|
""" |
|
Modified version from codeformer-pip project |
|
|
|
S-Lab License 1.0 |
|
|
|
Copyright 2022 S-Lab |
|
|
|
https://github.com/kadirnar/codeformer-pip/blob/main/LICENSE |
|
""" |
|
|
|
import os |
|
|
|
import cv2 |
|
import torch |
|
from codeformer.facelib.detection import init_detection_model |
|
from codeformer.facelib.parsing import init_parsing_model |
|
from torchvision.transforms.functional import normalize |
|
|
|
from codeformer.basicsr.archs.rrdbnet_arch import RRDBNet |
|
from codeformer.basicsr.utils import img2tensor, imwrite, tensor2img |
|
from codeformer.basicsr.utils.download_util import load_file_from_url |
|
from codeformer.basicsr.utils.realesrgan_utils import RealESRGANer |
|
from codeformer.basicsr.utils.registry import ARCH_REGISTRY |
|
from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper |
|
from codeformer.facelib.utils.misc import is_gray |
|
import threading |
|
|
|
from plugins.codeformer_face_helper_cv2 import FaceRestoreHelperOptimized |
|
|
|
THREAD_LOCK_FACE_HELPER = threading.Lock() |
|
THREAD_LOCK_FACE_HELPER_CREATE = threading.Lock() |
|
THREAD_LOCK_FACE_HELPER_PROCERSSING = threading.Lock() |
|
THREAD_LOCK_CODEFORMER_NET = threading.Lock() |
|
THREAD_LOCK_CODEFORMER_NET_CREATE = threading.Lock() |
|
THREAD_LOCK_BGUPSAMPLER = threading.Lock() |
|
|
|
pretrain_model_url = { |
|
"codeformer": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth", |
|
"detection": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/detection_Resnet50_Final.pth", |
|
"parsing": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/parsing_parsenet.pth", |
|
"realesrgan": "https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/RealESRGAN_x2plus.pth", |
|
} |
|
|
|
|
|
if not os.path.exists("models/CodeFormer/codeformer.pth"): |
|
load_file_from_url( |
|
url=pretrain_model_url["codeformer"], model_dir="models/CodeFormer/", progress=True, file_name=None |
|
) |
|
if not os.path.exists("models/CodeFormer/facelib/detection_Resnet50_Final.pth"): |
|
load_file_from_url( |
|
url=pretrain_model_url["detection"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None |
|
) |
|
if not os.path.exists("models/CodeFormer/facelib/parsing_parsenet.pth"): |
|
load_file_from_url( |
|
url=pretrain_model_url["parsing"], model_dir="models/CodeFormer/facelib", progress=True, file_name=None |
|
) |
|
if not os.path.exists("models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth"): |
|
load_file_from_url( |
|
url=pretrain_model_url["realesrgan"], model_dir="models/CodeFormer/realesrgan", progress=True, file_name=None |
|
) |
|
|
|
|
|
def imread(img_path): |
|
img = cv2.imread(img_path) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
return img |
|
|
|
|
|
|
|
def set_realesrgan(): |
|
half = True if torch.cuda.is_available() else False |
|
model = RRDBNet( |
|
num_in_ch=3, |
|
num_out_ch=3, |
|
num_feat=64, |
|
num_block=23, |
|
num_grow_ch=32, |
|
scale=2, |
|
) |
|
upsampler = RealESRGANer( |
|
scale=2, |
|
model_path="models/CodeFormer/realesrgan/RealESRGAN_x2plus.pth", |
|
model=model, |
|
tile=400, |
|
tile_pad=40, |
|
pre_pad=0, |
|
half=half, |
|
) |
|
return upsampler |
|
|
|
|
|
upsampler = set_realesrgan() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
codeformers_cache = [] |
|
|
|
def get_codeformer(): |
|
if len(codeformers_cache) > 0: |
|
with THREAD_LOCK_CODEFORMER_NET: |
|
if len(codeformers_cache) > 0: |
|
return codeformers_cache.pop() |
|
|
|
with THREAD_LOCK_CODEFORMER_NET_CREATE: |
|
codeformer_net = ARCH_REGISTRY.get("CodeFormer")( |
|
dim_embd=512, |
|
codebook_size=1024, |
|
n_head=8, |
|
n_layers=9, |
|
connect_list=["32", "64", "128", "256"], |
|
).to(device) |
|
ckpt_path = "models/CodeFormer/codeformer.pth" |
|
checkpoint = torch.load(ckpt_path)["params_ema"] |
|
codeformer_net.load_state_dict(checkpoint) |
|
codeformer_net.eval() |
|
return codeformer_net |
|
|
|
|
|
|
|
def release_codeformer(codeformer): |
|
with THREAD_LOCK_CODEFORMER_NET: |
|
codeformers_cache.append(codeformer) |
|
|
|
|
|
|
|
|
|
|
|
face_restore_helper_cache = [] |
|
|
|
detection_model = "retinaface_resnet50" |
|
|
|
inited_face_restore_helper_nn = False |
|
|
|
import time |
|
|
|
def get_face_restore_helper(upscale): |
|
global inited_face_restore_helper_nn |
|
with THREAD_LOCK_FACE_HELPER: |
|
face_helper = FaceRestoreHelperOptimized( |
|
upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model=detection_model, |
|
save_ext="png", |
|
use_parse=True, |
|
device=device, |
|
) |
|
|
|
|
|
if inited_face_restore_helper_nn: |
|
while len(face_restore_helper_cache) == 0: |
|
time.sleep(0.05) |
|
face_detector, face_parse = face_restore_helper_cache.pop() |
|
face_helper.face_detector = face_detector |
|
face_helper.face_parse = face_parse |
|
return face_helper |
|
else: |
|
inited_face_restore_helper_nn = True |
|
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) |
|
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) |
|
return face_helper |
|
|
|
def get_face_restore_helper2(upscale): |
|
face_helper = FaceRestoreHelperOptimized( |
|
upscale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model=detection_model, |
|
save_ext="png", |
|
use_parse=True, |
|
device=device, |
|
) |
|
|
|
|
|
if len(face_restore_helper_cache) > 0: |
|
with THREAD_LOCK_FACE_HELPER: |
|
if len(face_restore_helper_cache) > 0: |
|
face_detector, face_parse = face_restore_helper_cache.pop() |
|
face_helper.face_detector = face_detector |
|
face_helper.face_parse = face_parse |
|
return face_helper |
|
|
|
with THREAD_LOCK_FACE_HELPER_CREATE: |
|
face_helper.face_detector = init_detection_model(detection_model, half=False, device=face_helper.device) |
|
face_helper.face_parse = init_parsing_model(model_name="parsenet", device=face_helper.device) |
|
return face_helper |
|
|
|
def release_face_restore_helper(face_helper): |
|
|
|
|
|
face_restore_helper_cache.append((face_helper.face_detector, face_helper.face_parse)) |
|
|
|
|
|
def inference_app(image, background_enhance, face_upsample, upscale, codeformer_fidelity, skip_if_no_face = False): |
|
|
|
has_aligned = False |
|
only_center_face = False |
|
draw_box = False |
|
|
|
|
|
if isinstance(image, str): |
|
img = cv2.imread(str(image), cv2.IMREAD_COLOR) |
|
else: |
|
img = image |
|
|
|
|
|
upscale = int(upscale) |
|
if upscale > 4: |
|
upscale = 4 |
|
if upscale > 2 and max(img.shape[:2]) > 1000: |
|
upscale = 2 |
|
if max(img.shape[:2]) > 1500: |
|
upscale = 1 |
|
background_enhance = False |
|
|
|
|
|
face_helper = get_face_restore_helper(upscale) |
|
|
|
bg_upsampler = upsampler if background_enhance else None |
|
face_upsampler = upsampler if face_upsample else None |
|
|
|
if has_aligned: |
|
|
|
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) |
|
face_helper.is_gray = is_gray(img, threshold=5) |
|
if face_helper.is_gray: |
|
print("\tgrayscale input: True") |
|
face_helper.cropped_faces = [img] |
|
else: |
|
with THREAD_LOCK_FACE_HELPER_PROCERSSING: |
|
face_helper.read_image(img) |
|
|
|
|
|
num_det_faces = face_helper.get_face_landmarks_5( |
|
only_center_face=only_center_face, resize=640, eye_dist_threshold=5 |
|
) |
|
|
|
|
|
if num_det_faces == 0 and skip_if_no_face: |
|
release_face_restore_helper(face_helper) |
|
return img |
|
|
|
|
|
face_helper.align_warp_face() |
|
|
|
|
|
|
|
|
|
for idx, cropped_face in enumerate(face_helper.cropped_faces): |
|
|
|
cropped_face_t = img2tensor(cropped_face / 255.0, bgr2rgb=True, float32=True) |
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) |
|
|
|
codeformer_net = get_codeformer() |
|
try: |
|
with torch.no_grad(): |
|
output = codeformer_net(cropped_face_t, w=codeformer_fidelity, adain=True)[0] |
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) |
|
del output |
|
except RuntimeError as error: |
|
print(f"Failed inference for CodeFormer: {error}") |
|
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) |
|
release_codeformer(codeformer_net) |
|
|
|
restored_face = restored_face.astype("uint8") |
|
face_helper.add_restored_face(restored_face) |
|
|
|
|
|
if not has_aligned: |
|
|
|
if bg_upsampler is not None: |
|
with THREAD_LOCK_BGUPSAMPLER: |
|
|
|
bg_img = bg_upsampler.enhance(img, outscale=upscale)[0] |
|
else: |
|
bg_img = None |
|
face_helper.get_inverse_affine(None) |
|
|
|
if face_upsample and face_upsampler is not None: |
|
restored_img = face_helper.paste_faces_to_input_image( |
|
upsample_img=bg_img, |
|
draw_box=draw_box, |
|
face_upsampler=face_upsampler, |
|
) |
|
else: |
|
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=draw_box) |
|
|
|
if image.shape != restored_img.shape: |
|
h, w, _ = image.shape |
|
restored_img = cv2.resize(restored_img, (w, h), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
release_face_restore_helper(face_helper) |
|
|
|
if isinstance(image, str): |
|
save_path = f"output/out.png" |
|
imwrite(restored_img, str(save_path)) |
|
return save_path |
|
else: |
|
return restored_img |
|
|