Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload 2 files
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ REPO_DIR = Path(__file__).parent
|
|
24 |
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
25 |
|
26 |
|
27 |
-
#subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
|
28 |
|
29 |
# if not exists, create a directory for the FHE keys called .fhe_keys
|
30 |
if not os.path.exists(".fhe_keys"):
|
@@ -190,30 +190,25 @@ def process_pipeline(test_file):
|
|
190 |
return eval_key, encodings, encrypted_quantized_encoding, encrypted_prediction
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
-
|
194 |
with gr.Blocks() as demo:
|
195 |
print("Starting the FHE Model")
|
196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
-
|
199 |
-
|
200 |
demo.launch() #share=True)
|
201 |
-
|
202 |
-
|
203 |
-
"""
|
204 |
-
app = gr.Interface(
|
205 |
-
|
206 |
-
fn=process_pipeline,
|
207 |
-
inputs=[
|
208 |
-
gr.File(label="Test File"),
|
209 |
-
],
|
210 |
-
outputs=[
|
211 |
-
gr.Textbox(label="Evaluation Key"),
|
212 |
-
gr.Textbox(label="Encodings"),
|
213 |
-
gr.Textbox(label="Encrypted Quantized Encoding"),
|
214 |
-
gr.Textbox(label="Encrypted Prediction"),
|
215 |
-
],
|
216 |
-
title="FHE Model",
|
217 |
-
description="This is a FHE Model",
|
218 |
-
)
|
219 |
-
"""
|
|
|
24 |
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
25 |
|
26 |
|
27 |
+
# subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
|
28 |
|
29 |
# if not exists, create a directory for the FHE keys called .fhe_keys
|
30 |
if not os.path.exists(".fhe_keys"):
|
|
|
190 |
return eval_key, encodings, encrypted_quantized_encoding, encrypted_prediction
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
+
|
194 |
with gr.Blocks() as demo:
|
195 |
print("Starting the FHE Model")
|
196 |
|
197 |
+
fn = (process_pipeline,)
|
198 |
+
inputs = (
|
199 |
+
[
|
200 |
+
gr.File(label="Test File"),
|
201 |
+
],
|
202 |
+
)
|
203 |
+
outputs = (
|
204 |
+
[
|
205 |
+
gr.Textbox(label="Evaluation Key"),
|
206 |
+
gr.Textbox(label="Encodings"),
|
207 |
+
gr.Textbox(label="Encrypted Quantized Encoding"),
|
208 |
+
gr.Textbox(label="Encrypted Prediction"),
|
209 |
+
],
|
210 |
+
)
|
211 |
+
title = ("FHE Model",)
|
212 |
+
description = ("This is a FHE Model",)
|
213 |
|
|
|
|
|
214 |
demo.launch() #share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server.py
CHANGED
@@ -9,11 +9,13 @@ import uvicorn
|
|
9 |
|
10 |
|
11 |
current_dir = Path(__file__).parent
|
12 |
-
|
13 |
# Load the model
|
14 |
fhe_model = FHEModelServer(
|
15 |
Path.joinpath(current_dir, "fhe_model")
|
16 |
)
|
|
|
|
|
17 |
class PredictRequest(BaseModel):
|
18 |
evaluation_key: str
|
19 |
encrypted_encoding: str
|
@@ -39,5 +41,5 @@ def predict(query: PredictRequest):
|
|
39 |
encoded_prediction = base64.b64encode(prediction).decode()
|
40 |
return {"encrypted_prediction": encoded_prediction}
|
41 |
|
42 |
-
#if __name__ == "__main__":
|
43 |
-
# uvicorn.run(app, host="0.0.0.0", port=3000)
|
|
|
9 |
|
10 |
|
11 |
current_dir = Path(__file__).parent
|
12 |
+
print('1111', current_dir)
|
13 |
# Load the model
|
14 |
fhe_model = FHEModelServer(
|
15 |
Path.joinpath(current_dir, "fhe_model")
|
16 |
)
|
17 |
+
print(Path.joinpath(current_dir, "fhe_model"))
|
18 |
+
print(fhe_model)
|
19 |
class PredictRequest(BaseModel):
|
20 |
evaluation_key: str
|
21 |
encrypted_encoding: str
|
|
|
41 |
encoded_prediction = base64.b64encode(prediction).decode()
|
42 |
return {"encrypted_prediction": encoded_prediction}
|
43 |
|
44 |
+
# if __name__ == "__main__":
|
45 |
+
# uvicorn.run(app, host="0.0.0.0", port=3000)
|