import streamlit as st from io import BytesIO from urllib.request import urlopen import librosa from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor import pyttsx3 # For text-to-speech # Load Qwen2Audio model and processor processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto") tts_engine = pyttsx3.init() # Streamlit app UI st.title("Text-to-Audio App") st.text("This app generates audio from text input using Hugging Face models.") # User input text_input = st.text_area("Enter some text for the model:") if st.button("Generate Audio"): conversation = [{"role": "user", "content": text_input}] # Preprocess conversation text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) inputs = processor(text=text, return_tensors="pt", padding=True) inputs.input_ids = inputs.input_ids.to("cuda") # Generate response generate_ids = model.generate(**inputs, max_length=256) generate_ids = generate_ids[:, inputs.input_ids.size(1):] # Decode response response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] st.text(f"Model Response: {response}") # Convert response to speech tts_engine.say(response) tts_engine.runAndWait() st.success("Audio generated and played!")