|
import threading |
|
from typing import Any |
|
import insightface |
|
|
|
import roop.globals |
|
from roop.typing import Frame |
|
import cv2 |
|
from PIL import Image |
|
from roop.capturer import get_video_frame |
|
|
|
FACE_ANALYSER = None |
|
THREAD_LOCK = threading.Lock() |
|
|
|
|
|
def get_face_analyser() -> Any: |
|
global FACE_ANALYSER |
|
|
|
with THREAD_LOCK: |
|
if FACE_ANALYSER is None: |
|
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=roop.globals.execution_providers) |
|
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640)) |
|
return FACE_ANALYSER |
|
|
|
|
|
def get_first_face(frame: Frame) -> Any: |
|
faces = get_face_analyser().get(frame) |
|
try: |
|
return min(faces, key=lambda x: x.bbox[0]) |
|
|
|
except ValueError: |
|
return None |
|
|
|
|
|
def get_all_faces(frame: Frame) -> Any: |
|
try: |
|
faces = get_face_analyser().get(frame) |
|
return sorted(faces, key = lambda x : x.bbox[0]) |
|
except IndexError: |
|
return None |
|
|
|
def extract_face_images(source_filename, video_info): |
|
face_data = [] |
|
source_image = None |
|
|
|
if video_info[0]: |
|
frame = get_video_frame(source_filename, video_info[1]) |
|
if frame is not None: |
|
source_image = frame |
|
else: |
|
return face_data |
|
else: |
|
source_image = cv2.imread(source_filename) |
|
|
|
|
|
faces = get_all_faces(source_image) |
|
|
|
i = 0 |
|
for face in faces: |
|
(startX, startY, endX, endY) = face['bbox'].astype("int") |
|
face_temp = source_image[startY:endY, startX:endX] |
|
if face_temp.size < 1: |
|
continue |
|
i += 1 |
|
face_data.append([face, face_temp]) |
|
return face_data |