Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import numpy as np | |
import gradio as gr | |
from huggingface_hub import Repository, HfApi | |
from transformers import AutoConfig, AutoModel | |
import json | |
from apscheduler.schedulers.background import BackgroundScheduler | |
import pandas as pd | |
import datetime | |
import glob | |
from dataclasses import dataclass | |
from typing import List, Tuple, Dict | |
# clone / pull the lmeh eval data | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations" | |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"] | |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"] | |
BENCH_TO_NAME = { | |
"arc_challenge":"ARC (25-shot) ⬆️", | |
"hellaswag":"HellaSwag (10-shot) ⬆️", | |
"hendrycks":"MMLU (5-shot) ⬆️", | |
"truthfulqa_mc":"TruthQA (0-shot) ⬆️", | |
} | |
def make_clickable_model(model_name): | |
# remove user from model name | |
#model_name_show = ' '.join(model_name.split('/')[1:]) | |
link = "https://huggingface.co/" + model_name | |
return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def get_n_params(base_model): | |
return "unknown" | |
# WARNING: High memory usage | |
# Retrieve the number of parameters from the configuration | |
try: | |
config = AutoConfig.from_pretrained(base_model, use_auth_token=True, low_cpu_mem_usage=True) | |
n_params = AutoModel.from_config(config).num_parameters() | |
except Exception as e: | |
print(f"Error:{e} The number of parameters is not available in the config for the model '{base_model}'.") | |
return "unknown" | |
return str(n_params) | |
class EvalResult: | |
eval_name : str | |
org : str | |
model : str | |
is_8bit : bool | |
results : dict | |
def to_dict(self): | |
if self.org is not None: | |
base_model =f"{self.org}/{self.model}" | |
else: | |
base_model =f"{self.model}" | |
data_dict = {} | |
data_dict["eval_name"] = self.eval_name | |
data_dict["base_model"] = make_clickable_model(base_model) | |
data_dict["total ⬆️"] = round(sum([v for k,v in self.results.items()]),3) | |
data_dict["# params"] = get_n_params(base_model) | |
for benchmark in BENCHMARKS: | |
if not benchmark in self.results.keys(): | |
self.results[benchmark] = None | |
for k,v in BENCH_TO_NAME.items(): | |
data_dict[v] = self.results[k] | |
return data_dict | |
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]: | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
path_split = json_filepath.split("/") | |
org = None | |
model = path_split[-3] | |
is_8bit = path_split[-2] == "8bit" | |
if len(path_split)== 5: | |
# handles gpt2 type models that don't have an org | |
result_key = f"{path_split[-3]}_{path_split[-2]}" | |
else: | |
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}" | |
org = path_split[-4] | |
eval_result = None | |
for benchmark, metric in zip(BENCHMARKS, METRICS): | |
if benchmark in json_filepath: | |
accs = np.array([v[metric] for k, v in data["results"].items()]) | |
mean_acc = round(np.mean(accs),3) | |
eval_result = EvalResult(result_key, org, model, is_8bit, {benchmark:mean_acc}) | |
return result_key, eval_result | |
def get_eval_results() -> List[EvalResult]: | |
json_filepaths = glob.glob("evals/eval_results/**/*.json", recursive=True) | |
eval_results = {} | |
for json_filepath in json_filepaths: | |
result_key, eval_result = parse_eval_result(json_filepath) | |
if result_key in eval_results.keys(): | |
eval_results[result_key].results.update(eval_result.results) | |
else: | |
eval_results[result_key] = eval_result | |
eval_results = [v for k,v in eval_results.items()] | |
return eval_results | |
def get_eval_results_dicts() -> List[Dict]: | |
eval_results = get_eval_results() | |
return [e.to_dict() for e in eval_results] | |
eval_results_dict = get_eval_results_dicts() | |
print(eval_results_dict) |