import gradio as gr import random import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from question_generation import question_generation_sampling device = torch.device("cuda" if torch.cuda.is_available() else "cpu") g1_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer") g1_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-squad-QuestionAnswer") g2_tokenizer = AutoTokenizer.from_pretrained("potsawee/t5-large-generation-race-Distractor") g2_model = AutoModelForSeq2SeqLM.from_pretrained("potsawee/t5-large-generation-race-Distractor") g1_model.eval() g2_model.eval() g1_model.to(device) g2_model.to(device) def generate_multiple_choice_question( context ): num_questions = 1 question_item = question_generation_sampling( g1_model, g1_tokenizer, g2_model, g2_tokenizer, context, num_questions, device )[0] question = question_item['question'] options = question_item['options'] options[0] = f"{options[0]} [ANSWER]" random.shuffle(options) output_string = f"Question: {question}\n[A] {options[0]}\n[B] {options[1]}\n[C] {options[2]}\n[D] {options[3]}" return output_string demo = gr.Interface( fn=generate_multiple_choice_question, inputs=gr.Textbox(lines=8, placeholder="Context Here..."), outputs=gr.Textbox(lines=5, placeholder="Question: \n[A] \n[B] \n[C] \n[D] "), title="Multiple-choice Question Generator", description="Provide some context (e.g. news article or any passage) in the context box and click **Submit**. The models currently support English only. This demo is a part of MQAG - https://github.com/potsawee/mqag0.", allow_flagging='never' ) demo.launch()