import gradio as gr import spaces import torch import subprocess import os import ffmpeg zero = torch.Tensor([0]).cuda() print(zero.device) # <-- 'cpu' 🤔 @spaces.GPU def greet(n): print(zero.device) # <-- 'cuda:0' 🤗 return f"Hello {zero + n} Tensor" def audio_video(): print("started =========================") input_video = ffmpeg.input('results/result_voice.mp4') input_audio = ffmpeg.input('sample_data/sir.mp3') os.system(f"rm -rf results/final_output.mp4") ffmpeg.concat(input_video, input_audio, v=1, a=1).output('results/final_output.mp4').run() return "results/final_output.mp4" def run_infrence(input_video,input_audio): audio = "sample_data/sir.mp3" video = "sample_data/spark_input.mp4" command = f'python3 inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face sample_data/spark.png --audio sample_data/sir.mp3' print("running ") # Execute the command process = subprocess.Popen(command, stdout=subprocess.PIPE, shell=True) # Get the output output, error = process.communicate() return audio_video() def run(): with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo: gr.Markdown("

"+ "One Shot Talking Face from Text" + "



") with gr.Group(): # with gr.Box(): with gr.Row(): # with gr.Row().style(equal_height=True): input_video = gr.Video(label="Input Video") input_audio = gr.Audio(label="Input Audio") video_out = gr.Video(show_label=True,label="Output") with gr.Row(): btn = gr.Button("Generate") btn.click(run_infrence,inputs=[input_video,input_audio], outputs=[video_out]) # btn.click(run_infrence,inputs=[input_video,input_audio]) demo.queue() demo.launch(server_name="0.0.0.0", server_port=7860) if __name__ == "__main__": run()