face-swap / plugins /codeformer_face_helper_cv2.py
pknez's picture
Upload folder using huggingface_hub
3362754
raw
history blame
3.84 kB
from codeformer.facelib.utils.face_restoration_helper import FaceRestoreHelper
import numpy as np
from codeformer.basicsr.utils.misc import get_device
class FaceRestoreHelperOptimized(FaceRestoreHelper):
def __init__(
self,
upscale_factor,
face_size=512,
crop_ratio=(1, 1),
det_model="retinaface_resnet50",
save_ext="png",
template_3points=False,
pad_blur=False,
use_parse=False,
device=None,
):
self.template_3points = template_3points # improve robustness
self.upscale_factor = int(upscale_factor)
# the cropped face ratio based on the square face
self.crop_ratio = crop_ratio # (h, w)
assert self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1, "crop ration only supports >=1"
self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
self.det_model = det_model
if self.det_model == "dlib":
# standard 5 landmarks for FFHQ faces with 1024 x 1024
self.face_template = np.array(
[
[686.77227723, 488.62376238],
[586.77227723, 493.59405941],
[337.91089109, 488.38613861],
[437.95049505, 493.51485149],
[513.58415842, 678.5049505],
]
)
self.face_template = self.face_template / (1024 // face_size)
elif self.template_3points:
self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
else:
# standard 5 landmarks for FFHQ faces with 512 x 512
# facexlib
self.face_template = np.array(
[
[192.98138, 239.94708],
[318.90277, 240.1936],
[256.63416, 314.01935],
[201.26117, 371.41043],
[313.08905, 371.15118],
]
)
# dlib: left_eye: 36:41 right_eye: 42:47 nose: 30,32,33,34 left mouth corner: 48 right mouth corner: 54
# self.face_template = np.array([[193.65928, 242.98541], [318.32558, 243.06108], [255.67984, 328.82894],
# [198.22603, 372.82502], [313.91018, 372.75659]])
self.face_template = self.face_template * (face_size / 512.0)
if self.crop_ratio[0] > 1:
self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
if self.crop_ratio[1] > 1:
self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
self.save_ext = save_ext
self.pad_blur = pad_blur
if self.pad_blur is True:
self.template_3points = False
self.all_landmarks_5 = []
self.det_faces = []
self.affine_matrices = []
self.inverse_affine_matrices = []
self.cropped_faces = []
self.restored_faces = []
self.pad_input_imgs = []
if device is None:
# self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.device = get_device()
else:
self.device = device
# init face detection model
# if self.det_model == "dlib":
# self.face_detector, self.shape_predictor_5 = self.init_dlib(
# dlib_model_url["face_detector"], dlib_model_url["shape_predictor_5"]
# )
# else:
# self.face_detector = init_detection_model(det_model, half=False, device=self.device)
# init face parsing model
self.use_parse = use_parse
#self.face_parse = init_parsing_model(model_name="parsenet", device=self.device)
# MUST set face_detector and face_parse!!!