Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload 3 files
Browse files- PE_main.py +19 -2
- fhe_utils.py +223 -0
- train_FHE.py +171 -0
PE_main.py
CHANGED
@@ -76,9 +76,9 @@ def get_version_info(pe):
|
|
76 |
return res
|
77 |
|
78 |
#extract the info for a given file using pefile
|
79 |
-
def extract_infos(
|
80 |
res = {}
|
81 |
-
pe = pefile.PE(
|
82 |
res['Machine'] = pe.FILE_HEADER.Machine
|
83 |
res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
|
84 |
res['Characteristics'] = pe.FILE_HEADER.Characteristics
|
@@ -182,3 +182,20 @@ def extract_infos(file):
|
|
182 |
res['VersionInformationSize'] = 0
|
183 |
return res
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return res
|
77 |
|
78 |
#extract the info for a given file using pefile
|
79 |
+
def extract_infos(fpath):
|
80 |
res = {}
|
81 |
+
pe = pefile.PE(fpath)
|
82 |
res['Machine'] = pe.FILE_HEADER.Machine
|
83 |
res['SizeOfOptionalHeader'] = pe.FILE_HEADER.SizeOfOptionalHeader
|
84 |
res['Characteristics'] = pe.FILE_HEADER.Characteristics
|
|
|
182 |
res['VersionInformationSize'] = 0
|
183 |
return res
|
184 |
|
185 |
+
|
186 |
+
if __name__ == '__main__':
|
187 |
+
|
188 |
+
#Loading the classifier.pkl and features.pkl
|
189 |
+
clf = joblib.load('Classifier/classifier.pkl')
|
190 |
+
features = pickle.loads(open(os.path.join('Classifier/features.pkl'),'rb').read())
|
191 |
+
|
192 |
+
#extracting features from the PE file mentioned in the argument
|
193 |
+
data = extract_infos(sys.argv[1])
|
194 |
+
|
195 |
+
#matching it with the features saved in features.pkl
|
196 |
+
pe_features = list(map(lambda x:data[x], features))
|
197 |
+
print("Features used for classification: ", pe_features)
|
198 |
+
|
199 |
+
#prediciting if the PE is malicious or not based on the extracted features
|
200 |
+
res= clf.predict([pe_features])[0]
|
201 |
+
print ('The file %s is %s' % (os.path.basename(sys.argv[1]),['malicious', 'legitimate'][res]))
|
fhe_utils.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import pdb
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
import json
|
7 |
+
import shutil
|
8 |
+
import time
|
9 |
+
from scipy.stats import pearsonr
|
10 |
+
from sklearn.model_selection import KFold
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import xgboost as xgb
|
13 |
+
from tqdm import tqdm
|
14 |
+
random.seed(42)
|
15 |
+
|
16 |
+
|
17 |
+
import gzip
|
18 |
+
import numpy as np
|
19 |
+
import pandas as pd
|
20 |
+
import requests
|
21 |
+
from io import BytesIO
|
22 |
+
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
|
23 |
+
|
24 |
+
from concrete.ml.sklearn import DecisionTreeClassifier as DecisionTreeClassifierZAMA
|
25 |
+
|
26 |
+
from concrete.ml.sklearn import LinearSVC as LinearSVCZAMA
|
27 |
+
|
28 |
+
from sklearn.svm import LinearSVR as LinearSVR
|
29 |
+
import time
|
30 |
+
from shutil import copyfile
|
31 |
+
from tempfile import TemporaryDirectory
|
32 |
+
import pickle
|
33 |
+
import os
|
34 |
+
import time
|
35 |
+
import numpy as np
|
36 |
+
|
37 |
+
|
38 |
+
def convert_numpy(obj):
|
39 |
+
if isinstance(obj, np.integer):
|
40 |
+
return int(obj)
|
41 |
+
elif isinstance(obj, np.floating):
|
42 |
+
return float(obj)
|
43 |
+
elif isinstance(obj, np.ndarray):
|
44 |
+
return obj.tolist()
|
45 |
+
else:
|
46 |
+
return obj
|
47 |
+
|
48 |
+
|
49 |
+
class OnDiskNetwork:
|
50 |
+
"""Simulate a network on disk."""
|
51 |
+
|
52 |
+
def __init__(self):
|
53 |
+
# Create 3 temporary folder for server, client and dev with tempfile
|
54 |
+
self.server_dir = TemporaryDirectory()
|
55 |
+
self.client_dir = TemporaryDirectory()
|
56 |
+
self.dev_dir = TemporaryDirectory()
|
57 |
+
|
58 |
+
def client_send_evaluation_key_to_server(self, serialized_evaluation_keys):
|
59 |
+
"""Send the public key to the server."""
|
60 |
+
with open(self.server_dir.name + "/serialized_evaluation_keys.ekl", "wb") as f:
|
61 |
+
f.write(serialized_evaluation_keys)
|
62 |
+
|
63 |
+
def client_send_input_to_server_for_prediction(self, encrypted_input):
|
64 |
+
"""Send the input to the server and execute on the server in FHE."""
|
65 |
+
with open(self.server_dir.name + "/serialized_evaluation_keys.ekl", "rb") as f:
|
66 |
+
serialized_evaluation_keys = f.read()
|
67 |
+
time_begin = time.time()
|
68 |
+
encrypted_prediction = FHEModelServer(self.server_dir.name).run(
|
69 |
+
encrypted_input, serialized_evaluation_keys
|
70 |
+
)
|
71 |
+
time_end = time.time()
|
72 |
+
with open(self.server_dir.name + "/encrypted_prediction.enc", "wb") as f:
|
73 |
+
f.write(encrypted_prediction)
|
74 |
+
return time_end - time_begin
|
75 |
+
|
76 |
+
def dev_send_model_to_server(self):
|
77 |
+
"""Send the model to the server."""
|
78 |
+
copyfile(
|
79 |
+
self.dev_dir.name + "/server.zip", self.server_dir.name + "/server.zip"
|
80 |
+
)
|
81 |
+
|
82 |
+
def server_send_encrypted_prediction_to_client(self):
|
83 |
+
"""Send the encrypted prediction to the client."""
|
84 |
+
with open(self.server_dir.name + "/encrypted_prediction.enc", "rb") as f:
|
85 |
+
encrypted_prediction = f.read()
|
86 |
+
return encrypted_prediction
|
87 |
+
|
88 |
+
def dev_send_clientspecs_and_modelspecs_to_client(self):
|
89 |
+
"""Send the clientspecs and evaluation key to the client."""
|
90 |
+
copyfile(
|
91 |
+
self.dev_dir.name + "/client.zip", self.client_dir.name + "/client.zip"
|
92 |
+
)
|
93 |
+
|
94 |
+
def cleanup(self):
|
95 |
+
"""Clean up the temporary folders."""
|
96 |
+
self.server_dir.cleanup()
|
97 |
+
self.client_dir.cleanup()
|
98 |
+
self.dev_dir.cleanup()
|
99 |
+
|
100 |
+
|
101 |
+
def generate_fingerprint(smiles, radius=2, bits=512):
|
102 |
+
mol = Chem.MolFromSmiles(smiles)
|
103 |
+
if mol is None:
|
104 |
+
return np.nan
|
105 |
+
|
106 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=radius, nBits=bits)
|
107 |
+
|
108 |
+
return np.array(fp)
|
109 |
+
|
110 |
+
|
111 |
+
def train_xgb_regressor(X_train, y_train, param_grid=None, verbose=10):
|
112 |
+
if param_grid is None:
|
113 |
+
param_grid = {
|
114 |
+
"max_depth": [3, 6],
|
115 |
+
"learning_rate": [0.01, 0.1, 0.2],
|
116 |
+
"n_estimators": [20],
|
117 |
+
"colsample_bytree": [0.3, 0.7],
|
118 |
+
}
|
119 |
+
|
120 |
+
xgb_regressor = xgb.XGBRegressor(objective="reg:squarederror")
|
121 |
+
|
122 |
+
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
|
123 |
+
grid_search = GridSearchCV(
|
124 |
+
estimator=xgb_regressor,
|
125 |
+
param_grid=param_grid,
|
126 |
+
cv=kfold,
|
127 |
+
verbose=verbose,
|
128 |
+
n_jobs=-1,
|
129 |
+
)
|
130 |
+
|
131 |
+
grid_search.fit(X_train, y_train)
|
132 |
+
return (
|
133 |
+
grid_search.best_params_,
|
134 |
+
grid_search.best_score_,
|
135 |
+
grid_search.best_estimator_,
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
def evaluate_model(model, X_test, y_test):
|
140 |
+
y_pred = model.predict(X_test)
|
141 |
+
pearsonr_score = pearsonr(y_test, y_pred).statistic
|
142 |
+
return pearsonr_score
|
143 |
+
|
144 |
+
|
145 |
+
def setup_network(model_dev):
|
146 |
+
network = OnDiskNetwork()
|
147 |
+
fhemodel_dev = FHEModelDev(network.dev_dir.name, model_dev)
|
148 |
+
fhemodel_dev.save(via_mlir=True)
|
149 |
+
return network, fhemodel_dev
|
150 |
+
|
151 |
+
|
152 |
+
def copy_directory(source, destination="deployment"):
|
153 |
+
try:
|
154 |
+
# Check if the source directory exists
|
155 |
+
if not os.path.exists(source):
|
156 |
+
return False, "Source directory does not exist."
|
157 |
+
|
158 |
+
# Check if the destination directory exists
|
159 |
+
if not os.path.exists(destination):
|
160 |
+
os.makedirs(destination)
|
161 |
+
|
162 |
+
# Copy each item in the source directory
|
163 |
+
for item in os.listdir(source):
|
164 |
+
s = os.path.join(source, item)
|
165 |
+
d = os.path.join(destination, item)
|
166 |
+
if os.path.isdir(s):
|
167 |
+
shutil.copytree(
|
168 |
+
s, d, dirs_exist_ok=True
|
169 |
+
) # dirs_exist_ok is available from Python 3.8
|
170 |
+
else:
|
171 |
+
shutil.copy2(s, d)
|
172 |
+
|
173 |
+
return True, None
|
174 |
+
|
175 |
+
except Exception as e:
|
176 |
+
return False, str(e)
|
177 |
+
|
178 |
+
|
179 |
+
def client_server_interaction(network, fhemodel_client, X_client):
|
180 |
+
decrypted_predictions = []
|
181 |
+
execution_time = []
|
182 |
+
for i in tqdm(range(X_client.shape[0])):
|
183 |
+
clear_input = X_client[[i], :]
|
184 |
+
encrypted_input = fhemodel_client.quantize_encrypt_serialize(clear_input)
|
185 |
+
execution_time.append(
|
186 |
+
network.client_send_input_to_server_for_prediction(encrypted_input)
|
187 |
+
)
|
188 |
+
encrypted_prediction = network.server_send_encrypted_prediction_to_client()
|
189 |
+
decrypted_prediction = fhemodel_client.deserialize_decrypt_dequantize(
|
190 |
+
encrypted_prediction
|
191 |
+
)[0]
|
192 |
+
decrypted_predictions.append(decrypted_prediction)
|
193 |
+
#pdb.set_trace()
|
194 |
+
return decrypted_predictions, execution_time
|
195 |
+
|
196 |
+
|
197 |
+
def train_zama(X_train, y_train):
|
198 |
+
|
199 |
+
model_dev = LinearSVCZAMA()
|
200 |
+
# LinearSVCZAMA()
|
201 |
+
# DecisionTreeClassifierZAMA()
|
202 |
+
|
203 |
+
print("Training Zama model...")
|
204 |
+
model_dev.fit(X_train, y_train)
|
205 |
+
print("compiling model...")
|
206 |
+
model_dev.compile(X_train)
|
207 |
+
print("done")
|
208 |
+
|
209 |
+
return model_dev
|
210 |
+
|
211 |
+
|
212 |
+
def time_prediction(model, X_sample):
|
213 |
+
time_begin = time.time()
|
214 |
+
y_pred_fhe = model.predict(X_sample, fhe="execute")
|
215 |
+
time_end = time.time()
|
216 |
+
return time_end - time_begin
|
217 |
+
|
218 |
+
|
219 |
+
def setup_client(network, key_dir):
|
220 |
+
fhemodel_client = FHEModelClient(network.client_dir.name, key_dir=key_dir)
|
221 |
+
fhemodel_client.generate_private_and_evaluation_keys()
|
222 |
+
serialized_evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
|
223 |
+
return fhemodel_client, serialized_evaluation_keys
|
train_FHE.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import numpy
|
4 |
+
import pickle
|
5 |
+
import pefile
|
6 |
+
import sklearn.ensemble as ek
|
7 |
+
from sklearn.feature_selection import SelectFromModel
|
8 |
+
import joblib
|
9 |
+
from sklearn.tree import DecisionTreeClassifier
|
10 |
+
from sklearn.metrics import confusion_matrix
|
11 |
+
from sklearn import svm
|
12 |
+
import sklearn.metrics as metrics
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
import pdb
|
15 |
+
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
dataset = pd.read_csv("data.csv", sep="|")
|
19 |
+
|
20 |
+
|
21 |
+
# Feature
|
22 |
+
X = dataset.drop(
|
23 |
+
["Name", "md5", "legitimate"], axis=1
|
24 |
+
).values # Droping this because classification model will not accept object type elements (float and int only)
|
25 |
+
# Target variable
|
26 |
+
|
27 |
+
ugly = [
|
28 |
+
"Machine",
|
29 |
+
"SizeOfOptionalHeader",
|
30 |
+
"Characteristics",
|
31 |
+
"MajorLinkerVersion",
|
32 |
+
"MinorLinkerVersion",
|
33 |
+
"SizeOfCode",
|
34 |
+
"SizeOfInitializedData",
|
35 |
+
"SizeOfUninitializedData",
|
36 |
+
"AddressOfEntryPoint",
|
37 |
+
"BaseOfCode",
|
38 |
+
"BaseOfData",
|
39 |
+
"ImageBase",
|
40 |
+
"SectionAlignment",
|
41 |
+
"FileAlignment",
|
42 |
+
"MajorOperatingSystemVersion",
|
43 |
+
"MinorOperatingSystemVersion",
|
44 |
+
"MajorImageVersion",
|
45 |
+
"MinorImageVersion",
|
46 |
+
"MajorSubsystemVersion",
|
47 |
+
"MinorSubsystemVersion",
|
48 |
+
"SizeOfImage",
|
49 |
+
"SizeOfHeaders",
|
50 |
+
"CheckSum",
|
51 |
+
"Subsystem",
|
52 |
+
"DllCharacteristics",
|
53 |
+
"SizeOfStackReserve",
|
54 |
+
"SizeOfStackCommit",
|
55 |
+
"SizeOfHeapReserve",
|
56 |
+
"SizeOfHeapCommit",
|
57 |
+
"LoaderFlags",
|
58 |
+
"NumberOfRvaAndSizes",
|
59 |
+
"SectionsNb",
|
60 |
+
"SectionsMeanEntropy",
|
61 |
+
"SectionsMinEntropy",
|
62 |
+
"SectionsMaxEntropy",
|
63 |
+
"SectionsMeanRawsize",
|
64 |
+
"SectionsMinRawsize",
|
65 |
+
#"SectionsMaxRawsize",
|
66 |
+
"SectionsMeanVirtualsize",
|
67 |
+
"SectionsMinVirtualsize",
|
68 |
+
"SectionMaxVirtualsize",
|
69 |
+
"ImportsNbDLL",
|
70 |
+
"ImportsNb",
|
71 |
+
"ImportsNbOrdinal",
|
72 |
+
"ExportNb",
|
73 |
+
"ResourcesNb",
|
74 |
+
"ResourcesMeanEntropy",
|
75 |
+
"ResourcesMinEntropy",
|
76 |
+
"ResourcesMaxEntropy",
|
77 |
+
"ResourcesMeanSize",
|
78 |
+
"ResourcesMinSize",
|
79 |
+
"ResourcesMaxSize",
|
80 |
+
"LoadConfigurationSize",
|
81 |
+
"VersionInformationSize",
|
82 |
+
]
|
83 |
+
|
84 |
+
X = dataset[ugly].values
|
85 |
+
|
86 |
+
y = dataset["legitimate"].values
|
87 |
+
|
88 |
+
|
89 |
+
extratrees = ek.ExtraTreesClassifier().fit(X[:1000], y[:1000])
|
90 |
+
model = SelectFromModel(extratrees, prefit=True)
|
91 |
+
X_new = model.transform(X)
|
92 |
+
nbfeatures = X_new.shape[1]
|
93 |
+
|
94 |
+
|
95 |
+
# splitting the data (70% - training and 30% - testing)
|
96 |
+
|
97 |
+
|
98 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
99 |
+
X_new, y, test_size=0.29, stratify=y
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
features = []
|
104 |
+
index = numpy.argsort(extratrees.feature_importances_)[::-1][:nbfeatures]
|
105 |
+
|
106 |
+
|
107 |
+
for f in range(nbfeatures):
|
108 |
+
print(
|
109 |
+
"%d. feature %s (%f)"
|
110 |
+
% (
|
111 |
+
f + 1,
|
112 |
+
dataset.columns[2 + index[f]],
|
113 |
+
extratrees.feature_importances_[index[f]],
|
114 |
+
)
|
115 |
+
)
|
116 |
+
features.append(dataset.columns[2 + f])
|
117 |
+
|
118 |
+
|
119 |
+
model = {
|
120 |
+
"DecisionTree": DecisionTreeClassifier(max_depth=10),
|
121 |
+
"RandomForest": ek.RandomForestClassifier(n_estimators=50),
|
122 |
+
}
|
123 |
+
|
124 |
+
|
125 |
+
results = {}
|
126 |
+
for algo in model:
|
127 |
+
clf = model[algo]
|
128 |
+
clf.fit(X_train, y_train)
|
129 |
+
score = clf.score(X_test, y_test)
|
130 |
+
print("%s : %s " % (algo, score))
|
131 |
+
results[algo] = score
|
132 |
+
|
133 |
+
|
134 |
+
winner = max(results, key=results.get) # Selecting the classifier with good result
|
135 |
+
print("Using", winner, "for classification, with", len(features), "features.")
|
136 |
+
|
137 |
+
|
138 |
+
joblib.dump(model[winner], "classifier.pkl")
|
139 |
+
open("features.pkl", "wb").write(pickle.dumps(features))
|
140 |
+
|
141 |
+
|
142 |
+
from fhe_utils import (
|
143 |
+
client_server_interaction, train_zama,
|
144 |
+
setup_network,
|
145 |
+
copy_directory,
|
146 |
+
setup_client,
|
147 |
+
)
|
148 |
+
|
149 |
+
model_dev_fhe = train_zama(X_train, y_train)
|
150 |
+
#pdb.set_trace()
|
151 |
+
network, _ = setup_network(model_dev_fhe)
|
152 |
+
copied, error_message = copy_directory(network.dev_dir.name, destination="fhe_model")
|
153 |
+
|
154 |
+
|
155 |
+
if not copied:
|
156 |
+
print(f"Error copying directory: {error_message}")
|
157 |
+
|
158 |
+
|
159 |
+
network.dev_send_model_to_server()
|
160 |
+
network.dev_send_clientspecs_and_modelspecs_to_client()
|
161 |
+
|
162 |
+
fhemodel_client, serialized_evaluation_keys = setup_client(
|
163 |
+
network, network.client_dir.name
|
164 |
+
)
|
165 |
+
print(f"Evaluation keys size: {len(serialized_evaluation_keys)} B")
|
166 |
+
|
167 |
+
network.client_send_evaluation_key_to_server(serialized_evaluation_keys)
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
decrypted_predictions, execution_time = client_server_interaction(network, fhemodel_client, X_test[:100])
|