Spaces:
Running
Running
from os.path import dirname, join, basename, isfile | |
from tqdm import tqdm | |
from models import SyncNet_color as SyncNet | |
import audio | |
import torch | |
from torch import nn | |
from torch import optim | |
import torch.backends.cudnn as cudnn | |
from torch.utils import data as data_utils | |
import numpy as np | |
from glob import glob | |
import os, random, cv2, argparse | |
from hparams import hparams, get_image_list | |
parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator') | |
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True) | |
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str) | |
parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str) | |
args = parser.parse_args() | |
global_step = 0 | |
global_epoch = 0 | |
use_cuda = torch.cuda.is_available() | |
print('use_cuda: {}'.format(use_cuda)) | |
syncnet_T = 5 | |
syncnet_mel_step_size = 16 | |
class Dataset(object): | |
def __init__(self, split): | |
self.all_videos = get_image_list(args.data_root, split) | |
def get_frame_id(self, frame): | |
return int(basename(frame).split('.')[0]) | |
def get_window(self, start_frame): | |
start_id = self.get_frame_id(start_frame) | |
vidname = dirname(start_frame) | |
window_fnames = [] | |
for frame_id in range(start_id, start_id + syncnet_T): | |
frame = join(vidname, '{}.jpg'.format(frame_id)) | |
if not isfile(frame): | |
return None | |
window_fnames.append(frame) | |
return window_fnames | |
def crop_audio_window(self, spec, start_frame): | |
# num_frames = (T x hop_size * fps) / sample_rate | |
start_frame_num = self.get_frame_id(start_frame) | |
start_idx = int(80. * (start_frame_num / float(hparams.fps))) | |
end_idx = start_idx + syncnet_mel_step_size | |
return spec[start_idx : end_idx, :] | |
def __len__(self): | |
return len(self.all_videos) | |
def __getitem__(self, idx): | |
while 1: | |
idx = random.randint(0, len(self.all_videos) - 1) | |
vidname = self.all_videos[idx] | |
img_names = list(glob(join(vidname, '*.jpg'))) | |
if len(img_names) <= 3 * syncnet_T: | |
continue | |
img_name = random.choice(img_names) | |
wrong_img_name = random.choice(img_names) | |
while wrong_img_name == img_name: | |
wrong_img_name = random.choice(img_names) | |
if random.choice([True, False]): | |
y = torch.ones(1).float() | |
chosen = img_name | |
else: | |
y = torch.zeros(1).float() | |
chosen = wrong_img_name | |
window_fnames = self.get_window(chosen) | |
if window_fnames is None: | |
continue | |
window = [] | |
all_read = True | |
for fname in window_fnames: | |
img = cv2.imread(fname) | |
if img is None: | |
all_read = False | |
break | |
try: | |
img = cv2.resize(img, (hparams.img_size, hparams.img_size)) | |
except Exception as e: | |
all_read = False | |
break | |
window.append(img) | |
if not all_read: continue | |
try: | |
wavpath = join(vidname, "audio.wav") | |
wav = audio.load_wav(wavpath, hparams.sample_rate) | |
orig_mel = audio.melspectrogram(wav).T | |
except Exception as e: | |
continue | |
mel = self.crop_audio_window(orig_mel.copy(), img_name) | |
if (mel.shape[0] != syncnet_mel_step_size): | |
continue | |
# H x W x 3 * T | |
x = np.concatenate(window, axis=2) / 255. | |
x = x.transpose(2, 0, 1) | |
x = x[:, x.shape[1]//2:] | |
x = torch.FloatTensor(x) | |
mel = torch.FloatTensor(mel.T).unsqueeze(0) | |
return x, mel, y | |
logloss = nn.BCELoss() | |
def cosine_loss(a, v, y): | |
d = nn.functional.cosine_similarity(a, v) | |
loss = logloss(d.unsqueeze(1), y) | |
return loss | |
def train(device, model, train_data_loader, test_data_loader, optimizer, | |
checkpoint_dir=None, checkpoint_interval=None, nepochs=None): | |
global global_step, global_epoch | |
resumed_step = global_step | |
while global_epoch < nepochs: | |
running_loss = 0. | |
prog_bar = tqdm(enumerate(train_data_loader)) | |
for step, (x, mel, y) in prog_bar: | |
model.train() | |
optimizer.zero_grad() | |
# Transform data to CUDA device | |
x = x.to(device) | |
mel = mel.to(device) | |
a, v = model(mel, x) | |
y = y.to(device) | |
loss = cosine_loss(a, v, y) | |
loss.backward() | |
optimizer.step() | |
global_step += 1 | |
cur_session_steps = global_step - resumed_step | |
running_loss += loss.item() | |
if global_step == 1 or global_step % checkpoint_interval == 0: | |
save_checkpoint( | |
model, optimizer, global_step, checkpoint_dir, global_epoch) | |
if global_step % hparams.syncnet_eval_interval == 0: | |
with torch.no_grad(): | |
eval_model(test_data_loader, global_step, device, model, checkpoint_dir) | |
prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1))) | |
global_epoch += 1 | |
def eval_model(test_data_loader, global_step, device, model, checkpoint_dir): | |
eval_steps = 1400 | |
print('Evaluating for {} steps'.format(eval_steps)) | |
losses = [] | |
while 1: | |
for step, (x, mel, y) in enumerate(test_data_loader): | |
model.eval() | |
# Transform data to CUDA device | |
x = x.to(device) | |
mel = mel.to(device) | |
a, v = model(mel, x) | |
y = y.to(device) | |
loss = cosine_loss(a, v, y) | |
losses.append(loss.item()) | |
if step > eval_steps: break | |
averaged_loss = sum(losses) / len(losses) | |
print(averaged_loss) | |
return | |
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch): | |
checkpoint_path = join( | |
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step)) | |
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None | |
torch.save({ | |
"state_dict": model.state_dict(), | |
"optimizer": optimizer_state, | |
"global_step": step, | |
"global_epoch": epoch, | |
}, checkpoint_path) | |
print("Saved checkpoint:", checkpoint_path) | |
def _load(checkpoint_path): | |
if use_cuda: | |
checkpoint = torch.load(checkpoint_path) | |
else: | |
checkpoint = torch.load(checkpoint_path, | |
map_location=lambda storage, loc: storage) | |
return checkpoint | |
def load_checkpoint(path, model, optimizer, reset_optimizer=False): | |
global global_step | |
global global_epoch | |
print("Load checkpoint from: {}".format(path)) | |
checkpoint = _load(path) | |
model.load_state_dict(checkpoint["state_dict"]) | |
if not reset_optimizer: | |
optimizer_state = checkpoint["optimizer"] | |
if optimizer_state is not None: | |
print("Load optimizer state from {}".format(path)) | |
optimizer.load_state_dict(checkpoint["optimizer"]) | |
global_step = checkpoint["global_step"] | |
global_epoch = checkpoint["global_epoch"] | |
return model | |
if __name__ == "__main__": | |
checkpoint_dir = args.checkpoint_dir | |
checkpoint_path = args.checkpoint_path | |
if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) | |
# Dataset and Dataloader setup | |
train_dataset = Dataset('train') | |
test_dataset = Dataset('val') | |
train_data_loader = data_utils.DataLoader( | |
train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True, | |
num_workers=hparams.num_workers) | |
test_data_loader = data_utils.DataLoader( | |
test_dataset, batch_size=hparams.syncnet_batch_size, | |
num_workers=8) | |
device = torch.device("cuda" if use_cuda else "cpu") | |
# Model | |
model = SyncNet().to(device) | |
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))) | |
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad], | |
lr=hparams.syncnet_lr) | |
if checkpoint_path is not None: | |
load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False) | |
train(device, model, train_data_loader, test_data_loader, optimizer, | |
checkpoint_dir=checkpoint_dir, | |
checkpoint_interval=hparams.syncnet_checkpoint_interval, | |
nepochs=hparams.nepochs) | |