File size: 10,575 Bytes
67a2b13
 
 
 
 
 
 
 
 
 
 
 
 
ddb3f9b
bb04844
ddb3f9b
67a2b13
 
 
48e06d4
67a2b13
2b81d2f
67a2b13
 
bb04844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a2b13
 
 
 
 
 
 
 
 
 
 
 
 
22e4917
 
 
 
67a2b13
 
 
 
2c67aa0
67a2b13
 
2c67aa0
67a2b13
 
 
 
 
 
2c67aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb04844
 
 
 
 
 
2c67aa0
22e4917
2c67aa0
d1f912d
 
2c67aa0
 
 
 
 
 
 
 
67a2b13
2c67aa0
d1f912d
bb04844
 
2c67aa0
 
 
 
 
bb04844
2c67aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b81d2f
2c67aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67a2b13
 
 
ddb3f9b
 
1484edd
ddb3f9b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import html
import time

from extend import spacy_component  # this is needed to register the spacy component

import spacy
import streamlit as st
from annotated_text import annotation
from classy.utils.streamlit import get_md_200_random_color_generator


def main(
    model_checkpoint_path: str,
    inventory_path: str,
    cuda_device: int,
):
    # setup examples
    examples = [
        "Japan began the defence of their title with a lucky 2-1 win against Syria in a championship match on Friday.",
        "The project was coded in Java.",
        "Rome is in Italy",
    ]

    # define load_resources

    @st.cache(allow_output_mutation=True)
    def load_resources(inventory_path):

        # load nlp
        nlp = spacy.load("en_core_web_sm")
        extend_config = dict(
            checkpoint_path=model_checkpoint_path,
            mentions_inventory_path=inventory_path,
            device=cuda_device,
            tokens_per_batch=10_000,
        )
        nlp.add_pipe("extend", after="ner", config=extend_config)

        # mock call to load resources
        nlp(examples[0])

        # return
        return nlp

    # preload default resources
    load_resources(inventory_path)

    # css rules
    st.write(
        """
            <style type="text/css">
                a {
                    text-decoration: none !important;
                }
            </style>
        """,
        unsafe_allow_html=True,
    )

    # setup header
    st.markdown(
        "<h1 style='text-align: center;'>ExtEnD: Extractive Entity Disambiguation</h1>",
        unsafe_allow_html=True,
    )
    st.write(
        """
            <div align="center">
                <a href="https://sunglasses-ai.github.io/classy/">
                    <img alt="Python" style="height: 3em; margin: 0em 1em 2em 1em;" src="">
                </a>
                <a href="https://spacy.io/" tyle="text-decoration: none">
                    <img alt="spaCy" style="height: 3em; margin: 0em 1em 2em 1em;" src="">
                </a>
            </div> 
        """,
        unsafe_allow_html=True,
    )

    # how it works
    def hiw():
        st.markdown("""
                ## How it works
    
                ExtEnD frames Entity Disambiguation as a text extraction problem:
            """)
        st.image(
            "data/repo-assets/extend_formulation.png", caption="ExtEnD Formulation"
        )
        st.markdown(
            """            
            Given the sentence *After a long fight Superman saved Metropolis*, where *Superman* is the mention
            to disambiguate, ExtEnD first concatenates the descriptions of all the possible candidates of *Superman* in the
            inventory and then selects the span whose description best suits the mention in its context.
            
            To use ExtEnD for full end2end entity linking, as we do in *Demo*, we just need to leverage a mention 
            identifier. Here [we use spaCy](https://github.com/SapienzaNLP/extend#spacy) (more specifically, its NER) and run ExtEnD on each named 
            entity spaCy identifies (if the corresponding mention is contained in the inventory).

            ##### Links:
             * [Full Paper](https://www.researchgate.net/publication/359392427_ExtEnD_Extractive_Entity_Disambiguation)
             * [GitHub](https://github.com/SapienzaNLP/extend)
        """
        )

    # demo
    def demo():
        st.markdown("## Demo")

        # read input
        placeholder = st.selectbox(
            "Examples",
            options=examples,
            index=0,
        )
        input_text = st.text_area("Input text to entity-disambiguate", placeholder)

        # button
        should_disambiguate = st.button("Disambiguate", key="classify")

        # load model and color generator
        nlp = load_resources(inventory_path)
        color_generator = get_md_200_random_color_generator()

        if should_disambiguate:

            # tag sentence
            time_start = time.perf_counter()
            doc = nlp(input_text)
            time_end = time.perf_counter()

            # extract entities
            entities = {}
            for ent in doc.ents:
                if ent._.disambiguated_entity is not None:
                    entities[ent.start_char] = (
                        ent.start_char,
                        ent.end_char,
                        ent.text,
                        ent._.disambiguated_entity,
                    )

            # create annotated html components

            annotated_html_components = []

            assert all(any(t.idx == _s for t in doc) for _s in entities)
            it = iter(list(doc))
            while True:
                try:
                    t = next(it)
                except StopIteration:
                    break
                if t.idx in entities:
                    _start, _end, _text, _entity = entities[t.idx]
                    while t.idx + len(t) != _end:
                        t = next(it)
                    annotated_html_components.append(
                        f"<a href=\"https://en.wikipedia.org/wiki/{_entity.lower().replace(' ', '_').capitalize()}\">{annotation(*(_text, _entity, color_generator()))}</a>"
                    )
                else:
                    annotated_html_components.append(str(html.escape(t.text)))

            st.markdown(
                "\n".join(
                    [
                        "<div>",
                        *annotated_html_components,
                        "<p></p>"
                        f'<div style="text-align: right"><p style="color: gray">Time: {(time_end - time_start):.2f}s</p></div>'
                        "</div>",
                    ]
                ),
                unsafe_allow_html=True,
            )

    demo()
    hiw()


if __name__ == "__main__":
    main(
        "experiments/extend-longformer-large/2021-10-22/09-11-39/checkpoints/best.ckpt",
        "data/inventories/le-and-titov-2018-inventory.min-count-2.sqlite3",
        cuda_device=-1,
    )