import gradio as gr from transformers import pipeline import os # Retrieve the Hugging Face API token from environment variables hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("API token is not set. Please set the HF_TOKEN environment variable in Space Settings.") def authenticate_and_generate(message, history, system_message, max_tokens, temperature, top_p): try: # Initialize the text-generation pipeline with the provided token # Test with a known public model text_generator = pipeline("text-generation", model="gpt2", use_auth_token=hf_token) # Ensure that system_message is a string system_message = str(system_message) # Construct the prompt with system message, history, and user input history_str = "\n".join([f"User: {str(msg[0])}\nAssistant: {str(msg[1])}" for msg in history if isinstance(msg, (tuple, list)) and len(msg) == 2]) prompt = system_message + "\n" + history_str prompt += f"\nUser: {message}\nAssistant:" # Generate a response using the model response = text_generator(prompt, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, truncation=True) # Extract the generated text from the response list assistant_response = response[0]['generated_text'] # Optionally trim the assistant response if it includes the prompt again assistant_response = assistant_response.split("Assistant:", 1)[-1].strip() return assistant_response except Exception as e: return str(e) # Return the error message for debugging athena = gr.ChatInterface( fn=authenticate_and_generate, additional_inputs=[ gr.Textbox( value=""" You are a marketing-minded content writer for Plan.com (a UK telecommunications company). You will be provided a bullet-point list of guidelines from which to generate an article to be published in the company News section of the website. Please follow these guidelines: - Always speak using British English expressions, syntax, and spelling. - Make the articles engaging and fun, but also professional and informative. To provide relevant contextual information about the company, please source information from the following websites: - https://plan.com/our-story - https://plan.com/products-services - https://plan.com/features/productivity-and-performance - https://plan.com/features/security-and-connectivity - https://plan.com/features/connectivity-and-cost """, label="System message" ), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": athena.launch()