import os import streamlit as st import torch from diffusers.utils import load_image try: from diffusers import CogVideoXImageToVideoPipeline pipeline_available = True except ImportError: pipeline_available = False st.error("Failed to import `CogVideoXImageToVideoPipeline`. Please run `pip install diffusers`.") st.title("Image to Video with Hugging Face") st.write("Upload an image and provide a prompt to generate a video.") if pipeline_available: uploaded_file = st.file_uploader("Upload an image (JPG or PNG):", type=["jpg", "jpeg", "png"]) prompt = st.text_input("Enter your prompt:", "A little girl is riding a bicycle at high speed. Focused, detailed, realistic.") if uploaded_file and prompt: try: # Save uploaded file import uuid file_name = f"{uuid.uuid4()}_uploaded_image.jpg" with open(file_name, "wb") as f: f.write(uploaded_file.read()) st.write("Uploaded image saved successfully.") # Load the image image = load_image(file_name) # Initialize pipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipe = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16, cache_dir="./huggingface_cache", ) pipe.enable_sequential_cpu_offload() pipe.vae.enable_tiling() pipe.vae.enable_slicing() # Generate video with st.spinner("Generating video... This may take a while."): try: # Attempt to generate the video video_frames = pipe( prompt=prompt, image=image, num_videos_per_prompt=1, num_inference_steps=50, num_frames=81, guidance_scale=6, generator=torch.Generator(device=device).manual_seed(42), ).frames[0] except Exception as e: # Handle errors gracefully st.error(f"An error occurred during video generation: {e}")