectralNorm(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
                SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
            )
        self.convup = nn.Sequential(
                nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False),
                SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
                nn.LeakyReLU(0.2),
                SpectralNorm(nn.Conv2d(out_channel, out_channel, kernel_size, padding=padding)),
            )
        if self.noise_inject:
            self.noise1 = NoiseInjection(out_channel)

        self.lrelu1 = nn.LeakyReLU(0.2)

        self.ScaleModel1 = nn.Sequential(
            SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1))
        )
        self.ShiftModel1 = nn.Sequential(
            SpectralNorm(nn.Conv2d(in_channel,out_channel,3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(out_channel, out_channel, 3, 1, 1)),
        )
       
    def forward(self, input, style):
        out = self.conv1(input)
        out = self.lrelu1(out)
        Shift1 = self.ShiftModel1(style)
        Scale1 = self.ScaleModel1(style)
        out = out * Scale1 + Shift1
        if self.noise_inject:
            out = self.noise1(out, noise=None)
        outup = self.convup(out)
        return outup


####################################################################
###############Face Dictionary Generator
####################################################################
def AttentionBlock(in_channel):
    return nn.Sequential(
        SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
        nn.LeakyReLU(0.2),
        SpectralNorm(nn.Conv2d(in_channel, in_channel, 3, 1, 1)),
    )

class DilateResBlock(nn.Module):
    def __init__(self, dim, dilation=[5,3] ):
        super(DilateResBlock, self).__init__()
        self.Res = nn.Sequential(
            SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[0], dilation[0])),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(dim, dim, 3, 1, ((3-1)//2)*dilation[1], dilation[1])),
        )
    def forward(self, x):
        out = x + self.Res(x)
        return out


class KeyValue(nn.Module):
    def __init__(self, indim, keydim, valdim):
        super(KeyValue, self).__init__()
        self.Key = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(keydim, keydim, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
        self.Value = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(valdim, valdim, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
    def forward(self, x):  
        return self.Key(x), self.Value(x)

class MaskAttention(nn.Module):
    def __init__(self, indim):
        super(MaskAttention, self).__init__()
        self.conv1 = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
        self.conv2 = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
        self.conv3 = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(indim//3, indim//3, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
        self.convCat = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim//3 * 3, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(indim, indim, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
    def forward(self, x, y, z):
        c1 = self.conv1(x)
        c2 = self.conv2(y)
        c3 = self.conv3(z)
        return self.convCat(torch.cat([c1,c2,c3], dim=1))

class Query(nn.Module):
    def __init__(self, indim, quedim):
        super(Query, self).__init__()
        self.Query = nn.Sequential(
            SpectralNorm(nn.Conv2d(indim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(quedim, quedim, kernel_size=(3,3), padding=(1,1), stride=1)),
        )
    def forward(self, x):
        return self.Query(x)

def roi_align_self(input, location, target_size):
    return torch.cat([F.interpolate(input[i:i+1,:,location[i,1]:location[i,3],location[i,0]:location[i,2]],(target_size,target_size),mode='bilinear',align_corners=False) for i in range(input.size(0))],0)

class FeatureExtractor(nn.Module):
    def __init__(self, ngf = 64, key_scale = 4):#
        super().__init__()

        self.key_scale = 4
        self.part_sizes = np.array([80,80,50,110]) #
        self.feature_sizes = np.array([256,128,64]) # 

        self.conv1 = nn.Sequential(
                SpectralNorm(nn.Conv2d(3, ngf, 3, 2, 1)),
                nn.LeakyReLU(0.2),
                SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
            )
        self.conv2 = nn.Sequential(
            SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1))
        )
        self.res1 = DilateResBlock(ngf, [5,3])
        self.res2 = DilateResBlock(ngf, [5,3])

        
        self.conv3 = nn.Sequential(
            SpectralNorm(nn.Conv2d(ngf, ngf*2, 3, 2, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
            )
        self.conv4 = nn.Sequential(
            SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(ngf*2, ngf*2, 3, 1, 1))
        )
        self.res3 = DilateResBlock(ngf*2, [3,1])
        self.res4 = DilateResBlock(ngf*2, [3,1])

        self.conv5 = nn.Sequential(
            SpectralNorm(nn.Conv2d(ngf*2, ngf*4, 3, 2, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
        )
        self.conv6 = nn.Sequential(
            SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(nn.Conv2d(ngf*4, ngf*4, 3, 1, 1))
        )
        self.res5 = DilateResBlock(ngf*4, [1,1])
        self.res6 = DilateResBlock(ngf*4, [1,1])

        self.LE_256_Q = Query(ngf, ngf // self.key_scale)
        self.RE_256_Q = Query(ngf, ngf // self.key_scale)
        self.MO_256_Q = Query(ngf, ngf // self.key_scale)
        self.LE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
        self.RE_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
        self.MO_128_Q = Query(ngf * 2, ngf * 2 // self.key_scale)
        self.LE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
        self.RE_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)
        self.MO_64_Q = Query(ngf * 4, ngf * 4 // self.key_scale)


    def forward(self, img, locs):
        le_location = locs[:,0,:].int().cpu().numpy()
        re_location = locs[:,1,:].int().cpu().numpy()
        no_location = locs[:,2,:].int().cpu().numpy()
        mo_location = locs[:,3,:].int().cpu().numpy()
        

        f1_0 = self.conv1(img) 
        f1_1 = self.res1(f1_0)
        f2_0 = self.conv2(f1_1)
        f2_1 = self.res2(f2_0)

        f3_0 = self.conv3(f2_1) 
        f3_1 = self.res3(f3_0)
        f4_0 = self.conv4(f3_1)
        f4_1 = self.res4(f4_0)

        f5_0 = self.conv5(f4_1) 
        f5_1 = self.res5(f5_0)
        f6_0 = self.conv6(f5_1)
        f6_1 = self.res6(f6_0)


        ####ROI Align
        le_part_256 = roi_align_self(f2_1.clone(), le_location//2, self.part_sizes[0]//2)
        re_part_256 = roi_align_self(f2_1.clone(), re_location//2, self.part_sizes[1]//2)
        mo_part_256 = roi_align_self(f2_1.clone(), mo_location//2, self.part_sizes[3]//2)

        le_part_128 = roi_align_self(f4_1.clone(), le_location//4, self.part_sizes[0]//4)
        re_part_128 = roi_align_self(f4_1.clone(), re_location//4, self.part_sizes[1]//4)
        mo_part_128 = roi_align_self(f4_1.clone(), mo_location//4, self.part_sizes[3]//4)

        le_part_64 = roi_align_self(f6_1.clone(), le_location//8, self.part_sizes[0]//8)
        re_part_64 = roi_align_self(f6_1.clone(), re_location//8, self.part_sizes[1]//8)
        mo_part_64 = roi_align_self(f6_1.clone(), mo_location//8, self.part_sizes[3]//8)


        le_256_q = self.LE_256_Q(le_part_256)
        re_256_q = self.RE_256_Q(re_part_256)
        mo_256_q = self.MO_256_Q(mo_part_256)

        le_128_q = self.LE_128_Q(le_part_128)
        re_128_q = self.RE_128_Q(re_part_128)
        mo_128_q = self.MO_128_Q(mo_part_128)

        le_64_q = self.LE_64_Q(le_part_64)
        re_64_q = self.RE_64_Q(re_part_64)
        mo_64_q = self.MO_64_Q(mo_part_64)

        return {'f256': f2_1, 'f128': f4_1, 'f64': f6_1,\
            'le256': le_part_256, 're256': re_part_256, 'mo256': mo_part_256, \
            'le128': le_part_128, 're128': re_part_128, 'mo128': mo_part_128, \
            'le64': le_part_64, 're64': re_part_64, 'mo64': mo_part_64, \
            'le_256_q': le_256_q, 're_256_q': re_256_q, 'mo_256_q': mo_256_q,\
            'le_128_q': le_128_q, 're_128_q': re_128_q, 'mo_128_q': mo_128_q,\
            'le_64_q': le_64_q, 're_64_q': re_64_q, 'mo_64_q': mo_64_q}


class DMDNet(nn.Module):
    def __init__(self, ngf = 64, banks_num = 128):
        super().__init__()
        self.part_sizes = np.array([80,80,50,110]) # size for 512
        self.feature_sizes = np.array([256,128,64]) # size for 512

        self.banks_num = banks_num
        self.key_scale = 4

        self.E_lq = FeatureExtractor(key_scale = self.key_scale)
        self.E_hq = FeatureExtractor(key_scale = self.key_scale)

        self.LE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
        self.RE_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)
        self.MO_256_KV = KeyValue(ngf, ngf // self.key_scale, ngf)

        self.LE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
        self.RE_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)
        self.MO_128_KV = KeyValue(ngf * 2 , ngf * 2 // self.key_scale, ngf * 2)

        self.LE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
        self.RE_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)
        self.MO_64_KV = KeyValue(ngf * 4 , ngf * 4 // self.key_scale, ngf * 4)


        self.LE_256_Attention = AttentionBlock(64)
        self.RE_256_Attention = AttentionBlock(64)
        self.MO_256_Attention = AttentionBlock(64)

        self.LE_128_Attention = AttentionBlock(128)
        self.RE_128_Attention = AttentionBlock(128)
        self.MO_128_Attention = AttentionBlock(128)

        self.LE_64_Attention = AttentionBlock(256)
        self.RE_64_Attention = AttentionBlock(256)
        self.MO_64_Attention = AttentionBlock(256)

        self.LE_256_Mask = MaskAttention(64)
        self.RE_256_Mask = MaskAttention(64)
        self.MO_256_Mask = MaskAttention(64)

        self.LE_128_Mask = MaskAttention(128)
        self.RE_128_Mask = MaskAttention(128)
        self.MO_128_Mask = MaskAttention(128)

        self.LE_64_Mask = MaskAttention(256)
        self.RE_64_Mask = MaskAttention(256)
        self.MO_64_Mask = MaskAttention(256)

        self.MSDilate = MSDilateBlock(ngf*4, dilation = [4,3,2,1])

        self.up1 = StyledUpBlock(ngf*4, ngf*2, noise_inject=False) #
        self.up2 = StyledUpBlock(ngf*2, ngf, noise_inject=False) #
        self.up3 = StyledUpBlock(ngf, ngf, noise_inject=False) #
        self.up4 = nn.Sequential( 
            SpectralNorm(nn.Conv2d(ngf, ngf, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            UpResBlock(ngf),
            UpResBlock(ngf),
            SpectralNorm(nn.Conv2d(ngf, 3, kernel_size=3, stride=1, padding=1)),
            nn.Tanh()
        )
 
        # define generic memory, revise register_buffer to register_parameter for backward update
        self.register_buffer('le_256_mem_key', torch.randn(128,16,40,40))
        self.register_buffer('re_256_mem_key', torch.randn(128,16,40,40))
        self.register_buffer('mo_256_mem_key', torch.randn(128,16,55,55))
        self.register_buffer('le_256_mem_value', torch.randn(128,64,40,40))
        self.register_buffer('re_256_mem_value', torch.randn(128,64,40,40))
        self.register_buffer('mo_256_mem_value', torch.randn(128,64,55,55))
        

        self.register_buffer('le_128_mem_key', torch.randn(128,32,20,20))
        self.register_buffer('re_128_mem_key', torch.randn(128,32,20,20))
        self.register_buffer('mo_128_mem_key', torch.randn(128,32,27,27))
        self.register_buffer('le_128_mem_value', torch.randn(128,128,20,20))
        self.register_buffer('re_128_mem_value', torch.randn(128,128,20,20))
        self.register_buffer('mo_128_mem_value', torch.randn(128,128,27,27))

        self.register_buffer('le_64_mem_key', torch.randn(128,64,10,10))
        self.register_buffer('re_64_mem_key', torch.randn(128,64,10,10))
        self.register_buffer('mo_64_mem_key', torch.randn(128,64,13,13))
        self.register_buffer('le_64_mem_value', torch.randn(128,256,10,10))
        self.register_buffer('re_64_mem_value', torch.randn(128,256,10,10))
        self.register_buffer('mo_64_mem_value', torch.randn(128,256,13,13))

    
    def readMem(self, k, v, q):
        sim = F.conv2d(q, k)
        score = F.softmax(sim/sqrt(sim.size(1)), dim=1) #B * S * 1 * 1 6*128
        sb,sn,sw,sh = score.size()
        s_m = score.view(sb, -1).unsqueeze(1)#2*1*M
        vb,vn,vw,vh = v.size()
        v_in = v.view(vb, -1).repeat(sb,1,1)#2*M*(c*w*h)
        mem_out = torch.bmm(s_m, v_in).squeeze(1).view(sb, vn, vw,vh)
        max_inds = torch.argmax(score, dim=1).squeeze()
        return mem_out, max_inds
    

    def memorize(self, img, locs):
        fs = self.E_hq(img, locs)
        LE256_key, LE256_value = self.LE_256_KV(fs['le256'])
        RE256_key, RE256_value = self.RE_256_KV(fs['re256'])
        MO256_key, MO256_value = self.MO_256_KV(fs['mo256'])

        LE128_key, LE128_value = self.LE_128_KV(fs['le128'])
        RE128_key, RE128_value = self.RE_128_KV(fs['re128'])
        MO128_key, MO128_value = self.MO_128_KV(fs['mo128'])

        LE64_key, LE64_value = self.LE_64_KV(fs['le64'])
        RE64_key, RE64_value = self.RE_64_KV(fs['re64'])
        MO64_key, MO64_value = self.MO_64_KV(fs['mo64'])

        Mem256 = {'LE256Key': LE256_key, 'LE256Value': LE256_value, 'RE256Key': RE256_key, 'RE256Value': RE256_value,'MO256Key': MO256_key, 'MO256Value': MO256_value}
        Mem128 = {'LE128Key': LE128_key, 'LE128Value': LE128_value, 'RE128Key': RE128_key, 'RE128Value': RE128_value,'MO128Key': MO128_key, 'MO128Value': MO128_value}
        Mem64 = {'LE64Key': LE64_key, 'LE64Value': LE64_value, 'RE64Key': RE64_key, 'RE64Value': RE64_value,'MO64Key': MO64_key, 'MO64Value': MO64_value}
 
        FS256 = {'LE256F':fs['le256'], 'RE256F':fs['re256'], 'MO256F':fs['mo256']}
        FS128 = {'LE128F':fs['le128'], 'RE128F':fs['re128'], 'MO128F':fs['mo128']}
        FS64 = {'LE64F':fs['le64'], 'RE64F':fs['re64'], 'MO64F':fs['mo64']}
        
        return Mem256, Mem128, Mem64

    def enhancer(self, fs_in, sp_256=None, sp_128=None, sp_64=None):
        le_256_q = fs_in['le_256_q']
        re_256_q = fs_in['re_256_q']
        mo_256_q = fs_in['mo_256_q']

        le_128_q = fs_in['le_128_q']
        re_128_q = fs_in['re_128_q']
        mo_128_q = fs_in['mo_128_q']

        le_64_q = fs_in['le_64_q']
        re_64_q = fs_in['re_64_q']
        mo_64_q = fs_in['mo_64_q']

        
        ####for 256
        le_256_mem_g, le_256_inds = self.readMem(self.le_256_mem_key, self.le_256_mem_value, le_256_q)
        re_256_mem_g, re_256_inds = self.readMem(self.re_256_mem_key, self.re_256_mem_value, re_256_q)
        mo_256_mem_g, mo_256_inds = self.readMem(self.mo_256_mem_key, self.mo_256_mem_value, mo_256_q)

        le_128_mem_g, le_128_inds = self.readMem(self.le_128_mem_key, self.le_128_mem_value, le_128_q)
        re_128_mem_g, re_128_inds = self.readMem(self.re_128_mem_key, self.re_128_mem_value, re_128_q)
        mo_128_mem_g, mo_128_inds = self.readMem(self.mo_128_mem_key, self.mo_128_mem_value, mo_128_q)

        le_64_mem_g, le_64_inds = self.readMem(self.le_64_mem_key, self.le_64_mem_value, le_64_q)
        re_64_mem_g, re_64_inds = self.readMem(self.re_64_mem_key, self.re_64_mem_value, re_64_q)
        mo_64_mem_g, mo_64_inds = self.readMem(self.mo_64_mem_key, self.mo_64_mem_value, mo_64_q)

        if sp_256 is not None and sp_128 is not None and sp_64 is not None:
            le_256_mem_s, _ = self.readMem(sp_256['LE256Key'], sp_256['LE256Value'], le_256_q)
            re_256_mem_s, _ = self.readMem(sp_256['RE256Key'], sp_256['RE256Value'], re_256_q)
            mo_256_mem_s, _ = self.readMem(sp_256['MO256Key'], sp_256['MO256Value'], mo_256_q)
            le_256_mask = self.LE_256_Mask(fs_in['le256'],le_256_mem_s,le_256_mem_g)
            le_256_mem = le_256_mask*le_256_mem_s + (1-le_256_mask)*le_256_mem_g
            re_256_mask = self.RE_256_Mask(fs_in['re256'],re_256_mem_s,re_256_mem_g)
            re_256_mem = re_256_mask*re_256_mem_s + (1-re_256_mask)*re_256_mem_g
            mo_256_mask = self.MO_256_Mask(fs_in['mo256'],mo_256_mem_s,mo_256_mem_g)
            mo_256_mem = mo_256_mask*mo_256_mem_s + (1-mo_256_mask)*mo_256_mem_g

            le_128_mem_s, _ = self.readMem(sp_128['LE128Key'], sp_128['LE128Value'], le_128_q)
            re_128_mem_s, _ = self.readMem(sp_128['RE128Key'], sp_128['RE128Value'], re_128_q)
            mo_128_mem_s, _ = self.readMem(sp_128['MO128Key'], sp_128['MO128Value'], mo_128_q)
            le_128_mask = self.LE_128_Mask(fs_in['le128'],le_128_mem_s,le_128_mem_g)
            le_128_mem = le_128_mask*le_128_mem_s + (1-le_128_mask)*le_128_mem_g
            re_128_mask = self.RE_128_Mask(fs_in['re128'],re_128_mem_s,re_128_mem_g)
            re_128_mem = re_128_mask*re_128_mem_s + (1-re_128_mask)*re_128_mem_g
            mo_128_mask = self.MO_128_Mask(fs_in['mo128'],mo_128_mem_s,mo_128_mem_g)
            mo_128_mem = mo_128_mask*mo_128_mem_s + (1-mo_128_mask)*mo_128_mem_g

            le_64_mem_s, _ = self.readMem(sp_64['LE64Key'], sp_64['LE64Value'], le_64_q)
            re_64_mem_s, _ = self.readMem(sp_64['RE64Key'], sp_64['RE64Value'], re_64_q)
            mo_64_mem_s, _ = self.readMem(sp_64['MO64Key'], sp_64['MO64Value'], mo_64_q)
            le_64_mask = self.LE_64_Mask(fs_in['le64'],le_64_mem_s,le_64_mem_g)
            le_64_mem = le_64_mask*le_64_mem_s + (1-le_64_mask)*le_64_mem_g
            re_64_mask = self.RE_64_Mask(fs_in['re64'],re_64_mem_s,re_64_mem_g)
            re_64_mem = re_64_mask*re_64_mem_s + (1-re_64_mask)*re_64_mem_g
            mo_64_mask = self.MO_64_Mask(fs_in['mo64'],mo_64_mem_s,mo_64_mem_g)
            mo_64_mem = mo_64_mask*mo_64_mem_s + (1-mo_64_mask)*mo_64_mem_g
        else:
            le_256_mem = le_256_mem_g
            re_256_mem = re_256_mem_g
            mo_256_mem = mo_256_mem_g
            le_128_mem = le_128_mem_g
            re_128_mem = re_128_mem_g
            mo_128_mem = mo_128_mem_g
            le_64_mem = le_64_mem_g
            re_64_mem = re_64_mem_g
            mo_64_mem = mo_64_mem_g

        le_256_mem_norm = adaptive_instance_normalization_4D(le_256_mem, fs_in['le256'])
        re_256_mem_norm = adaptive_instance_normalization_4D(re_256_mem, fs_in['re256'])
        mo_256_mem_norm = adaptive_instance_normalization_4D(mo_256_mem, fs_in['mo256'])
        
        ####for 128
        le_128_mem_norm = adaptive_instance_normalization_4D(le_128_mem, fs_in['le128'])
        re_128_mem_norm = adaptive_instance_normalization_4D(re_128_mem, fs_in['re128'])
        mo_128_mem_norm = adaptive_instance_normalization_4D(mo_128_mem, fs_in['mo128'])
        
        ####for 64
        le_64_mem_norm = adaptive_instance_normalization_4D(le_64_mem, fs_in['le64'])
        re_64_mem_norm = adaptive_instance_normalization_4D(re_64_mem, fs_in['re64'])
        mo_64_mem_norm = adaptive_instance_normalization_4D(mo_64_mem, fs_in['mo64'])
    

        EnMem256 = {'LE256Norm': le_256_mem_norm, 'RE256Norm': re_256_mem_norm, 'MO256Norm': mo_256_mem_norm}
        EnMem128 = {'LE128Norm': le_128_mem_norm, 'RE128Norm': re_128_mem_norm, 'MO128Norm': mo_128_mem_norm}
        EnMem64 = {'LE64Norm': le_64_mem_norm, 'RE64Norm': re_64_mem_norm, 'MO64Norm': mo_64_mem_norm}
        Ind256 = {'LE': le_256_inds, 'RE': re_256_inds, 'MO': mo_256_inds}
        Ind128 = {'LE': le_128_inds, 'RE': re_128_inds, 'MO': mo_128_inds}
        Ind64 = {'LE': le_64_inds, 'RE': re_64_inds, 'MO': mo_64_inds}
        return EnMem256, EnMem128, EnMem64, Ind256, Ind128, Ind64

    def reconstruct(self, fs_in, locs, memstar):
        le_256_mem_norm, re_256_mem_norm, mo_256_mem_norm = memstar[0]['LE256Norm'], memstar[0]['RE256Norm'], memstar[0]['MO256Norm']
        le_128_mem_norm, re_128_mem_norm, mo_128_mem_norm = memstar[1]['LE128Norm'], memstar[1]['RE128Norm'], memstar[1]['MO128Norm']
        le_64_mem_norm, re_64_mem_norm, mo_64_mem_norm = memstar[2]['LE64Norm'], memstar[2]['RE64Norm'], memstar[2]['MO64Norm']

        le_256_final = self.LE_256_Attention(le_256_mem_norm - fs_in['le256']) * le_256_mem_norm + fs_in['le256']
        re_256_final = self.RE_256_Attention(re_256_mem_norm - fs_in['re256']) * re_256_mem_norm + fs_in['re256']
        mo_256_final = self.MO_256_Attention(mo_256_mem_norm - fs_in['mo256']) * mo_256_mem_norm + fs_in['mo256']
        
        le_128_final = self.LE_128_Attention(le_128_mem_norm - fs_in['le128']) * le_128_mem_norm + fs_in['le128']
        re_128_final = self.RE_128_Attention(re_128_mem_norm - fs_in['re128']) * re_128_mem_norm + fs_in['re128']
        mo_128_final = self.MO_128_Attention(mo_128_mem_norm - fs_in['mo128']) * mo_128_mem_norm + fs_in['mo128']
        
        le_64_final = self.LE_64_Attention(le_64_mem_norm - fs_in['le64']) * le_64_mem_norm + fs_in['le64']
        re_64_final = self.RE_64_Attention(re_64_mem_norm - fs_in['re64']) * re_64_mem_norm + fs_in['re64']
        mo_64_final = self.MO_64_Attention(mo_64_mem_norm - fs_in['mo64']) * mo_64_mem_norm + fs_in['mo64']


        le_location = locs[:,0,:]
        re_location = locs[:,1,:]
        mo_location = locs[:,3,:]
        le_location = le_location.cpu().int().numpy()
        re_location = re_location.cpu().int().numpy()
        mo_location = mo_location.cpu().int().numpy()

        up_in_256 = fs_in['f256'].clone()# * 0
        up_in_128 = fs_in['f128'].clone()# * 0
        up_in_64 = fs_in['f64'].clone()# * 0

        for i in range(fs_in['f256'].size(0)):
            up_in_256[i:i+1,:,le_location[i,1]//2:le_location[i,3]//2,le_location[i,0]//2:le_location[i,2]//2] = F.interpolate(le_256_final[i:i+1,:,:,:].clone(), (le_location[i,3]//2-le_location[i,1]//2,le_location[i,2]//2-le_location[i,0]//2),mode='bilinear',align_corners=False)
            up_in_256[i:i+1,:,re_location[i,1]//2:re_location[i,3]//2,re_location[i,0]//2:re_location[i,2]//2] = F.interpolate(re_256_final[i:i+1,:,:,:].clone(), (re_location[i,3]//2-re_location[i,1]//2,re_location[i,2]//2-re_location[i,0]//2),mode='bilinear',align_corners=False)
            up_in_256[i:i+1,:,mo_location[i,1]//2:mo_location[i,3]//2,mo_location[i,0]//2:mo_location[i,2]//2] = F.interpolate(mo_256_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//2-mo_location[i,1]//2,mo_location[i,2]//2-mo_location[i,0]//2),mode='bilinear',align_corners=False)
            
            up_in_128[i:i+1,:,le_location[i,1]//4:le_location[i,3]//4,le_location[i,0]//4:le_location[i,2]//4] = F.interpolate(le_128_final[i:i+1,:,:,:].clone(), (le_location[i,3]//4-le_location[i,1]//4,le_location[i,2]//4-le_location[i,0]//4),mode='bilinear',align_corners=False)
            up_in_128[i:i+1,:,re_location[i,1]//4:re_location[i,3]//4,re_location[i,0]//4:re_location[i,2]//4] = F.interpolate(re_128_final[i:i+1,:,:,:].clone(), (re_location[i,3]//4-re_location[i,1]//4,re_location[i,2]//4-re_location[i,0]//4),mode='bilinear',align_corners=False)
            up_in_128[i:i+1,:,mo_location[i,1]//4:mo_location[i,3]//4,mo_location[i,0]//4:mo_location[i,2]//4] = F.interpolate(mo_128_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//4-mo_location[i,1]//4,mo_location[i,2]//4-mo_location[i,0]//4),mode='bilinear',align_corners=False)

            up_in_64[i:i+1,:,le_location[i,1]//8:le_location[i,3]//8,le_location[i,0]//8:le_location[i,2]//8] = F.interpolate(le_64_final[i:i+1,:,:,:].clone(), (le_location[i,3]//8-le_location[i,1]//8,le_location[i,2]//8-le_location[i,0]//8),mode='bilinear',align_corners=False)
            up_in_64[i:i+1,:,re_location[i,1]//8:re_location[i,3]//8,re_location[i,0]//8:re_location[i,2]//8] = F.interpolate(re_64_final[i:i+1,:,:,:].clone(), (re_location[i,3]//8-re_location[i,1]//8,re_location[i,2]//8-re_location[i,0]//8),mode='bilinear',align_corners=False)
            up_in_64[i:i+1,:,mo_location[i,1]//8:mo_location[i,3]//8,mo_location[i,0]//8:mo_location[i,2]//8] = F.interpolate(mo_64_final[i:i+1,:,:,:].clone(), (mo_location[i,3]//8-mo_location[i,1]//8,mo_location[i,2]//8-mo_location[i,0]//8),mode='bilinear',align_corners=False)
        
        ms_in_64 = self.MSDilate(fs_in['f64'].clone())
        fea_up1 = self.up1(ms_in_64, up_in_64)
        fea_up2 = self.up2(fea_up1, up_in_128) #
        fea_up3 = self.up3(fea_up2, up_in_256) #
        output = self.up4(fea_up3) #
        return output

    def generate_specific_dictionary(self, sp_imgs=None, sp_locs=None):
        return self.memorize(sp_imgs, sp_locs)

    def forward(self, lq=None, loc=None, sp_256 = None, sp_128 = None, sp_64 = None):
        fs_in = self.E_lq(lq, loc) # low quality images
        GeMemNorm256, GeMemNorm128, GeMemNorm64, Ind256, Ind128, Ind64 = self.enhancer(fs_in)
        GeOut = self.reconstruct(fs_in, loc, memstar = [GeMemNorm256, GeMemNorm128, GeMemNorm64])
        if sp_256 is not None and sp_128 is not None and sp_64 is not None:
            GSMemNorm256, GSMemNorm128, GSMemNorm64, _, _, _ = self.enhancer(fs_in, sp_256, sp_128, sp_64)
            GSOut = self.reconstruct(fs_in, loc, memstar = [GSMemNorm256, GSMemNorm128, GSMemNorm64])
        else:
            GSOut = None
        return GeOut, GSOut

class UpResBlock(nn.Module):
    def __init__(self, dim, conv_layer = nn.Conv2d, norm_layer = nn.BatchNorm2d):
        super(UpResBlock, self).__init__()
        self.Model = nn.Sequential(
            SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
            nn.LeakyReLU(0.2),
            SpectralNorm(conv_layer(dim, dim, 3, 1, 1)),
        )
    def forward(self, x):
        out = x + self.Model(x)
        return out