VaultChem commited on
Commit
a8246da
1 Parent(s): c32522b

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +18 -23
  2. server.py +5 -3
app.py CHANGED
@@ -24,7 +24,7 @@ REPO_DIR = Path(__file__).parent
24
  subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
25
 
26
 
27
- #subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
28
 
29
  # if not exists, create a directory for the FHE keys called .fhe_keys
30
  if not os.path.exists(".fhe_keys"):
@@ -190,30 +190,25 @@ def process_pipeline(test_file):
190
  return eval_key, encodings, encrypted_quantized_encoding, encrypted_prediction
191
 
192
  if __name__ == "__main__":
193
-
194
  with gr.Blocks() as demo:
195
  print("Starting the FHE Model")
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
 
198
-
199
-
200
  demo.launch() #share=True)
201
-
202
-
203
- """
204
- app = gr.Interface(
205
-
206
- fn=process_pipeline,
207
- inputs=[
208
- gr.File(label="Test File"),
209
- ],
210
- outputs=[
211
- gr.Textbox(label="Evaluation Key"),
212
- gr.Textbox(label="Encodings"),
213
- gr.Textbox(label="Encrypted Quantized Encoding"),
214
- gr.Textbox(label="Encrypted Prediction"),
215
- ],
216
- title="FHE Model",
217
- description="This is a FHE Model",
218
- )
219
- """
 
24
  subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
25
 
26
 
27
+ # subprocess.Popen(["uvicorn", "server:app", "--port", "3000"], cwd=REPO_DIR)
28
 
29
  # if not exists, create a directory for the FHE keys called .fhe_keys
30
  if not os.path.exists(".fhe_keys"):
 
190
  return eval_key, encodings, encrypted_quantized_encoding, encrypted_prediction
191
 
192
  if __name__ == "__main__":
193
+
194
  with gr.Blocks() as demo:
195
  print("Starting the FHE Model")
196
 
197
+ fn = (process_pipeline,)
198
+ inputs = (
199
+ [
200
+ gr.File(label="Test File"),
201
+ ],
202
+ )
203
+ outputs = (
204
+ [
205
+ gr.Textbox(label="Evaluation Key"),
206
+ gr.Textbox(label="Encodings"),
207
+ gr.Textbox(label="Encrypted Quantized Encoding"),
208
+ gr.Textbox(label="Encrypted Prediction"),
209
+ ],
210
+ )
211
+ title = ("FHE Model",)
212
+ description = ("This is a FHE Model",)
213
 
 
 
214
  demo.launch() #share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
server.py CHANGED
@@ -9,11 +9,13 @@ import uvicorn
9
 
10
 
11
  current_dir = Path(__file__).parent
12
-
13
  # Load the model
14
  fhe_model = FHEModelServer(
15
  Path.joinpath(current_dir, "fhe_model")
16
  )
 
 
17
  class PredictRequest(BaseModel):
18
  evaluation_key: str
19
  encrypted_encoding: str
@@ -39,5 +41,5 @@ def predict(query: PredictRequest):
39
  encoded_prediction = base64.b64encode(prediction).decode()
40
  return {"encrypted_prediction": encoded_prediction}
41
 
42
- #if __name__ == "__main__":
43
- # uvicorn.run(app, host="0.0.0.0", port=3000)
 
9
 
10
 
11
  current_dir = Path(__file__).parent
12
+ print('1111', current_dir)
13
  # Load the model
14
  fhe_model = FHEModelServer(
15
  Path.joinpath(current_dir, "fhe_model")
16
  )
17
+ print(Path.joinpath(current_dir, "fhe_model"))
18
+ print(fhe_model)
19
  class PredictRequest(BaseModel):
20
  evaluation_key: str
21
  encrypted_encoding: str
 
41
  encoded_prediction = base64.b64encode(prediction).decode()
42
  return {"encrypted_prediction": encoded_prediction}
43
 
44
+ # if __name__ == "__main__":
45
+ # uvicorn.run(app, host="0.0.0.0", port=3000)