praj2408 commited on
Commit
644ef64
1 Parent(s): 8372afa

Upload 393 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. .github/workflows/main.yaml +34 -0
  3. .gitignore +161 -0
  4. LICENSE +21 -0
  5. Onsite_Health_Diagnostic.egg-info/PKG-INFO +6 -0
  6. Onsite_Health_Diagnostic.egg-info/SOURCES.txt +7 -0
  7. Onsite_Health_Diagnostic.egg-info/dependency_links.txt +1 -0
  8. Onsite_Health_Diagnostic.egg-info/top_level.txt +1 -0
  9. README.md +40 -12
  10. app.py +249 -0
  11. disease.png +0 -0
  12. main.py +0 -0
  13. notebooks/Malaria_Disease_Prediction.ipynb +0 -0
  14. notebooks/Thyroid disease prediction.ipynb +0 -0
  15. notebooks/breast_cancer.ipynb +0 -0
  16. notebooks/diabetes.ipynb +0 -0
  17. notebooks/heart disease prediction.ipynb +0 -0
  18. prediction_pipeline.py +82 -0
  19. requirements.txt +14 -0
  20. setup.py +24 -0
  21. src/Brain-Tumour-classification/.ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
  22. src/Brain-Tumour-classification/Untitled.ipynb +33 -0
  23. src/Breast-Cancer/.ipynb_checkpoints/breast_cancer-checkpoint.ipynb +0 -0
  24. src/Breast-Cancer/breast_cancer.ipynb +0 -0
  25. src/Breast-Cancer/data.csv +0 -0
  26. src/Breast-Cancer/model.pkl +3 -0
  27. src/Breast-Cancer/model.py +57 -0
  28. src/Breast-Cancer/scaler.pkl +3 -0
  29. src/Diabetes-Detection/.ipynb_checkpoints/diabetes-checkpoint.ipynb +0 -0
  30. src/Diabetes-Detection/diabetes.csv +769 -0
  31. src/Diabetes-Detection/diabetes.ipynb +0 -0
  32. src/Diabetes-Detection/diabetes.py +45 -0
  33. src/Diabetes-Detection/diabetes.sav +3 -0
  34. src/Diabetes-Detection/model.pkl +3 -0
  35. src/Diabetes-Detection/scaler.joblib +3 -0
  36. src/Diabetes-Detection/scaler.pkl +3 -0
  37. src/Heart-Disease/.ipynb_checkpoints/heart disease prediction-checkpoint.ipynb +0 -0
  38. src/Heart-Disease/heart disease prediction.ipynb +0 -0
  39. src/Heart-Disease/heart.csv +919 -0
  40. src/Heart-Disease/heart_failure.py +63 -0
  41. src/Heart-Disease/heart_model.pkl +3 -0
  42. src/Heart-Disease/heart_model.sav +0 -0
  43. src/Heart-Disease/scaler.pkl +3 -0
  44. src/Malaria-Detection/.ipynb_checkpoints/Malaria_Disease_Prediction-checkpoint.ipynb +0 -0
  45. src/Malaria-Detection/.virtual_documents/Untitled.ipynb +223 -0
  46. src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_10.png +0 -0
  47. src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_11.png +0 -0
  48. src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_12.png +0 -0
  49. src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_13.png +0 -0
  50. src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_14.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ src/Diabetes-Detection/diabetes.sav filter=lfs diff=lfs merge=lfs -text
.github/workflows/main.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Deploy Streamlit App to Hugging Face Spaces
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+
8
+ jobs:
9
+ deploy:
10
+ runs-on: ubuntu-latest
11
+ steps:
12
+ - name: Checkout repository
13
+ uses: actions/checkout@v2
14
+
15
+ - name: Setup Python
16
+ uses: actions/setup-python@v2
17
+ with:
18
+ python-version: '3.10'
19
+
20
+ - name: Install dependencies
21
+ run: |
22
+ pip install streamlit
23
+ pip install -r requirements.txt
24
+ pip install tensorflow
25
+ pip install huggingface_hub
26
+
27
+
28
+ - name: Run Streamlit app
29
+ run: streamlit run app.py
30
+
31
+ - name: Publish to Hugging Face Spaces
32
+ uses: hf spaces push -o praj2408/Onsite-Health-Diagnostic app.py
33
+ env:
34
+ HUGGINGFACE_API_KEY: ${{ secrets.HUGGINGFACE_API_KEY }}
.gitignore ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ OHD/
124
+ .env
125
+ .venv
126
+ env/
127
+ venv/
128
+ ENV/
129
+ env.bak/
130
+ venv.bak/
131
+
132
+ # Spyder project settings
133
+ .spyderproject
134
+ .spyproject
135
+
136
+ # Rope project settings
137
+ .ropeproject
138
+
139
+ # mkdocs documentation
140
+ /site
141
+
142
+ # mypy
143
+ .mypy_cache/
144
+ .dmypy.json
145
+ dmypy.json
146
+
147
+ # Pyre type checker
148
+ .pyre/
149
+
150
+ # pytype static type analyzer
151
+ .pytype/
152
+
153
+ # Cython debug symbols
154
+ cython_debug/
155
+
156
+ # PyCharm
157
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
158
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
159
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
160
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
161
+ #.idea/
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Prajwal Krishna
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
Onsite_Health_Diagnostic.egg-info/PKG-INFO ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: Onsite-Health-Diagnostic
3
+ Version: 0.0.1
4
+ Author: Prajwal Krishna
5
+ Author-email: [email protected]
6
+ License-File: LICENSE
Onsite_Health_Diagnostic.egg-info/SOURCES.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ LICENSE
2
+ README.md
3
+ setup.py
4
+ Onsite_Health_Diagnostic.egg-info/PKG-INFO
5
+ Onsite_Health_Diagnostic.egg-info/SOURCES.txt
6
+ Onsite_Health_Diagnostic.egg-info/dependency_links.txt
7
+ Onsite_Health_Diagnostic.egg-info/top_level.txt
Onsite_Health_Diagnostic.egg-info/dependency_links.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
Onsite_Health_Diagnostic.egg-info/top_level.txt ADDED
@@ -0,0 +1 @@
 
 
1
+
README.md CHANGED
@@ -1,12 +1,40 @@
1
- ---
2
- title: Dummy
3
- emoji: 📚
4
- colorFrom: purple
5
- colorTo: blue
6
- sdk: streamlit
7
- sdk_version: 1.32.2
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Onsite-Health-Diagnostic (OHD)
2
+ Onsite Health Diagnostic (OHD) is the web application that allows users to predict whether the user has been infected with a menacing disease or not. These diseases can be very dangerous to health if they are not treated properly. The main objective of OHD is to help people predict the disease in case of absence of medical professionals, strikes or any related uncertainties.
3
+
4
+ ## Website
5
+ link:
6
+
7
+ ## Table Of Contents
8
+
9
+ - [Datasets](#Datasets)
10
+ - [Clone](#Clone)
11
+ - [Licence](#Licence)
12
+
13
+
14
+ ## Datasets
15
+ - Pneumonia : [Dataset](https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia)
16
+ - Brain tumour : [Dataset](https://www.kaggle.com/ahmedhamada0/brain-tumor-detection)
17
+ - Diabetes : [Dataset](https://github.com/praj2408/Onsite-Health-Diagnostics/blob/main/src/Diabetes-Detection/diabetes.csv)
18
+ - Heart disease : [Dataset](https://github.com/praj2408/Onsite-Health-Diagnostics/blob/main/src/Heart-Disease/heart.csv)
19
+ - Breast Cancer : [Dataset](https://github.com/praj2408/Onsite-Health-Diagnostics/blob/main/src/Breast%20Cancer/data.csv)
20
+ - Malaria-Detection : - [Dataset](https://lhncbc.nlm.nih.gov/LHC-publications/pubs/MalariaDatasets.html#:~:text=Abstract%3A,the%20Malaria%20Screener%20research%20activity.&text=The%20dataset%20contains%20a%20total,of%20parasitized%20and%20uninfected%20cells.)
21
+
22
+
23
+ ## Clone
24
+
25
+ 1. Clone the repository:
26
+ ```
27
+ git clone https://github.com/praj2408/Onsite-Health-Diagnostics
28
+ ```
29
+ 2. Install dependencies
30
+ ```
31
+ pip install -r requirements.txt
32
+ ```
33
+ 3. Run the application
34
+ ```
35
+ streamlit run app.py
36
+ ```
37
+
38
+
39
+ ## License
40
+ This project is licensed under the MIT License - see the LICENSE file for details.
app.py ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import streamlit as st
3
+ from streamlit_extras import add_vertical_space
4
+ import streamlit.components.v1 as components
5
+ from annotated_text import annotated_text
6
+
7
+ import tensorflow as tf
8
+ from tensorflow import keras
9
+
10
+ from keras.models import load_model
11
+ from PIL import Image
12
+ import numpy as np
13
+
14
+
15
+ from prediction_pipeline import diabetes_prediction, breast_cancer_prediction, heart_disease_prediction
16
+
17
+
18
+
19
+ #st.set_page_config(layout='wide')
20
+
21
+ import pandas as pd
22
+
23
+ import json
24
+
25
+
26
+
27
+ with st.sidebar:
28
+ st.title("Onsite Health Diagnostics-OHD")
29
+
30
+
31
+ diseases = ["Diabetes Prediction","Breast Cancer","Heart Disease Prediction","Malaria Detection", "Pneumonia Detection", "Brain Tumour Detection"]
32
+
33
+
34
+
35
+
36
+ selected_diseases = st.selectbox("Select Diseases to Predict", diseases)
37
+
38
+
39
+
40
+ if selected_diseases == "Diabetes Prediction":
41
+
42
+ st.title("DIABETES PREDICTION")
43
+
44
+ # Input fields for user to input data
45
+ pregnancies = st.number_input("Number of Pregnancies", 0, 17, 1)
46
+ glucose = st.number_input("Plasma Glucose Concentration (mg/dL)", 0, 200, 100)
47
+ blood_pressure = st.number_input("Diastolic Blood Pressure (mm Hg)", 0, 122, 70)
48
+ skin_thickness = st.number_input("Skin Thickness (mm)", 0, 99, 20)
49
+ insulin = st.number_input("Insulin Level (mu U/mL)", 0, 846, 79)
50
+ bmi = st.number_input("Body Mass Index (BMI)", 0.0, 67.1, 30.0)
51
+ dpf = st.number_input("Diabetes Pedigree Function", 0.078, 2.42, 0.3725)
52
+ age = st.number_input("Age (years)", 21, 81, 25)
53
+
54
+ if st.button("Predict"):
55
+ prediction = diabetes_prediction(data=[pregnancies,glucose,blood_pressure,skin_thickness,insulin,bmi,dpf,age])
56
+
57
+ if prediction==1:
58
+ st.error("The patient has diabetes")
59
+ else:
60
+ st.success("The patient does not have diabetes")
61
+
62
+
63
+ if selected_diseases == "Breast Cancer":
64
+
65
+ st.title("BREAST CANCER PREDICTION")
66
+
67
+ # Input fields for user to input data
68
+ radius_mean = st.number_input("Radius Mean", 6.981, 28.11, 14.127)
69
+ area_mean = st.number_input("Area Mean", 143.5, 2501.0, 654.889)
70
+ compactness_mean = st.number_input("Compactness Mean", 0.019, 0.345, 0.104)
71
+ concavity_mean = st.number_input("Concavity Mean", 0.0, 0.427, 0.089)
72
+ concave_points_mean = st.number_input("Concave Points Mean", 0.0, 0.201, 0.049)
73
+ area_worst = st.number_input("Area Worst", 185.200000, value=686.500000)
74
+ compactness_worst = st.number_input("Compactness Worst",0.027290, value=0.211900)
75
+ concavity_worst = st.number_input("Concavity Worst",0.000000, value=0.226700)
76
+ area_se = st.number_input("Area Se", 6.802000, value=24.530000)
77
+ fractal_dimension_se = st.number_input("Fractal Dimension Mean", 0.05, 0.097, 0.062)
78
+ symmetry_worst = st.number_input("Symmetry Worst", 0.106, 0.304, 0.181)
79
+ fractal_dimension_worst = st.number_input("Fractal_Dimension_Worst", 0.055040, value=0.080040)
80
+
81
+ if st.button("Predict"):
82
+ prediction = breast_cancer_prediction(data=[radius_mean,area_mean,compactness_mean,concavity_mean,concave_points_mean,area_worst,compactness_worst,concavity_worst,area_se,fractal_dimension_se,symmetry_worst,fractal_dimension_worst])
83
+
84
+ if prediction==1:
85
+ st.error("The patient has Breast Cancer")
86
+ else:
87
+ st.success("The patient does not have Breast Cancer")
88
+
89
+
90
+
91
+ if selected_diseases == "Heart Disease Prediction":
92
+
93
+ st.title("HEART DISEASE PREDICTION")
94
+
95
+ # Input fields for user to input data
96
+ age = st.number_input("Age", 29, 77, 50)
97
+ sex = st.selectbox("Sex", ["Male", "Female"])
98
+ ChestPainType = st.selectbox("Chest Pain Type", ["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"])
99
+ RestingBP = st.number_input("Resting Blood Pressure (mm Hg)", 94, 200, 120)
100
+ Cholesterol = st.number_input("Serum Cholesterol (mg/dl)", 126, 564, 240)
101
+ FastingBS = st.selectbox("Fasting Blood Sugar > 120 mg/dl", ["True", "False"])
102
+ RestingECG = st.selectbox("Resting Electrocardiographic Results", ["Normal", "ST-T wave abnormality", "Probable or Definite Left Ventricular Hypertrophy"])
103
+ MaxHR = st.number_input("Maximum Heart Rate Achieved", 71, 202, 150)
104
+ ExerciseAngina = st.selectbox("Exercise Induced Angina", ["Yes", "No"])
105
+ Oldpeak = st.number_input("ST Depression Induced by Exercise Relative to Rest", 0.0, 6.2, 2.0)
106
+ ST_Slope = st.selectbox("Slope of the Peak Exercise ST Segment", ["Upsloping", "Flat", "Downsloping"])
107
+
108
+ #converting categorical into numerical
109
+ sex = 1 if sex == "Male" else 0
110
+
111
+ if ChestPainType == "Typical Angina":
112
+ ChestPainType = 0
113
+ elif ChestPainType == "Atypical Angina":
114
+ ChestPainType = 1
115
+ elif ChestPainType == "Non-anginal Pain":
116
+ ChestPainType = 2
117
+ else:
118
+ ChestPainType = 3
119
+
120
+
121
+ if FastingBS == "True":
122
+ FastingBS = 1
123
+ else:
124
+ FastingBS = 0
125
+
126
+ if RestingECG == "Normal":
127
+ RestingECG = 0
128
+ elif RestingECG == "ST-T wave abnormality":
129
+ RestingECG = 1
130
+ else:
131
+ RestingECG = 2
132
+
133
+ if ExerciseAngina == "Yes":
134
+ ExerciseAngina = 1
135
+ else:
136
+ ExerciseAngina = 0
137
+
138
+ if ST_Slope == "Upsloping":
139
+ ST_Slope = 0
140
+ elif ST_Slope == "Flat":
141
+ ST_Slope = 1
142
+ else:
143
+ ST_Slope = 2
144
+
145
+
146
+ if st.button("Predict"):
147
+ prediction = heart_disease_prediction(data=[age,sex,ChestPainType,RestingBP,Cholesterol,FastingBS,RestingECG,MaxHR,ExerciseAngina,Oldpeak,ST_Slope])
148
+
149
+ if prediction==1:
150
+ st.error("The patient has Heart Disease")
151
+ else:
152
+ st.success("The patient does not have Heart Disease")
153
+
154
+
155
+
156
+ if selected_diseases == "Malaria Detection":
157
+
158
+ st.title("MALARIA DISEASE DETECTION")
159
+
160
+
161
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
162
+
163
+ if uploaded_file is not None:
164
+ # Display the uploaded image
165
+ image = Image.open(uploaded_file)
166
+ st.image(image, caption='Uploaded Image', use_column_width=True)
167
+
168
+ model = load_model('src/Malaria-Detection/malaria.h5')
169
+
170
+
171
+ def preprocess_image(image_file):
172
+ img = Image.open(image_file)
173
+ img = img.resize((128, 128)) # Resize the image to match the input size of the model
174
+ img_array = np.array(img) / 255.0 # Normalize pixel values
175
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
176
+ return img_array
177
+
178
+
179
+ def predict_malaria(image_file):
180
+ img_array = preprocess_image(image_file)
181
+ prediction = model.predict(img_array)
182
+ return prediction
183
+
184
+
185
+ # When the user clicks the predict button
186
+ if st.button("Predict"):
187
+ # Make prediction
188
+ prediction = predict_malaria(uploaded_file)
189
+ # Display prediction
190
+ if prediction[0][0] > 0.5:
191
+ st.success("The image does not contain malaria parasites.")
192
+ else:
193
+ st.error("The image contains malaria parasites.")
194
+
195
+
196
+
197
+
198
+
199
+
200
+ if selected_diseases == "Pneumonia Detection":
201
+
202
+ st.title("PNEUMONIA DISEASE DETECTION")
203
+
204
+
205
+ # Load the pre-trained model
206
+ model = load_model('src/Pneumonia-Detection/pneumonia_detection.h5')
207
+
208
+ # Function to preprocess the image
209
+ def preprocess_image(image_file):
210
+ img = Image.open(image_file)
211
+ img = img.resize((150, 150)) # Resize the image to match the input size of the model
212
+ img_array = np.array(img) / 255.0 # Normalize pixel values
213
+ img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
214
+ return img_array
215
+
216
+ # Function to make prediction
217
+ def predict_pneumonia(image_file):
218
+ img_array = preprocess_image(image_file)
219
+ prediction = model.predict(img_array)
220
+ return prediction
221
+
222
+
223
+
224
+ # File uploader for user to upload an image
225
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
226
+
227
+ # When the user uploads an image and clicks the predict button
228
+ if uploaded_file is not None:
229
+ # Display the uploaded image
230
+ img = Image.open(uploaded_file)
231
+ st.image(img, caption='Uploaded Image', use_column_width=True)
232
+
233
+ # When the user clicks the predict button
234
+ if st.button("Predict"):
235
+ # Make prediction
236
+ prediction = predict_pneumonia(uploaded_file)
237
+ # Display prediction
238
+ if prediction[0][0] > 0.5:
239
+ st.error("The image indicates pneumonia.")
240
+ else:
241
+ st.success("The image is normal.")
242
+
243
+
244
+
245
+ if selected_diseases == "Brain Tumour Detection":
246
+
247
+ st.title("BRAIN TUMOUR DETECTION")
248
+
249
+ st.write("Working on it, coming soon!")
disease.png ADDED
main.py ADDED
File without changes
notebooks/Malaria_Disease_Prediction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/Thyroid disease prediction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/breast_cancer.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/diabetes.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
notebooks/heart disease prediction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
prediction_pipeline.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import pickle
3
+ import joblib
4
+ import numpy as np
5
+ from sklearn.preprocessing import StandardScaler
6
+
7
+
8
+ # Diabetes prediction
9
+
10
+ def diabetes_prediction(data):
11
+
12
+ with open("src/Diabetes-Detection/scaler.pkl", "rb") as f:
13
+ scaler = pickle.load(f)
14
+
15
+ data = np.array(data).reshape(1,-1)
16
+ scaled_data = scaler.transform(data)
17
+
18
+ with open("src/Diabetes-Detection/model.pkl", "rb") as f:
19
+ model = pickle.load(f)
20
+
21
+ pred = model.predict(scaled_data)
22
+
23
+
24
+ return pred
25
+
26
+ # new_data = np.array([6,148,72,35,0,33.6,0.627,50]).reshape(1, -1)
27
+
28
+ # pred = diabetes_prediction(new_data)
29
+
30
+ # if pred==1:
31
+ # print("The patient has diabetes")
32
+
33
+
34
+
35
+ #breast cancer prediction
36
+ def breast_cancer_prediction(data):
37
+
38
+ with open("src/Breast-Cancer/scaler.pkl", "rb") as f:
39
+ scaler = pickle.load(f)
40
+
41
+ data = np.array(data).reshape(1,-1)
42
+ scaled_data = scaler.transform(data)
43
+
44
+ with open("src/Breast-Cancer/model.pkl", "rb") as f:
45
+ model = pickle.load(f)
46
+
47
+ pred = model.predict(scaled_data)
48
+
49
+
50
+ return pred
51
+
52
+
53
+ # new_data = np.array([17.99, 1001.0, 0.262779, 0.3001, 0.14710, 2019.0, 0.665600, 0.7119, 153.40, 0.006193, 0.460100, 0.11890]).reshape(1, -1)
54
+
55
+ # pred = breast_cancer_prediction(new_data)
56
+
57
+ # if pred==1:
58
+ # print("The patient has Breast cancer")
59
+ # else:
60
+ # print("The patient does not have Breast cancer")
61
+
62
+ def heart_disease_prediction(data):
63
+
64
+ with open("src/Heart-Disease/scaler.pkl", "rb") as f:
65
+ scaler = pickle.load(f)
66
+
67
+ data = np.array(data).reshape(1,-1)
68
+ scaled_data = scaler.transform(data)
69
+
70
+ with open("src/Heart-Disease/heart_model.pkl", "rb") as f:
71
+ model = pickle.load(f)
72
+
73
+ pred = model.predict(scaled_data)
74
+
75
+ return pred
76
+
77
+
78
+
79
+
80
+
81
+ def malaria_detection():
82
+ pass
requirements.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy==1.26.4
2
+ opencv-python==4.9.0.80
3
+ scikit-learn==1.2.2
4
+ pandas==2.2.1
5
+ missingno==0.5.2
6
+ matplotlib==3.8.3
7
+ seaborn==0.13.2
8
+ streamlit==1.32.2
9
+ tensorflow==2.16.1
10
+ streamlit-extras==0.4.0
11
+ st-annotated-text==4.0.1
12
+
13
+
14
+ -e .
setup.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from setuptools import find_packages,setup
2
+ from typing import List
3
+
4
+ """HYPEN_E_DOT='-e .'
5
+
6
+ def get_requirements(file_path:str)->List[str]:
7
+ requirements=[]
8
+ with open(file_path) as file_obj:
9
+ requirements=file_obj.readlines()
10
+ requirements=[req.replace("\n","") for req in requirements]
11
+
12
+ if HYPEN_E_DOT in requirements:
13
+ requirements.remove(HYPEN_E_DOT)
14
+
15
+ return requirements"""
16
+
17
+ setup(
18
+ name='Onsite-Health-Diagnostic',
19
+ version='0.0.1',
20
+ author='Prajwal Krishna',
21
+ author_email='[email protected]',
22
+ #install_requires=["scikit-learn","pandas","numpy"],
23
+ packages=find_packages()
24
+ )
src/Brain-Tumour-classification/.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
src/Brain-Tumour-classification/Untitled.ipynb ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "55922f23-dcb3-40a9-a29e-754862cd5c39",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": []
10
+ }
11
+ ],
12
+ "metadata": {
13
+ "kernelspec": {
14
+ "display_name": "Python 3 (ipykernel)",
15
+ "language": "python",
16
+ "name": "python3"
17
+ },
18
+ "language_info": {
19
+ "codemirror_mode": {
20
+ "name": "ipython",
21
+ "version": 3
22
+ },
23
+ "file_extension": ".py",
24
+ "mimetype": "text/x-python",
25
+ "name": "python",
26
+ "nbconvert_exporter": "python",
27
+ "pygments_lexer": "ipython3",
28
+ "version": "3.10.14"
29
+ }
30
+ },
31
+ "nbformat": 4,
32
+ "nbformat_minor": 5
33
+ }
src/Breast-Cancer/.ipynb_checkpoints/breast_cancer-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Breast-Cancer/breast_cancer.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Breast-Cancer/data.csv ADDED
The diff for this file is too large to render. See raw diff
 
src/Breast-Cancer/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77884907c6a2b33998380f9fe09938246d5e3a7d876660692b01935f04948eb1
3
+ size 762
src/Breast-Cancer/model.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #import libraries
3
+ import numpy as np
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ from sklearn import preprocessing
8
+ from sklearn import metrics
9
+ from sklearn.metrics import mean_squared_error
10
+ from sklearn.preprocessing import StandardScaler
11
+ from sklearn.model_selection import train_test_split
12
+ from sklearn.metrics import classification_report
13
+ from sklearn.linear_model import LogisticRegression
14
+ from sklearn.tree import DecisionTreeClassifier
15
+ from sklearn.metrics import plot_confusion_matrix, accuracy_score, classification_report
16
+ import joblib
17
+
18
+ # load the dataset
19
+ data = pd.read_csv("data.csv")
20
+
21
+ ### let's remove the column id and Unnamed:32
22
+ data = data.drop(['id','Unnamed: 32'],axis=1)
23
+ # selecting only the skewed columns to transform it in gaussian distribution
24
+ data_temp = data[['radius_mean', 'area_mean',
25
+ 'compactness_mean', 'concavity_mean', 'concave points_mean',
26
+ 'area_worst', 'compactness_worst',
27
+ 'concavity_worst', 'area_se','fractal_dimension_se',
28
+ 'symmetry_worst', 'fractal_dimension_worst']].copy()
29
+
30
+ #### Label encoding
31
+ label_encoder = preprocessing.LabelEncoder()
32
+ data['diagnosis'] = label_encoder.fit_transform(data['diagnosis'])
33
+ # label
34
+ y = data['diagnosis'].copy()
35
+
36
+ # standard scaler
37
+ scaler = StandardScaler()
38
+ data_temp = scaler.fit_transform(data_temp)
39
+
40
+
41
+ '''Train test split'''
42
+ X_train, X_test, y_train, y_test= train_test_split(data_temp, y, test_size = 0.2, random_state=42)
43
+
44
+
45
+ '''Logistic Regression'''
46
+
47
+ log = LogisticRegression()
48
+ log.fit(X_train, y_train)
49
+ # save the model
50
+ filename = 'breast_model.sav'
51
+ joblib.dump(log, filename)
52
+
53
+ #load the model
54
+ loaded_model = joblib.load(filename)
55
+
56
+ X_test = scaler.fit_transform(X_test)
57
+ pred = loaded_model.predict(X_test)
src/Breast-Cancer/scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8139fd73b7e3c19eb417c16dba115f4ce0cfcdad9202d64f686ae1f178e018b5
3
+ size 1035
src/Diabetes-Detection/.ipynb_checkpoints/diabetes-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Diabetes-Detection/diabetes.csv ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
2
+ 6,148,72,35,0,33.6,0.627,50,1
3
+ 1,85,66,29,0,26.6,0.351,31,0
4
+ 8,183,64,0,0,23.3,0.672,32,1
5
+ 1,89,66,23,94,28.1,0.167,21,0
6
+ 0,137,40,35,168,43.1,2.288,33,1
7
+ 5,116,74,0,0,25.6,0.201,30,0
8
+ 3,78,50,32,88,31,0.248,26,1
9
+ 10,115,0,0,0,35.3,0.134,29,0
10
+ 2,197,70,45,543,30.5,0.158,53,1
11
+ 8,125,96,0,0,0,0.232,54,1
12
+ 4,110,92,0,0,37.6,0.191,30,0
13
+ 10,168,74,0,0,38,0.537,34,1
14
+ 10,139,80,0,0,27.1,1.441,57,0
15
+ 1,189,60,23,846,30.1,0.398,59,1
16
+ 5,166,72,19,175,25.8,0.587,51,1
17
+ 7,100,0,0,0,30,0.484,32,1
18
+ 0,118,84,47,230,45.8,0.551,31,1
19
+ 7,107,74,0,0,29.6,0.254,31,1
20
+ 1,103,30,38,83,43.3,0.183,33,0
21
+ 1,115,70,30,96,34.6,0.529,32,1
22
+ 3,126,88,41,235,39.3,0.704,27,0
23
+ 8,99,84,0,0,35.4,0.388,50,0
24
+ 7,196,90,0,0,39.8,0.451,41,1
25
+ 9,119,80,35,0,29,0.263,29,1
26
+ 11,143,94,33,146,36.6,0.254,51,1
27
+ 10,125,70,26,115,31.1,0.205,41,1
28
+ 7,147,76,0,0,39.4,0.257,43,1
29
+ 1,97,66,15,140,23.2,0.487,22,0
30
+ 13,145,82,19,110,22.2,0.245,57,0
31
+ 5,117,92,0,0,34.1,0.337,38,0
32
+ 5,109,75,26,0,36,0.546,60,0
33
+ 3,158,76,36,245,31.6,0.851,28,1
34
+ 3,88,58,11,54,24.8,0.267,22,0
35
+ 6,92,92,0,0,19.9,0.188,28,0
36
+ 10,122,78,31,0,27.6,0.512,45,0
37
+ 4,103,60,33,192,24,0.966,33,0
38
+ 11,138,76,0,0,33.2,0.42,35,0
39
+ 9,102,76,37,0,32.9,0.665,46,1
40
+ 2,90,68,42,0,38.2,0.503,27,1
41
+ 4,111,72,47,207,37.1,1.39,56,1
42
+ 3,180,64,25,70,34,0.271,26,0
43
+ 7,133,84,0,0,40.2,0.696,37,0
44
+ 7,106,92,18,0,22.7,0.235,48,0
45
+ 9,171,110,24,240,45.4,0.721,54,1
46
+ 7,159,64,0,0,27.4,0.294,40,0
47
+ 0,180,66,39,0,42,1.893,25,1
48
+ 1,146,56,0,0,29.7,0.564,29,0
49
+ 2,71,70,27,0,28,0.586,22,0
50
+ 7,103,66,32,0,39.1,0.344,31,1
51
+ 7,105,0,0,0,0,0.305,24,0
52
+ 1,103,80,11,82,19.4,0.491,22,0
53
+ 1,101,50,15,36,24.2,0.526,26,0
54
+ 5,88,66,21,23,24.4,0.342,30,0
55
+ 8,176,90,34,300,33.7,0.467,58,1
56
+ 7,150,66,42,342,34.7,0.718,42,0
57
+ 1,73,50,10,0,23,0.248,21,0
58
+ 7,187,68,39,304,37.7,0.254,41,1
59
+ 0,100,88,60,110,46.8,0.962,31,0
60
+ 0,146,82,0,0,40.5,1.781,44,0
61
+ 0,105,64,41,142,41.5,0.173,22,0
62
+ 2,84,0,0,0,0,0.304,21,0
63
+ 8,133,72,0,0,32.9,0.27,39,1
64
+ 5,44,62,0,0,25,0.587,36,0
65
+ 2,141,58,34,128,25.4,0.699,24,0
66
+ 7,114,66,0,0,32.8,0.258,42,1
67
+ 5,99,74,27,0,29,0.203,32,0
68
+ 0,109,88,30,0,32.5,0.855,38,1
69
+ 2,109,92,0,0,42.7,0.845,54,0
70
+ 1,95,66,13,38,19.6,0.334,25,0
71
+ 4,146,85,27,100,28.9,0.189,27,0
72
+ 2,100,66,20,90,32.9,0.867,28,1
73
+ 5,139,64,35,140,28.6,0.411,26,0
74
+ 13,126,90,0,0,43.4,0.583,42,1
75
+ 4,129,86,20,270,35.1,0.231,23,0
76
+ 1,79,75,30,0,32,0.396,22,0
77
+ 1,0,48,20,0,24.7,0.14,22,0
78
+ 7,62,78,0,0,32.6,0.391,41,0
79
+ 5,95,72,33,0,37.7,0.37,27,0
80
+ 0,131,0,0,0,43.2,0.27,26,1
81
+ 2,112,66,22,0,25,0.307,24,0
82
+ 3,113,44,13,0,22.4,0.14,22,0
83
+ 2,74,0,0,0,0,0.102,22,0
84
+ 7,83,78,26,71,29.3,0.767,36,0
85
+ 0,101,65,28,0,24.6,0.237,22,0
86
+ 5,137,108,0,0,48.8,0.227,37,1
87
+ 2,110,74,29,125,32.4,0.698,27,0
88
+ 13,106,72,54,0,36.6,0.178,45,0
89
+ 2,100,68,25,71,38.5,0.324,26,0
90
+ 15,136,70,32,110,37.1,0.153,43,1
91
+ 1,107,68,19,0,26.5,0.165,24,0
92
+ 1,80,55,0,0,19.1,0.258,21,0
93
+ 4,123,80,15,176,32,0.443,34,0
94
+ 7,81,78,40,48,46.7,0.261,42,0
95
+ 4,134,72,0,0,23.8,0.277,60,1
96
+ 2,142,82,18,64,24.7,0.761,21,0
97
+ 6,144,72,27,228,33.9,0.255,40,0
98
+ 2,92,62,28,0,31.6,0.13,24,0
99
+ 1,71,48,18,76,20.4,0.323,22,0
100
+ 6,93,50,30,64,28.7,0.356,23,0
101
+ 1,122,90,51,220,49.7,0.325,31,1
102
+ 1,163,72,0,0,39,1.222,33,1
103
+ 1,151,60,0,0,26.1,0.179,22,0
104
+ 0,125,96,0,0,22.5,0.262,21,0
105
+ 1,81,72,18,40,26.6,0.283,24,0
106
+ 2,85,65,0,0,39.6,0.93,27,0
107
+ 1,126,56,29,152,28.7,0.801,21,0
108
+ 1,96,122,0,0,22.4,0.207,27,0
109
+ 4,144,58,28,140,29.5,0.287,37,0
110
+ 3,83,58,31,18,34.3,0.336,25,0
111
+ 0,95,85,25,36,37.4,0.247,24,1
112
+ 3,171,72,33,135,33.3,0.199,24,1
113
+ 8,155,62,26,495,34,0.543,46,1
114
+ 1,89,76,34,37,31.2,0.192,23,0
115
+ 4,76,62,0,0,34,0.391,25,0
116
+ 7,160,54,32,175,30.5,0.588,39,1
117
+ 4,146,92,0,0,31.2,0.539,61,1
118
+ 5,124,74,0,0,34,0.22,38,1
119
+ 5,78,48,0,0,33.7,0.654,25,0
120
+ 4,97,60,23,0,28.2,0.443,22,0
121
+ 4,99,76,15,51,23.2,0.223,21,0
122
+ 0,162,76,56,100,53.2,0.759,25,1
123
+ 6,111,64,39,0,34.2,0.26,24,0
124
+ 2,107,74,30,100,33.6,0.404,23,0
125
+ 5,132,80,0,0,26.8,0.186,69,0
126
+ 0,113,76,0,0,33.3,0.278,23,1
127
+ 1,88,30,42,99,55,0.496,26,1
128
+ 3,120,70,30,135,42.9,0.452,30,0
129
+ 1,118,58,36,94,33.3,0.261,23,0
130
+ 1,117,88,24,145,34.5,0.403,40,1
131
+ 0,105,84,0,0,27.9,0.741,62,1
132
+ 4,173,70,14,168,29.7,0.361,33,1
133
+ 9,122,56,0,0,33.3,1.114,33,1
134
+ 3,170,64,37,225,34.5,0.356,30,1
135
+ 8,84,74,31,0,38.3,0.457,39,0
136
+ 2,96,68,13,49,21.1,0.647,26,0
137
+ 2,125,60,20,140,33.8,0.088,31,0
138
+ 0,100,70,26,50,30.8,0.597,21,0
139
+ 0,93,60,25,92,28.7,0.532,22,0
140
+ 0,129,80,0,0,31.2,0.703,29,0
141
+ 5,105,72,29,325,36.9,0.159,28,0
142
+ 3,128,78,0,0,21.1,0.268,55,0
143
+ 5,106,82,30,0,39.5,0.286,38,0
144
+ 2,108,52,26,63,32.5,0.318,22,0
145
+ 10,108,66,0,0,32.4,0.272,42,1
146
+ 4,154,62,31,284,32.8,0.237,23,0
147
+ 0,102,75,23,0,0,0.572,21,0
148
+ 9,57,80,37,0,32.8,0.096,41,0
149
+ 2,106,64,35,119,30.5,1.4,34,0
150
+ 5,147,78,0,0,33.7,0.218,65,0
151
+ 2,90,70,17,0,27.3,0.085,22,0
152
+ 1,136,74,50,204,37.4,0.399,24,0
153
+ 4,114,65,0,0,21.9,0.432,37,0
154
+ 9,156,86,28,155,34.3,1.189,42,1
155
+ 1,153,82,42,485,40.6,0.687,23,0
156
+ 8,188,78,0,0,47.9,0.137,43,1
157
+ 7,152,88,44,0,50,0.337,36,1
158
+ 2,99,52,15,94,24.6,0.637,21,0
159
+ 1,109,56,21,135,25.2,0.833,23,0
160
+ 2,88,74,19,53,29,0.229,22,0
161
+ 17,163,72,41,114,40.9,0.817,47,1
162
+ 4,151,90,38,0,29.7,0.294,36,0
163
+ 7,102,74,40,105,37.2,0.204,45,0
164
+ 0,114,80,34,285,44.2,0.167,27,0
165
+ 2,100,64,23,0,29.7,0.368,21,0
166
+ 0,131,88,0,0,31.6,0.743,32,1
167
+ 6,104,74,18,156,29.9,0.722,41,1
168
+ 3,148,66,25,0,32.5,0.256,22,0
169
+ 4,120,68,0,0,29.6,0.709,34,0
170
+ 4,110,66,0,0,31.9,0.471,29,0
171
+ 3,111,90,12,78,28.4,0.495,29,0
172
+ 6,102,82,0,0,30.8,0.18,36,1
173
+ 6,134,70,23,130,35.4,0.542,29,1
174
+ 2,87,0,23,0,28.9,0.773,25,0
175
+ 1,79,60,42,48,43.5,0.678,23,0
176
+ 2,75,64,24,55,29.7,0.37,33,0
177
+ 8,179,72,42,130,32.7,0.719,36,1
178
+ 6,85,78,0,0,31.2,0.382,42,0
179
+ 0,129,110,46,130,67.1,0.319,26,1
180
+ 5,143,78,0,0,45,0.19,47,0
181
+ 5,130,82,0,0,39.1,0.956,37,1
182
+ 6,87,80,0,0,23.2,0.084,32,0
183
+ 0,119,64,18,92,34.9,0.725,23,0
184
+ 1,0,74,20,23,27.7,0.299,21,0
185
+ 5,73,60,0,0,26.8,0.268,27,0
186
+ 4,141,74,0,0,27.6,0.244,40,0
187
+ 7,194,68,28,0,35.9,0.745,41,1
188
+ 8,181,68,36,495,30.1,0.615,60,1
189
+ 1,128,98,41,58,32,1.321,33,1
190
+ 8,109,76,39,114,27.9,0.64,31,1
191
+ 5,139,80,35,160,31.6,0.361,25,1
192
+ 3,111,62,0,0,22.6,0.142,21,0
193
+ 9,123,70,44,94,33.1,0.374,40,0
194
+ 7,159,66,0,0,30.4,0.383,36,1
195
+ 11,135,0,0,0,52.3,0.578,40,1
196
+ 8,85,55,20,0,24.4,0.136,42,0
197
+ 5,158,84,41,210,39.4,0.395,29,1
198
+ 1,105,58,0,0,24.3,0.187,21,0
199
+ 3,107,62,13,48,22.9,0.678,23,1
200
+ 4,109,64,44,99,34.8,0.905,26,1
201
+ 4,148,60,27,318,30.9,0.15,29,1
202
+ 0,113,80,16,0,31,0.874,21,0
203
+ 1,138,82,0,0,40.1,0.236,28,0
204
+ 0,108,68,20,0,27.3,0.787,32,0
205
+ 2,99,70,16,44,20.4,0.235,27,0
206
+ 6,103,72,32,190,37.7,0.324,55,0
207
+ 5,111,72,28,0,23.9,0.407,27,0
208
+ 8,196,76,29,280,37.5,0.605,57,1
209
+ 5,162,104,0,0,37.7,0.151,52,1
210
+ 1,96,64,27,87,33.2,0.289,21,0
211
+ 7,184,84,33,0,35.5,0.355,41,1
212
+ 2,81,60,22,0,27.7,0.29,25,0
213
+ 0,147,85,54,0,42.8,0.375,24,0
214
+ 7,179,95,31,0,34.2,0.164,60,0
215
+ 0,140,65,26,130,42.6,0.431,24,1
216
+ 9,112,82,32,175,34.2,0.26,36,1
217
+ 12,151,70,40,271,41.8,0.742,38,1
218
+ 5,109,62,41,129,35.8,0.514,25,1
219
+ 6,125,68,30,120,30,0.464,32,0
220
+ 5,85,74,22,0,29,1.224,32,1
221
+ 5,112,66,0,0,37.8,0.261,41,1
222
+ 0,177,60,29,478,34.6,1.072,21,1
223
+ 2,158,90,0,0,31.6,0.805,66,1
224
+ 7,119,0,0,0,25.2,0.209,37,0
225
+ 7,142,60,33,190,28.8,0.687,61,0
226
+ 1,100,66,15,56,23.6,0.666,26,0
227
+ 1,87,78,27,32,34.6,0.101,22,0
228
+ 0,101,76,0,0,35.7,0.198,26,0
229
+ 3,162,52,38,0,37.2,0.652,24,1
230
+ 4,197,70,39,744,36.7,2.329,31,0
231
+ 0,117,80,31,53,45.2,0.089,24,0
232
+ 4,142,86,0,0,44,0.645,22,1
233
+ 6,134,80,37,370,46.2,0.238,46,1
234
+ 1,79,80,25,37,25.4,0.583,22,0
235
+ 4,122,68,0,0,35,0.394,29,0
236
+ 3,74,68,28,45,29.7,0.293,23,0
237
+ 4,171,72,0,0,43.6,0.479,26,1
238
+ 7,181,84,21,192,35.9,0.586,51,1
239
+ 0,179,90,27,0,44.1,0.686,23,1
240
+ 9,164,84,21,0,30.8,0.831,32,1
241
+ 0,104,76,0,0,18.4,0.582,27,0
242
+ 1,91,64,24,0,29.2,0.192,21,0
243
+ 4,91,70,32,88,33.1,0.446,22,0
244
+ 3,139,54,0,0,25.6,0.402,22,1
245
+ 6,119,50,22,176,27.1,1.318,33,1
246
+ 2,146,76,35,194,38.2,0.329,29,0
247
+ 9,184,85,15,0,30,1.213,49,1
248
+ 10,122,68,0,0,31.2,0.258,41,0
249
+ 0,165,90,33,680,52.3,0.427,23,0
250
+ 9,124,70,33,402,35.4,0.282,34,0
251
+ 1,111,86,19,0,30.1,0.143,23,0
252
+ 9,106,52,0,0,31.2,0.38,42,0
253
+ 2,129,84,0,0,28,0.284,27,0
254
+ 2,90,80,14,55,24.4,0.249,24,0
255
+ 0,86,68,32,0,35.8,0.238,25,0
256
+ 12,92,62,7,258,27.6,0.926,44,1
257
+ 1,113,64,35,0,33.6,0.543,21,1
258
+ 3,111,56,39,0,30.1,0.557,30,0
259
+ 2,114,68,22,0,28.7,0.092,25,0
260
+ 1,193,50,16,375,25.9,0.655,24,0
261
+ 11,155,76,28,150,33.3,1.353,51,1
262
+ 3,191,68,15,130,30.9,0.299,34,0
263
+ 3,141,0,0,0,30,0.761,27,1
264
+ 4,95,70,32,0,32.1,0.612,24,0
265
+ 3,142,80,15,0,32.4,0.2,63,0
266
+ 4,123,62,0,0,32,0.226,35,1
267
+ 5,96,74,18,67,33.6,0.997,43,0
268
+ 0,138,0,0,0,36.3,0.933,25,1
269
+ 2,128,64,42,0,40,1.101,24,0
270
+ 0,102,52,0,0,25.1,0.078,21,0
271
+ 2,146,0,0,0,27.5,0.24,28,1
272
+ 10,101,86,37,0,45.6,1.136,38,1
273
+ 2,108,62,32,56,25.2,0.128,21,0
274
+ 3,122,78,0,0,23,0.254,40,0
275
+ 1,71,78,50,45,33.2,0.422,21,0
276
+ 13,106,70,0,0,34.2,0.251,52,0
277
+ 2,100,70,52,57,40.5,0.677,25,0
278
+ 7,106,60,24,0,26.5,0.296,29,1
279
+ 0,104,64,23,116,27.8,0.454,23,0
280
+ 5,114,74,0,0,24.9,0.744,57,0
281
+ 2,108,62,10,278,25.3,0.881,22,0
282
+ 0,146,70,0,0,37.9,0.334,28,1
283
+ 10,129,76,28,122,35.9,0.28,39,0
284
+ 7,133,88,15,155,32.4,0.262,37,0
285
+ 7,161,86,0,0,30.4,0.165,47,1
286
+ 2,108,80,0,0,27,0.259,52,1
287
+ 7,136,74,26,135,26,0.647,51,0
288
+ 5,155,84,44,545,38.7,0.619,34,0
289
+ 1,119,86,39,220,45.6,0.808,29,1
290
+ 4,96,56,17,49,20.8,0.34,26,0
291
+ 5,108,72,43,75,36.1,0.263,33,0
292
+ 0,78,88,29,40,36.9,0.434,21,0
293
+ 0,107,62,30,74,36.6,0.757,25,1
294
+ 2,128,78,37,182,43.3,1.224,31,1
295
+ 1,128,48,45,194,40.5,0.613,24,1
296
+ 0,161,50,0,0,21.9,0.254,65,0
297
+ 6,151,62,31,120,35.5,0.692,28,0
298
+ 2,146,70,38,360,28,0.337,29,1
299
+ 0,126,84,29,215,30.7,0.52,24,0
300
+ 14,100,78,25,184,36.6,0.412,46,1
301
+ 8,112,72,0,0,23.6,0.84,58,0
302
+ 0,167,0,0,0,32.3,0.839,30,1
303
+ 2,144,58,33,135,31.6,0.422,25,1
304
+ 5,77,82,41,42,35.8,0.156,35,0
305
+ 5,115,98,0,0,52.9,0.209,28,1
306
+ 3,150,76,0,0,21,0.207,37,0
307
+ 2,120,76,37,105,39.7,0.215,29,0
308
+ 10,161,68,23,132,25.5,0.326,47,1
309
+ 0,137,68,14,148,24.8,0.143,21,0
310
+ 0,128,68,19,180,30.5,1.391,25,1
311
+ 2,124,68,28,205,32.9,0.875,30,1
312
+ 6,80,66,30,0,26.2,0.313,41,0
313
+ 0,106,70,37,148,39.4,0.605,22,0
314
+ 2,155,74,17,96,26.6,0.433,27,1
315
+ 3,113,50,10,85,29.5,0.626,25,0
316
+ 7,109,80,31,0,35.9,1.127,43,1
317
+ 2,112,68,22,94,34.1,0.315,26,0
318
+ 3,99,80,11,64,19.3,0.284,30,0
319
+ 3,182,74,0,0,30.5,0.345,29,1
320
+ 3,115,66,39,140,38.1,0.15,28,0
321
+ 6,194,78,0,0,23.5,0.129,59,1
322
+ 4,129,60,12,231,27.5,0.527,31,0
323
+ 3,112,74,30,0,31.6,0.197,25,1
324
+ 0,124,70,20,0,27.4,0.254,36,1
325
+ 13,152,90,33,29,26.8,0.731,43,1
326
+ 2,112,75,32,0,35.7,0.148,21,0
327
+ 1,157,72,21,168,25.6,0.123,24,0
328
+ 1,122,64,32,156,35.1,0.692,30,1
329
+ 10,179,70,0,0,35.1,0.2,37,0
330
+ 2,102,86,36,120,45.5,0.127,23,1
331
+ 6,105,70,32,68,30.8,0.122,37,0
332
+ 8,118,72,19,0,23.1,1.476,46,0
333
+ 2,87,58,16,52,32.7,0.166,25,0
334
+ 1,180,0,0,0,43.3,0.282,41,1
335
+ 12,106,80,0,0,23.6,0.137,44,0
336
+ 1,95,60,18,58,23.9,0.26,22,0
337
+ 0,165,76,43,255,47.9,0.259,26,0
338
+ 0,117,0,0,0,33.8,0.932,44,0
339
+ 5,115,76,0,0,31.2,0.343,44,1
340
+ 9,152,78,34,171,34.2,0.893,33,1
341
+ 7,178,84,0,0,39.9,0.331,41,1
342
+ 1,130,70,13,105,25.9,0.472,22,0
343
+ 1,95,74,21,73,25.9,0.673,36,0
344
+ 1,0,68,35,0,32,0.389,22,0
345
+ 5,122,86,0,0,34.7,0.29,33,0
346
+ 8,95,72,0,0,36.8,0.485,57,0
347
+ 8,126,88,36,108,38.5,0.349,49,0
348
+ 1,139,46,19,83,28.7,0.654,22,0
349
+ 3,116,0,0,0,23.5,0.187,23,0
350
+ 3,99,62,19,74,21.8,0.279,26,0
351
+ 5,0,80,32,0,41,0.346,37,1
352
+ 4,92,80,0,0,42.2,0.237,29,0
353
+ 4,137,84,0,0,31.2,0.252,30,0
354
+ 3,61,82,28,0,34.4,0.243,46,0
355
+ 1,90,62,12,43,27.2,0.58,24,0
356
+ 3,90,78,0,0,42.7,0.559,21,0
357
+ 9,165,88,0,0,30.4,0.302,49,1
358
+ 1,125,50,40,167,33.3,0.962,28,1
359
+ 13,129,0,30,0,39.9,0.569,44,1
360
+ 12,88,74,40,54,35.3,0.378,48,0
361
+ 1,196,76,36,249,36.5,0.875,29,1
362
+ 5,189,64,33,325,31.2,0.583,29,1
363
+ 5,158,70,0,0,29.8,0.207,63,0
364
+ 5,103,108,37,0,39.2,0.305,65,0
365
+ 4,146,78,0,0,38.5,0.52,67,1
366
+ 4,147,74,25,293,34.9,0.385,30,0
367
+ 5,99,54,28,83,34,0.499,30,0
368
+ 6,124,72,0,0,27.6,0.368,29,1
369
+ 0,101,64,17,0,21,0.252,21,0
370
+ 3,81,86,16,66,27.5,0.306,22,0
371
+ 1,133,102,28,140,32.8,0.234,45,1
372
+ 3,173,82,48,465,38.4,2.137,25,1
373
+ 0,118,64,23,89,0,1.731,21,0
374
+ 0,84,64,22,66,35.8,0.545,21,0
375
+ 2,105,58,40,94,34.9,0.225,25,0
376
+ 2,122,52,43,158,36.2,0.816,28,0
377
+ 12,140,82,43,325,39.2,0.528,58,1
378
+ 0,98,82,15,84,25.2,0.299,22,0
379
+ 1,87,60,37,75,37.2,0.509,22,0
380
+ 4,156,75,0,0,48.3,0.238,32,1
381
+ 0,93,100,39,72,43.4,1.021,35,0
382
+ 1,107,72,30,82,30.8,0.821,24,0
383
+ 0,105,68,22,0,20,0.236,22,0
384
+ 1,109,60,8,182,25.4,0.947,21,0
385
+ 1,90,62,18,59,25.1,1.268,25,0
386
+ 1,125,70,24,110,24.3,0.221,25,0
387
+ 1,119,54,13,50,22.3,0.205,24,0
388
+ 5,116,74,29,0,32.3,0.66,35,1
389
+ 8,105,100,36,0,43.3,0.239,45,1
390
+ 5,144,82,26,285,32,0.452,58,1
391
+ 3,100,68,23,81,31.6,0.949,28,0
392
+ 1,100,66,29,196,32,0.444,42,0
393
+ 5,166,76,0,0,45.7,0.34,27,1
394
+ 1,131,64,14,415,23.7,0.389,21,0
395
+ 4,116,72,12,87,22.1,0.463,37,0
396
+ 4,158,78,0,0,32.9,0.803,31,1
397
+ 2,127,58,24,275,27.7,1.6,25,0
398
+ 3,96,56,34,115,24.7,0.944,39,0
399
+ 0,131,66,40,0,34.3,0.196,22,1
400
+ 3,82,70,0,0,21.1,0.389,25,0
401
+ 3,193,70,31,0,34.9,0.241,25,1
402
+ 4,95,64,0,0,32,0.161,31,1
403
+ 6,137,61,0,0,24.2,0.151,55,0
404
+ 5,136,84,41,88,35,0.286,35,1
405
+ 9,72,78,25,0,31.6,0.28,38,0
406
+ 5,168,64,0,0,32.9,0.135,41,1
407
+ 2,123,48,32,165,42.1,0.52,26,0
408
+ 4,115,72,0,0,28.9,0.376,46,1
409
+ 0,101,62,0,0,21.9,0.336,25,0
410
+ 8,197,74,0,0,25.9,1.191,39,1
411
+ 1,172,68,49,579,42.4,0.702,28,1
412
+ 6,102,90,39,0,35.7,0.674,28,0
413
+ 1,112,72,30,176,34.4,0.528,25,0
414
+ 1,143,84,23,310,42.4,1.076,22,0
415
+ 1,143,74,22,61,26.2,0.256,21,0
416
+ 0,138,60,35,167,34.6,0.534,21,1
417
+ 3,173,84,33,474,35.7,0.258,22,1
418
+ 1,97,68,21,0,27.2,1.095,22,0
419
+ 4,144,82,32,0,38.5,0.554,37,1
420
+ 1,83,68,0,0,18.2,0.624,27,0
421
+ 3,129,64,29,115,26.4,0.219,28,1
422
+ 1,119,88,41,170,45.3,0.507,26,0
423
+ 2,94,68,18,76,26,0.561,21,0
424
+ 0,102,64,46,78,40.6,0.496,21,0
425
+ 2,115,64,22,0,30.8,0.421,21,0
426
+ 8,151,78,32,210,42.9,0.516,36,1
427
+ 4,184,78,39,277,37,0.264,31,1
428
+ 0,94,0,0,0,0,0.256,25,0
429
+ 1,181,64,30,180,34.1,0.328,38,1
430
+ 0,135,94,46,145,40.6,0.284,26,0
431
+ 1,95,82,25,180,35,0.233,43,1
432
+ 2,99,0,0,0,22.2,0.108,23,0
433
+ 3,89,74,16,85,30.4,0.551,38,0
434
+ 1,80,74,11,60,30,0.527,22,0
435
+ 2,139,75,0,0,25.6,0.167,29,0
436
+ 1,90,68,8,0,24.5,1.138,36,0
437
+ 0,141,0,0,0,42.4,0.205,29,1
438
+ 12,140,85,33,0,37.4,0.244,41,0
439
+ 5,147,75,0,0,29.9,0.434,28,0
440
+ 1,97,70,15,0,18.2,0.147,21,0
441
+ 6,107,88,0,0,36.8,0.727,31,0
442
+ 0,189,104,25,0,34.3,0.435,41,1
443
+ 2,83,66,23,50,32.2,0.497,22,0
444
+ 4,117,64,27,120,33.2,0.23,24,0
445
+ 8,108,70,0,0,30.5,0.955,33,1
446
+ 4,117,62,12,0,29.7,0.38,30,1
447
+ 0,180,78,63,14,59.4,2.42,25,1
448
+ 1,100,72,12,70,25.3,0.658,28,0
449
+ 0,95,80,45,92,36.5,0.33,26,0
450
+ 0,104,64,37,64,33.6,0.51,22,1
451
+ 0,120,74,18,63,30.5,0.285,26,0
452
+ 1,82,64,13,95,21.2,0.415,23,0
453
+ 2,134,70,0,0,28.9,0.542,23,1
454
+ 0,91,68,32,210,39.9,0.381,25,0
455
+ 2,119,0,0,0,19.6,0.832,72,0
456
+ 2,100,54,28,105,37.8,0.498,24,0
457
+ 14,175,62,30,0,33.6,0.212,38,1
458
+ 1,135,54,0,0,26.7,0.687,62,0
459
+ 5,86,68,28,71,30.2,0.364,24,0
460
+ 10,148,84,48,237,37.6,1.001,51,1
461
+ 9,134,74,33,60,25.9,0.46,81,0
462
+ 9,120,72,22,56,20.8,0.733,48,0
463
+ 1,71,62,0,0,21.8,0.416,26,0
464
+ 8,74,70,40,49,35.3,0.705,39,0
465
+ 5,88,78,30,0,27.6,0.258,37,0
466
+ 10,115,98,0,0,24,1.022,34,0
467
+ 0,124,56,13,105,21.8,0.452,21,0
468
+ 0,74,52,10,36,27.8,0.269,22,0
469
+ 0,97,64,36,100,36.8,0.6,25,0
470
+ 8,120,0,0,0,30,0.183,38,1
471
+ 6,154,78,41,140,46.1,0.571,27,0
472
+ 1,144,82,40,0,41.3,0.607,28,0
473
+ 0,137,70,38,0,33.2,0.17,22,0
474
+ 0,119,66,27,0,38.8,0.259,22,0
475
+ 7,136,90,0,0,29.9,0.21,50,0
476
+ 4,114,64,0,0,28.9,0.126,24,0
477
+ 0,137,84,27,0,27.3,0.231,59,0
478
+ 2,105,80,45,191,33.7,0.711,29,1
479
+ 7,114,76,17,110,23.8,0.466,31,0
480
+ 8,126,74,38,75,25.9,0.162,39,0
481
+ 4,132,86,31,0,28,0.419,63,0
482
+ 3,158,70,30,328,35.5,0.344,35,1
483
+ 0,123,88,37,0,35.2,0.197,29,0
484
+ 4,85,58,22,49,27.8,0.306,28,0
485
+ 0,84,82,31,125,38.2,0.233,23,0
486
+ 0,145,0,0,0,44.2,0.63,31,1
487
+ 0,135,68,42,250,42.3,0.365,24,1
488
+ 1,139,62,41,480,40.7,0.536,21,0
489
+ 0,173,78,32,265,46.5,1.159,58,0
490
+ 4,99,72,17,0,25.6,0.294,28,0
491
+ 8,194,80,0,0,26.1,0.551,67,0
492
+ 2,83,65,28,66,36.8,0.629,24,0
493
+ 2,89,90,30,0,33.5,0.292,42,0
494
+ 4,99,68,38,0,32.8,0.145,33,0
495
+ 4,125,70,18,122,28.9,1.144,45,1
496
+ 3,80,0,0,0,0,0.174,22,0
497
+ 6,166,74,0,0,26.6,0.304,66,0
498
+ 5,110,68,0,0,26,0.292,30,0
499
+ 2,81,72,15,76,30.1,0.547,25,0
500
+ 7,195,70,33,145,25.1,0.163,55,1
501
+ 6,154,74,32,193,29.3,0.839,39,0
502
+ 2,117,90,19,71,25.2,0.313,21,0
503
+ 3,84,72,32,0,37.2,0.267,28,0
504
+ 6,0,68,41,0,39,0.727,41,1
505
+ 7,94,64,25,79,33.3,0.738,41,0
506
+ 3,96,78,39,0,37.3,0.238,40,0
507
+ 10,75,82,0,0,33.3,0.263,38,0
508
+ 0,180,90,26,90,36.5,0.314,35,1
509
+ 1,130,60,23,170,28.6,0.692,21,0
510
+ 2,84,50,23,76,30.4,0.968,21,0
511
+ 8,120,78,0,0,25,0.409,64,0
512
+ 12,84,72,31,0,29.7,0.297,46,1
513
+ 0,139,62,17,210,22.1,0.207,21,0
514
+ 9,91,68,0,0,24.2,0.2,58,0
515
+ 2,91,62,0,0,27.3,0.525,22,0
516
+ 3,99,54,19,86,25.6,0.154,24,0
517
+ 3,163,70,18,105,31.6,0.268,28,1
518
+ 9,145,88,34,165,30.3,0.771,53,1
519
+ 7,125,86,0,0,37.6,0.304,51,0
520
+ 13,76,60,0,0,32.8,0.18,41,0
521
+ 6,129,90,7,326,19.6,0.582,60,0
522
+ 2,68,70,32,66,25,0.187,25,0
523
+ 3,124,80,33,130,33.2,0.305,26,0
524
+ 6,114,0,0,0,0,0.189,26,0
525
+ 9,130,70,0,0,34.2,0.652,45,1
526
+ 3,125,58,0,0,31.6,0.151,24,0
527
+ 3,87,60,18,0,21.8,0.444,21,0
528
+ 1,97,64,19,82,18.2,0.299,21,0
529
+ 3,116,74,15,105,26.3,0.107,24,0
530
+ 0,117,66,31,188,30.8,0.493,22,0
531
+ 0,111,65,0,0,24.6,0.66,31,0
532
+ 2,122,60,18,106,29.8,0.717,22,0
533
+ 0,107,76,0,0,45.3,0.686,24,0
534
+ 1,86,66,52,65,41.3,0.917,29,0
535
+ 6,91,0,0,0,29.8,0.501,31,0
536
+ 1,77,56,30,56,33.3,1.251,24,0
537
+ 4,132,0,0,0,32.9,0.302,23,1
538
+ 0,105,90,0,0,29.6,0.197,46,0
539
+ 0,57,60,0,0,21.7,0.735,67,0
540
+ 0,127,80,37,210,36.3,0.804,23,0
541
+ 3,129,92,49,155,36.4,0.968,32,1
542
+ 8,100,74,40,215,39.4,0.661,43,1
543
+ 3,128,72,25,190,32.4,0.549,27,1
544
+ 10,90,85,32,0,34.9,0.825,56,1
545
+ 4,84,90,23,56,39.5,0.159,25,0
546
+ 1,88,78,29,76,32,0.365,29,0
547
+ 8,186,90,35,225,34.5,0.423,37,1
548
+ 5,187,76,27,207,43.6,1.034,53,1
549
+ 4,131,68,21,166,33.1,0.16,28,0
550
+ 1,164,82,43,67,32.8,0.341,50,0
551
+ 4,189,110,31,0,28.5,0.68,37,0
552
+ 1,116,70,28,0,27.4,0.204,21,0
553
+ 3,84,68,30,106,31.9,0.591,25,0
554
+ 6,114,88,0,0,27.8,0.247,66,0
555
+ 1,88,62,24,44,29.9,0.422,23,0
556
+ 1,84,64,23,115,36.9,0.471,28,0
557
+ 7,124,70,33,215,25.5,0.161,37,0
558
+ 1,97,70,40,0,38.1,0.218,30,0
559
+ 8,110,76,0,0,27.8,0.237,58,0
560
+ 11,103,68,40,0,46.2,0.126,42,0
561
+ 11,85,74,0,0,30.1,0.3,35,0
562
+ 6,125,76,0,0,33.8,0.121,54,1
563
+ 0,198,66,32,274,41.3,0.502,28,1
564
+ 1,87,68,34,77,37.6,0.401,24,0
565
+ 6,99,60,19,54,26.9,0.497,32,0
566
+ 0,91,80,0,0,32.4,0.601,27,0
567
+ 2,95,54,14,88,26.1,0.748,22,0
568
+ 1,99,72,30,18,38.6,0.412,21,0
569
+ 6,92,62,32,126,32,0.085,46,0
570
+ 4,154,72,29,126,31.3,0.338,37,0
571
+ 0,121,66,30,165,34.3,0.203,33,1
572
+ 3,78,70,0,0,32.5,0.27,39,0
573
+ 2,130,96,0,0,22.6,0.268,21,0
574
+ 3,111,58,31,44,29.5,0.43,22,0
575
+ 2,98,60,17,120,34.7,0.198,22,0
576
+ 1,143,86,30,330,30.1,0.892,23,0
577
+ 1,119,44,47,63,35.5,0.28,25,0
578
+ 6,108,44,20,130,24,0.813,35,0
579
+ 2,118,80,0,0,42.9,0.693,21,1
580
+ 10,133,68,0,0,27,0.245,36,0
581
+ 2,197,70,99,0,34.7,0.575,62,1
582
+ 0,151,90,46,0,42.1,0.371,21,1
583
+ 6,109,60,27,0,25,0.206,27,0
584
+ 12,121,78,17,0,26.5,0.259,62,0
585
+ 8,100,76,0,0,38.7,0.19,42,0
586
+ 8,124,76,24,600,28.7,0.687,52,1
587
+ 1,93,56,11,0,22.5,0.417,22,0
588
+ 8,143,66,0,0,34.9,0.129,41,1
589
+ 6,103,66,0,0,24.3,0.249,29,0
590
+ 3,176,86,27,156,33.3,1.154,52,1
591
+ 0,73,0,0,0,21.1,0.342,25,0
592
+ 11,111,84,40,0,46.8,0.925,45,1
593
+ 2,112,78,50,140,39.4,0.175,24,0
594
+ 3,132,80,0,0,34.4,0.402,44,1
595
+ 2,82,52,22,115,28.5,1.699,25,0
596
+ 6,123,72,45,230,33.6,0.733,34,0
597
+ 0,188,82,14,185,32,0.682,22,1
598
+ 0,67,76,0,0,45.3,0.194,46,0
599
+ 1,89,24,19,25,27.8,0.559,21,0
600
+ 1,173,74,0,0,36.8,0.088,38,1
601
+ 1,109,38,18,120,23.1,0.407,26,0
602
+ 1,108,88,19,0,27.1,0.4,24,0
603
+ 6,96,0,0,0,23.7,0.19,28,0
604
+ 1,124,74,36,0,27.8,0.1,30,0
605
+ 7,150,78,29,126,35.2,0.692,54,1
606
+ 4,183,0,0,0,28.4,0.212,36,1
607
+ 1,124,60,32,0,35.8,0.514,21,0
608
+ 1,181,78,42,293,40,1.258,22,1
609
+ 1,92,62,25,41,19.5,0.482,25,0
610
+ 0,152,82,39,272,41.5,0.27,27,0
611
+ 1,111,62,13,182,24,0.138,23,0
612
+ 3,106,54,21,158,30.9,0.292,24,0
613
+ 3,174,58,22,194,32.9,0.593,36,1
614
+ 7,168,88,42,321,38.2,0.787,40,1
615
+ 6,105,80,28,0,32.5,0.878,26,0
616
+ 11,138,74,26,144,36.1,0.557,50,1
617
+ 3,106,72,0,0,25.8,0.207,27,0
618
+ 6,117,96,0,0,28.7,0.157,30,0
619
+ 2,68,62,13,15,20.1,0.257,23,0
620
+ 9,112,82,24,0,28.2,1.282,50,1
621
+ 0,119,0,0,0,32.4,0.141,24,1
622
+ 2,112,86,42,160,38.4,0.246,28,0
623
+ 2,92,76,20,0,24.2,1.698,28,0
624
+ 6,183,94,0,0,40.8,1.461,45,0
625
+ 0,94,70,27,115,43.5,0.347,21,0
626
+ 2,108,64,0,0,30.8,0.158,21,0
627
+ 4,90,88,47,54,37.7,0.362,29,0
628
+ 0,125,68,0,0,24.7,0.206,21,0
629
+ 0,132,78,0,0,32.4,0.393,21,0
630
+ 5,128,80,0,0,34.6,0.144,45,0
631
+ 4,94,65,22,0,24.7,0.148,21,0
632
+ 7,114,64,0,0,27.4,0.732,34,1
633
+ 0,102,78,40,90,34.5,0.238,24,0
634
+ 2,111,60,0,0,26.2,0.343,23,0
635
+ 1,128,82,17,183,27.5,0.115,22,0
636
+ 10,92,62,0,0,25.9,0.167,31,0
637
+ 13,104,72,0,0,31.2,0.465,38,1
638
+ 5,104,74,0,0,28.8,0.153,48,0
639
+ 2,94,76,18,66,31.6,0.649,23,0
640
+ 7,97,76,32,91,40.9,0.871,32,1
641
+ 1,100,74,12,46,19.5,0.149,28,0
642
+ 0,102,86,17,105,29.3,0.695,27,0
643
+ 4,128,70,0,0,34.3,0.303,24,0
644
+ 6,147,80,0,0,29.5,0.178,50,1
645
+ 4,90,0,0,0,28,0.61,31,0
646
+ 3,103,72,30,152,27.6,0.73,27,0
647
+ 2,157,74,35,440,39.4,0.134,30,0
648
+ 1,167,74,17,144,23.4,0.447,33,1
649
+ 0,179,50,36,159,37.8,0.455,22,1
650
+ 11,136,84,35,130,28.3,0.26,42,1
651
+ 0,107,60,25,0,26.4,0.133,23,0
652
+ 1,91,54,25,100,25.2,0.234,23,0
653
+ 1,117,60,23,106,33.8,0.466,27,0
654
+ 5,123,74,40,77,34.1,0.269,28,0
655
+ 2,120,54,0,0,26.8,0.455,27,0
656
+ 1,106,70,28,135,34.2,0.142,22,0
657
+ 2,155,52,27,540,38.7,0.24,25,1
658
+ 2,101,58,35,90,21.8,0.155,22,0
659
+ 1,120,80,48,200,38.9,1.162,41,0
660
+ 11,127,106,0,0,39,0.19,51,0
661
+ 3,80,82,31,70,34.2,1.292,27,1
662
+ 10,162,84,0,0,27.7,0.182,54,0
663
+ 1,199,76,43,0,42.9,1.394,22,1
664
+ 8,167,106,46,231,37.6,0.165,43,1
665
+ 9,145,80,46,130,37.9,0.637,40,1
666
+ 6,115,60,39,0,33.7,0.245,40,1
667
+ 1,112,80,45,132,34.8,0.217,24,0
668
+ 4,145,82,18,0,32.5,0.235,70,1
669
+ 10,111,70,27,0,27.5,0.141,40,1
670
+ 6,98,58,33,190,34,0.43,43,0
671
+ 9,154,78,30,100,30.9,0.164,45,0
672
+ 6,165,68,26,168,33.6,0.631,49,0
673
+ 1,99,58,10,0,25.4,0.551,21,0
674
+ 10,68,106,23,49,35.5,0.285,47,0
675
+ 3,123,100,35,240,57.3,0.88,22,0
676
+ 8,91,82,0,0,35.6,0.587,68,0
677
+ 6,195,70,0,0,30.9,0.328,31,1
678
+ 9,156,86,0,0,24.8,0.23,53,1
679
+ 0,93,60,0,0,35.3,0.263,25,0
680
+ 3,121,52,0,0,36,0.127,25,1
681
+ 2,101,58,17,265,24.2,0.614,23,0
682
+ 2,56,56,28,45,24.2,0.332,22,0
683
+ 0,162,76,36,0,49.6,0.364,26,1
684
+ 0,95,64,39,105,44.6,0.366,22,0
685
+ 4,125,80,0,0,32.3,0.536,27,1
686
+ 5,136,82,0,0,0,0.64,69,0
687
+ 2,129,74,26,205,33.2,0.591,25,0
688
+ 3,130,64,0,0,23.1,0.314,22,0
689
+ 1,107,50,19,0,28.3,0.181,29,0
690
+ 1,140,74,26,180,24.1,0.828,23,0
691
+ 1,144,82,46,180,46.1,0.335,46,1
692
+ 8,107,80,0,0,24.6,0.856,34,0
693
+ 13,158,114,0,0,42.3,0.257,44,1
694
+ 2,121,70,32,95,39.1,0.886,23,0
695
+ 7,129,68,49,125,38.5,0.439,43,1
696
+ 2,90,60,0,0,23.5,0.191,25,0
697
+ 7,142,90,24,480,30.4,0.128,43,1
698
+ 3,169,74,19,125,29.9,0.268,31,1
699
+ 0,99,0,0,0,25,0.253,22,0
700
+ 4,127,88,11,155,34.5,0.598,28,0
701
+ 4,118,70,0,0,44.5,0.904,26,0
702
+ 2,122,76,27,200,35.9,0.483,26,0
703
+ 6,125,78,31,0,27.6,0.565,49,1
704
+ 1,168,88,29,0,35,0.905,52,1
705
+ 2,129,0,0,0,38.5,0.304,41,0
706
+ 4,110,76,20,100,28.4,0.118,27,0
707
+ 6,80,80,36,0,39.8,0.177,28,0
708
+ 10,115,0,0,0,0,0.261,30,1
709
+ 2,127,46,21,335,34.4,0.176,22,0
710
+ 9,164,78,0,0,32.8,0.148,45,1
711
+ 2,93,64,32,160,38,0.674,23,1
712
+ 3,158,64,13,387,31.2,0.295,24,0
713
+ 5,126,78,27,22,29.6,0.439,40,0
714
+ 10,129,62,36,0,41.2,0.441,38,1
715
+ 0,134,58,20,291,26.4,0.352,21,0
716
+ 3,102,74,0,0,29.5,0.121,32,0
717
+ 7,187,50,33,392,33.9,0.826,34,1
718
+ 3,173,78,39,185,33.8,0.97,31,1
719
+ 10,94,72,18,0,23.1,0.595,56,0
720
+ 1,108,60,46,178,35.5,0.415,24,0
721
+ 5,97,76,27,0,35.6,0.378,52,1
722
+ 4,83,86,19,0,29.3,0.317,34,0
723
+ 1,114,66,36,200,38.1,0.289,21,0
724
+ 1,149,68,29,127,29.3,0.349,42,1
725
+ 5,117,86,30,105,39.1,0.251,42,0
726
+ 1,111,94,0,0,32.8,0.265,45,0
727
+ 4,112,78,40,0,39.4,0.236,38,0
728
+ 1,116,78,29,180,36.1,0.496,25,0
729
+ 0,141,84,26,0,32.4,0.433,22,0
730
+ 2,175,88,0,0,22.9,0.326,22,0
731
+ 2,92,52,0,0,30.1,0.141,22,0
732
+ 3,130,78,23,79,28.4,0.323,34,1
733
+ 8,120,86,0,0,28.4,0.259,22,1
734
+ 2,174,88,37,120,44.5,0.646,24,1
735
+ 2,106,56,27,165,29,0.426,22,0
736
+ 2,105,75,0,0,23.3,0.56,53,0
737
+ 4,95,60,32,0,35.4,0.284,28,0
738
+ 0,126,86,27,120,27.4,0.515,21,0
739
+ 8,65,72,23,0,32,0.6,42,0
740
+ 2,99,60,17,160,36.6,0.453,21,0
741
+ 1,102,74,0,0,39.5,0.293,42,1
742
+ 11,120,80,37,150,42.3,0.785,48,1
743
+ 3,102,44,20,94,30.8,0.4,26,0
744
+ 1,109,58,18,116,28.5,0.219,22,0
745
+ 9,140,94,0,0,32.7,0.734,45,1
746
+ 13,153,88,37,140,40.6,1.174,39,0
747
+ 12,100,84,33,105,30,0.488,46,0
748
+ 1,147,94,41,0,49.3,0.358,27,1
749
+ 1,81,74,41,57,46.3,1.096,32,0
750
+ 3,187,70,22,200,36.4,0.408,36,1
751
+ 6,162,62,0,0,24.3,0.178,50,1
752
+ 4,136,70,0,0,31.2,1.182,22,1
753
+ 1,121,78,39,74,39,0.261,28,0
754
+ 3,108,62,24,0,26,0.223,25,0
755
+ 0,181,88,44,510,43.3,0.222,26,1
756
+ 8,154,78,32,0,32.4,0.443,45,1
757
+ 1,128,88,39,110,36.5,1.057,37,1
758
+ 7,137,90,41,0,32,0.391,39,0
759
+ 0,123,72,0,0,36.3,0.258,52,1
760
+ 1,106,76,0,0,37.5,0.197,26,0
761
+ 6,190,92,0,0,35.5,0.278,66,1
762
+ 2,88,58,26,16,28.4,0.766,22,0
763
+ 9,170,74,31,0,44,0.403,43,1
764
+ 9,89,62,0,0,22.5,0.142,33,0
765
+ 10,101,76,48,180,32.9,0.171,63,0
766
+ 2,122,70,27,0,36.8,0.34,27,0
767
+ 5,121,72,23,112,26.2,0.245,30,0
768
+ 1,126,60,0,0,30.1,0.349,47,1
769
+ 1,93,70,31,0,30.4,0.315,23,0
src/Diabetes-Detection/diabetes.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Diabetes-Detection/diabetes.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # import the libraries
3
+ import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ import missingno as msno
8
+ from sklearn.preprocessing import StandardScaler
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.linear_model import LogisticRegression
11
+ from sklearn.tree import DecisionTreeClassifier
12
+ from sklearn.ensemble import RandomForestClassifier
13
+ from sklearn.metrics import mean_squared_error
14
+ from sklearn import metrics
15
+ from sklearn.metrics import accuracy_score, classification_report
16
+ import joblib
17
+
18
+ # read the dataset
19
+ data = pd.read_csv("diabetes.csv")
20
+
21
+ # Remove outlier
22
+ Q1 = data.quantile(0.25)
23
+ Q3 = data.quantile(0.75)
24
+ IQR = Q3 - Q1
25
+
26
+
27
+ # remove the outlier
28
+
29
+ data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis = 1)]
30
+
31
+ # prepare the data
32
+ y = data["Outcome"].copy()
33
+ X = data.drop("Outcome",axis=1)
34
+
35
+ '''Train test split'''
36
+
37
+ X_train, X_test , y_train, y_test = train_test_split(X , y, test_size = 0.2, random_state = 42)
38
+
39
+ rf = RandomForestClassifier().fit(X_train,y_train)
40
+
41
+ # save and load model
42
+
43
+ filename = 'diabetes.sav'
44
+
45
+ joblib.dump(rf, filename)
src/Diabetes-Detection/diabetes.sav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d282dbe8014b17791459a7aded6dc43905d9ad26657348ef934b9a4ee0f8d36
3
+ size 1317225
src/Diabetes-Detection/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5572ec1d3b2734e0bd7f647644cc8e36e640ded6d1edd00ccacc95598e8d99c1
3
+ size 1314677
src/Diabetes-Detection/scaler.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b44e86e740d4d7efe87d6f2024c9b941ef1360f55cdf2b88b84b103ce260fce5
3
+ size 1239
src/Diabetes-Detection/scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d10346c455710f836e2ba77b6e450be047fb27d42d3126665f693829a3c7a97
3
+ size 833
src/Heart-Disease/.ipynb_checkpoints/heart disease prediction-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Heart-Disease/heart disease prediction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Heart-Disease/heart.csv ADDED
@@ -0,0 +1,919 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Age,Sex,ChestPainType,RestingBP,Cholesterol,FastingBS,RestingECG,MaxHR,ExerciseAngina,Oldpeak,ST_Slope,HeartDisease
2
+ 40,M,ATA,140,289,0,Normal,172,N,0,Up,0
3
+ 49,F,NAP,160,180,0,Normal,156,N,1,Flat,1
4
+ 37,M,ATA,130,283,0,ST,98,N,0,Up,0
5
+ 48,F,ASY,138,214,0,Normal,108,Y,1.5,Flat,1
6
+ 54,M,NAP,150,195,0,Normal,122,N,0,Up,0
7
+ 39,M,NAP,120,339,0,Normal,170,N,0,Up,0
8
+ 45,F,ATA,130,237,0,Normal,170,N,0,Up,0
9
+ 54,M,ATA,110,208,0,Normal,142,N,0,Up,0
10
+ 37,M,ASY,140,207,0,Normal,130,Y,1.5,Flat,1
11
+ 48,F,ATA,120,284,0,Normal,120,N,0,Up,0
12
+ 37,F,NAP,130,211,0,Normal,142,N,0,Up,0
13
+ 58,M,ATA,136,164,0,ST,99,Y,2,Flat,1
14
+ 39,M,ATA,120,204,0,Normal,145,N,0,Up,0
15
+ 49,M,ASY,140,234,0,Normal,140,Y,1,Flat,1
16
+ 42,F,NAP,115,211,0,ST,137,N,0,Up,0
17
+ 54,F,ATA,120,273,0,Normal,150,N,1.5,Flat,0
18
+ 38,M,ASY,110,196,0,Normal,166,N,0,Flat,1
19
+ 43,F,ATA,120,201,0,Normal,165,N,0,Up,0
20
+ 60,M,ASY,100,248,0,Normal,125,N,1,Flat,1
21
+ 36,M,ATA,120,267,0,Normal,160,N,3,Flat,1
22
+ 43,F,TA,100,223,0,Normal,142,N,0,Up,0
23
+ 44,M,ATA,120,184,0,Normal,142,N,1,Flat,0
24
+ 49,F,ATA,124,201,0,Normal,164,N,0,Up,0
25
+ 44,M,ATA,150,288,0,Normal,150,Y,3,Flat,1
26
+ 40,M,NAP,130,215,0,Normal,138,N,0,Up,0
27
+ 36,M,NAP,130,209,0,Normal,178,N,0,Up,0
28
+ 53,M,ASY,124,260,0,ST,112,Y,3,Flat,0
29
+ 52,M,ATA,120,284,0,Normal,118,N,0,Up,0
30
+ 53,F,ATA,113,468,0,Normal,127,N,0,Up,0
31
+ 51,M,ATA,125,188,0,Normal,145,N,0,Up,0
32
+ 53,M,NAP,145,518,0,Normal,130,N,0,Flat,1
33
+ 56,M,NAP,130,167,0,Normal,114,N,0,Up,0
34
+ 54,M,ASY,125,224,0,Normal,122,N,2,Flat,1
35
+ 41,M,ASY,130,172,0,ST,130,N,2,Flat,1
36
+ 43,F,ATA,150,186,0,Normal,154,N,0,Up,0
37
+ 32,M,ATA,125,254,0,Normal,155,N,0,Up,0
38
+ 65,M,ASY,140,306,1,Normal,87,Y,1.5,Flat,1
39
+ 41,F,ATA,110,250,0,ST,142,N,0,Up,0
40
+ 48,F,ATA,120,177,1,ST,148,N,0,Up,0
41
+ 48,F,ASY,150,227,0,Normal,130,Y,1,Flat,0
42
+ 54,F,ATA,150,230,0,Normal,130,N,0,Up,0
43
+ 54,F,NAP,130,294,0,ST,100,Y,0,Flat,1
44
+ 35,M,ATA,150,264,0,Normal,168,N,0,Up,0
45
+ 52,M,NAP,140,259,0,ST,170,N,0,Up,0
46
+ 43,M,ASY,120,175,0,Normal,120,Y,1,Flat,1
47
+ 59,M,NAP,130,318,0,Normal,120,Y,1,Flat,0
48
+ 37,M,ASY,120,223,0,Normal,168,N,0,Up,0
49
+ 50,M,ATA,140,216,0,Normal,170,N,0,Up,0
50
+ 36,M,NAP,112,340,0,Normal,184,N,1,Flat,0
51
+ 41,M,ASY,110,289,0,Normal,170,N,0,Flat,1
52
+ 50,M,ASY,130,233,0,Normal,121,Y,2,Flat,1
53
+ 47,F,ASY,120,205,0,Normal,98,Y,2,Flat,1
54
+ 45,M,ATA,140,224,1,Normal,122,N,0,Up,0
55
+ 41,F,ATA,130,245,0,Normal,150,N,0,Up,0
56
+ 52,F,ASY,130,180,0,Normal,140,Y,1.5,Flat,0
57
+ 51,F,ATA,160,194,0,Normal,170,N,0,Up,0
58
+ 31,M,ASY,120,270,0,Normal,153,Y,1.5,Flat,1
59
+ 58,M,NAP,130,213,0,ST,140,N,0,Flat,1
60
+ 54,M,ASY,150,365,0,ST,134,N,1,Up,0
61
+ 52,M,ASY,112,342,0,ST,96,Y,1,Flat,1
62
+ 49,M,ATA,100,253,0,Normal,174,N,0,Up,0
63
+ 43,F,NAP,150,254,0,Normal,175,N,0,Up,0
64
+ 45,M,ASY,140,224,0,Normal,144,N,0,Up,0
65
+ 46,M,ASY,120,277,0,Normal,125,Y,1,Flat,1
66
+ 50,F,ATA,110,202,0,Normal,145,N,0,Up,0
67
+ 37,F,ATA,120,260,0,Normal,130,N,0,Up,0
68
+ 45,F,ASY,132,297,0,Normal,144,N,0,Up,0
69
+ 32,M,ATA,110,225,0,Normal,184,N,0,Up,0
70
+ 52,M,ASY,160,246,0,ST,82,Y,4,Flat,1
71
+ 44,M,ASY,150,412,0,Normal,170,N,0,Up,0
72
+ 57,M,ATA,140,265,0,ST,145,Y,1,Flat,1
73
+ 44,M,ATA,130,215,0,Normal,135,N,0,Up,0
74
+ 52,M,ASY,120,182,0,Normal,150,N,0,Flat,1
75
+ 44,F,ASY,120,218,0,ST,115,N,0,Up,0
76
+ 55,M,ASY,140,268,0,Normal,128,Y,1.5,Flat,1
77
+ 46,M,NAP,150,163,0,Normal,116,N,0,Up,0
78
+ 32,M,ASY,118,529,0,Normal,130,N,0,Flat,1
79
+ 35,F,ASY,140,167,0,Normal,150,N,0,Up,0
80
+ 52,M,ATA,140,100,0,Normal,138,Y,0,Up,0
81
+ 49,M,ASY,130,206,0,Normal,170,N,0,Flat,1
82
+ 55,M,NAP,110,277,0,Normal,160,N,0,Up,0
83
+ 54,M,ATA,120,238,0,Normal,154,N,0,Up,0
84
+ 63,M,ASY,150,223,0,Normal,115,N,0,Flat,1
85
+ 52,M,ATA,160,196,0,Normal,165,N,0,Up,0
86
+ 56,M,ASY,150,213,1,Normal,125,Y,1,Flat,1
87
+ 66,M,ASY,140,139,0,Normal,94,Y,1,Flat,1
88
+ 65,M,ASY,170,263,1,Normal,112,Y,2,Flat,1
89
+ 53,F,ATA,140,216,0,Normal,142,Y,2,Flat,0
90
+ 43,M,TA,120,291,0,ST,155,N,0,Flat,1
91
+ 55,M,ASY,140,229,0,Normal,110,Y,0.5,Flat,0
92
+ 49,F,ATA,110,208,0,Normal,160,N,0,Up,0
93
+ 39,M,ASY,130,307,0,Normal,140,N,0,Up,0
94
+ 52,F,ATA,120,210,0,Normal,148,N,0,Up,0
95
+ 48,M,ASY,160,329,0,Normal,92,Y,1.5,Flat,1
96
+ 39,F,NAP,110,182,0,ST,180,N,0,Up,0
97
+ 58,M,ASY,130,263,0,Normal,140,Y,2,Flat,1
98
+ 43,M,ATA,142,207,0,Normal,138,N,0,Up,0
99
+ 39,M,NAP,160,147,1,Normal,160,N,0,Up,0
100
+ 56,M,ASY,120,85,0,Normal,140,N,0,Up,0
101
+ 41,M,ATA,125,269,0,Normal,144,N,0,Up,0
102
+ 65,M,ASY,130,275,0,ST,115,Y,1,Flat,1
103
+ 51,M,ASY,130,179,0,Normal,100,N,0,Up,0
104
+ 40,F,ASY,150,392,0,Normal,130,N,2,Flat,1
105
+ 40,M,ASY,120,466,1,Normal,152,Y,1,Flat,1
106
+ 46,M,ASY,118,186,0,Normal,124,N,0,Flat,1
107
+ 57,M,ATA,140,260,1,Normal,140,N,0,Up,0
108
+ 48,F,ASY,120,254,0,ST,110,N,0,Up,0
109
+ 34,M,ATA,150,214,0,ST,168,N,0,Up,0
110
+ 50,M,ASY,140,129,0,Normal,135,N,0,Up,0
111
+ 39,M,ATA,190,241,0,Normal,106,N,0,Up,0
112
+ 59,F,ATA,130,188,0,Normal,124,N,1,Flat,0
113
+ 57,M,ASY,150,255,0,Normal,92,Y,3,Flat,1
114
+ 47,M,ASY,140,276,1,Normal,125,Y,0,Up,0
115
+ 38,M,ATA,140,297,0,Normal,150,N,0,Up,0
116
+ 49,F,NAP,130,207,0,ST,135,N,0,Up,0
117
+ 33,F,ASY,100,246,0,Normal,150,Y,1,Flat,1
118
+ 38,M,ASY,120,282,0,Normal,170,N,0,Flat,1
119
+ 59,F,ASY,130,338,1,ST,130,Y,1.5,Flat,1
120
+ 35,F,TA,120,160,0,ST,185,N,0,Up,0
121
+ 34,M,TA,140,156,0,Normal,180,N,0,Flat,1
122
+ 47,F,NAP,135,248,1,Normal,170,N,0,Flat,1
123
+ 52,F,NAP,125,272,0,Normal,139,N,0,Up,0
124
+ 46,M,ASY,110,240,0,ST,140,N,0,Up,0
125
+ 58,F,ATA,180,393,0,Normal,110,Y,1,Flat,1
126
+ 58,M,ATA,130,230,0,Normal,150,N,0,Up,0
127
+ 54,M,ATA,120,246,0,Normal,110,N,0,Up,0
128
+ 34,F,ATA,130,161,0,Normal,190,N,0,Up,0
129
+ 48,F,ASY,108,163,0,Normal,175,N,2,Up,0
130
+ 54,F,ATA,120,230,1,Normal,140,N,0,Up,0
131
+ 42,M,NAP,120,228,0,Normal,152,Y,1.5,Flat,0
132
+ 38,M,NAP,145,292,0,Normal,130,N,0,Up,0
133
+ 46,M,ASY,110,202,0,Normal,150,Y,0,Flat,1
134
+ 56,M,ASY,170,388,0,ST,122,Y,2,Flat,1
135
+ 56,M,ASY,150,230,0,ST,124,Y,1.5,Flat,1
136
+ 61,F,ASY,130,294,0,ST,120,Y,1,Flat,0
137
+ 49,M,NAP,115,265,0,Normal,175,N,0,Flat,1
138
+ 43,F,ATA,120,215,0,ST,175,N,0,Up,0
139
+ 39,M,ATA,120,241,0,ST,146,N,2,Up,0
140
+ 54,M,ASY,140,166,0,Normal,118,Y,0,Flat,1
141
+ 43,M,ASY,150,247,0,Normal,130,Y,2,Flat,1
142
+ 52,M,ASY,160,331,0,Normal,94,Y,2.5,Flat,1
143
+ 50,M,ASY,140,341,0,ST,125,Y,2.5,Flat,1
144
+ 47,M,ASY,160,291,0,ST,158,Y,3,Flat,1
145
+ 53,M,ASY,140,243,0,Normal,155,N,0,Up,0
146
+ 56,F,ATA,120,279,0,Normal,150,N,1,Flat,1
147
+ 39,M,ASY,110,273,0,Normal,132,N,0,Up,0
148
+ 42,M,ATA,120,198,0,Normal,155,N,0,Up,0
149
+ 43,F,ATA,120,249,0,ST,176,N,0,Up,0
150
+ 50,M,ATA,120,168,0,Normal,160,N,0,Up,0
151
+ 54,M,ASY,130,603,1,Normal,125,Y,1,Flat,1
152
+ 39,M,ATA,130,215,0,Normal,120,N,0,Up,0
153
+ 48,M,ATA,100,159,0,Normal,100,N,0,Up,0
154
+ 40,M,ATA,130,275,0,Normal,150,N,0,Up,0
155
+ 55,M,ASY,120,270,0,Normal,140,N,0,Up,0
156
+ 41,M,ATA,120,291,0,ST,160,N,0,Up,0
157
+ 56,M,ASY,155,342,1,Normal,150,Y,3,Flat,1
158
+ 38,M,ASY,110,190,0,Normal,150,Y,1,Flat,1
159
+ 49,M,ASY,140,185,0,Normal,130,N,0,Up,0
160
+ 44,M,ASY,130,290,0,Normal,100,Y,2,Flat,1
161
+ 54,M,ATA,160,195,0,ST,130,N,1,Up,0
162
+ 59,M,ASY,140,264,1,LVH,119,Y,0,Flat,1
163
+ 49,M,ASY,128,212,0,Normal,96,Y,0,Flat,1
164
+ 47,M,ATA,160,263,0,Normal,174,N,0,Up,0
165
+ 42,M,ATA,120,196,0,Normal,150,N,0,Up,0
166
+ 52,F,ATA,140,225,0,Normal,140,N,0,Up,0
167
+ 46,M,TA,140,272,1,Normal,175,N,2,Flat,1
168
+ 50,M,ASY,140,231,0,ST,140,Y,5,Flat,1
169
+ 48,M,ATA,140,238,0,Normal,118,N,0,Up,0
170
+ 58,M,ASY,135,222,0,Normal,100,N,0,Up,0
171
+ 58,M,NAP,140,179,0,Normal,160,N,0,Up,0
172
+ 29,M,ATA,120,243,0,Normal,160,N,0,Up,0
173
+ 40,M,NAP,140,235,0,Normal,188,N,0,Up,0
174
+ 53,M,ATA,140,320,0,Normal,162,N,0,Up,0
175
+ 49,M,NAP,140,187,0,Normal,172,N,0,Up,0
176
+ 52,M,ASY,140,266,0,Normal,134,Y,2,Flat,1
177
+ 43,M,ASY,140,288,0,Normal,135,Y,2,Flat,1
178
+ 54,M,ASY,140,216,0,Normal,105,N,1.5,Flat,1
179
+ 59,M,ATA,140,287,0,Normal,150,N,0,Up,0
180
+ 37,M,NAP,130,194,0,Normal,150,N,0,Up,0
181
+ 46,F,ASY,130,238,0,Normal,90,N,0,Up,0
182
+ 52,M,ASY,130,225,0,Normal,120,Y,2,Flat,1
183
+ 51,M,ATA,130,224,0,Normal,150,N,0,Up,0
184
+ 52,M,ASY,140,404,0,Normal,124,Y,2,Flat,1
185
+ 46,M,ASY,110,238,0,ST,140,Y,1,Flat,0
186
+ 54,F,ATA,160,312,0,Normal,130,N,0,Up,0
187
+ 58,M,NAP,160,211,1,ST,92,N,0,Flat,1
188
+ 58,M,ATA,130,251,0,Normal,110,N,0,Up,0
189
+ 41,M,ASY,120,237,1,Normal,138,Y,1,Flat,1
190
+ 50,F,ASY,120,328,0,Normal,110,Y,1,Flat,0
191
+ 53,M,ASY,180,285,0,ST,120,Y,1.5,Flat,1
192
+ 46,M,ASY,180,280,0,ST,120,N,0,Up,0
193
+ 50,M,ATA,170,209,0,ST,116,N,0,Up,0
194
+ 48,M,ATA,130,245,0,Normal,160,N,0,Up,0
195
+ 45,M,NAP,135,192,0,Normal,110,N,0,Up,0
196
+ 41,F,ATA,125,184,0,Normal,180,N,0,Up,0
197
+ 62,F,TA,160,193,0,Normal,116,N,0,Up,0
198
+ 49,M,ASY,120,297,0,Normal,132,N,1,Flat,0
199
+ 42,M,ATA,150,268,0,Normal,136,N,0,Up,0
200
+ 53,M,ASY,120,246,0,Normal,116,Y,0,Flat,1
201
+ 57,F,TA,130,308,0,Normal,98,N,1,Flat,0
202
+ 47,M,TA,110,249,0,Normal,150,N,0,Up,0
203
+ 46,M,NAP,120,230,0,Normal,150,N,0,Up,0
204
+ 42,M,NAP,160,147,0,Normal,146,N,0,Up,0
205
+ 31,F,ATA,100,219,0,ST,150,N,0,Up,0
206
+ 56,M,ATA,130,184,0,Normal,100,N,0,Up,0
207
+ 50,M,ASY,150,215,0,Normal,140,Y,0,Up,0
208
+ 35,M,ATA,120,308,0,LVH,180,N,0,Up,0
209
+ 35,M,ATA,110,257,0,Normal,140,N,0,Flat,1
210
+ 28,M,ATA,130,132,0,LVH,185,N,0,Up,0
211
+ 54,M,ASY,125,216,0,Normal,140,N,0,Flat,1
212
+ 48,M,ASY,106,263,1,Normal,110,N,0,Flat,1
213
+ 50,F,NAP,140,288,0,Normal,140,Y,0,Flat,1
214
+ 56,M,NAP,130,276,0,Normal,128,Y,1,Up,0
215
+ 56,F,NAP,130,219,0,ST,164,N,0,Up,0
216
+ 47,M,ASY,150,226,0,Normal,98,Y,1.5,Flat,1
217
+ 30,F,TA,170,237,0,ST,170,N,0,Up,0
218
+ 39,M,ASY,110,280,0,Normal,150,N,0,Flat,1
219
+ 54,M,NAP,120,217,0,Normal,137,N,0,Up,0
220
+ 55,M,ATA,140,196,0,Normal,150,N,0,Up,0
221
+ 29,M,ATA,140,263,0,Normal,170,N,0,Up,0
222
+ 46,M,ASY,130,222,0,Normal,112,N,0,Flat,1
223
+ 51,F,ASY,160,303,0,Normal,150,Y,1,Flat,1
224
+ 48,F,NAP,120,195,0,Normal,125,N,0,Up,0
225
+ 33,M,NAP,120,298,0,Normal,185,N,0,Up,0
226
+ 55,M,ATA,120,256,1,Normal,137,N,0,Up,0
227
+ 50,M,ASY,145,264,0,Normal,150,N,0,Flat,1
228
+ 53,M,NAP,120,195,0,Normal,140,N,0,Up,0
229
+ 38,M,ASY,92,117,0,Normal,134,Y,2.5,Flat,1
230
+ 41,M,ATA,120,295,0,Normal,170,N,0,Up,0
231
+ 37,F,ASY,130,173,0,ST,184,N,0,Up,0
232
+ 37,M,ASY,130,315,0,Normal,158,N,0,Up,0
233
+ 40,M,NAP,130,281,0,Normal,167,N,0,Up,0
234
+ 38,F,ATA,120,275,0,Normal,129,N,0,Up,0
235
+ 41,M,ASY,112,250,0,Normal,142,N,0,Up,0
236
+ 54,F,ATA,140,309,0,ST,140,N,0,Up,0
237
+ 39,M,ATA,120,200,0,Normal,160,Y,1,Flat,0
238
+ 41,M,ASY,120,336,0,Normal,118,Y,3,Flat,1
239
+ 55,M,TA,140,295,0,Normal,136,N,0,Flat,1
240
+ 48,M,ASY,160,355,0,Normal,99,Y,2,Flat,1
241
+ 48,M,ASY,160,193,0,Normal,102,Y,3,Flat,1
242
+ 55,M,ATA,145,326,0,Normal,155,N,0,Up,0
243
+ 54,M,ASY,200,198,0,Normal,142,Y,2,Flat,1
244
+ 55,M,ATA,160,292,1,Normal,143,Y,2,Flat,1
245
+ 43,F,ATA,120,266,0,Normal,118,N,0,Up,0
246
+ 48,M,ASY,160,268,0,Normal,103,Y,1,Flat,1
247
+ 54,M,TA,120,171,0,Normal,137,N,2,Up,0
248
+ 54,M,NAP,120,237,0,Normal,150,Y,1.5,Flat,1
249
+ 48,M,ASY,122,275,1,ST,150,Y,2,Down,1
250
+ 45,M,ASY,130,219,0,ST,130,Y,1,Flat,1
251
+ 49,M,ASY,130,341,0,Normal,120,Y,1,Flat,1
252
+ 44,M,ASY,135,491,0,Normal,135,N,0,Flat,1
253
+ 48,M,ASY,120,260,0,Normal,115,N,2,Flat,1
254
+ 61,M,ASY,125,292,0,ST,115,Y,0,Up,0
255
+ 62,M,ATA,140,271,0,Normal,152,N,1,Up,0
256
+ 55,M,ASY,145,248,0,Normal,96,Y,2,Flat,1
257
+ 53,F,NAP,120,274,0,Normal,130,N,0,Up,0
258
+ 55,F,ATA,130,394,0,LVH,150,N,0,Up,0
259
+ 36,M,NAP,150,160,0,Normal,172,N,0,Up,0
260
+ 51,F,NAP,150,200,0,Normal,120,N,0.5,Up,0
261
+ 55,F,ATA,122,320,0,Normal,155,N,0,Up,0
262
+ 46,M,ATA,140,275,0,Normal,165,Y,0,Up,0
263
+ 54,F,ATA,120,221,0,Normal,138,N,1,Up,0
264
+ 46,M,ASY,120,231,0,Normal,115,Y,0,Flat,1
265
+ 59,M,ASY,130,126,0,Normal,125,N,0,Flat,1
266
+ 47,M,NAP,140,193,0,Normal,145,Y,1,Flat,1
267
+ 54,M,ATA,160,305,0,Normal,175,N,0,Up,0
268
+ 52,M,ASY,130,298,0,Normal,110,Y,1,Flat,1
269
+ 34,M,ATA,98,220,0,Normal,150,N,0,Up,0
270
+ 54,M,ASY,130,242,0,Normal,91,Y,1,Flat,1
271
+ 47,F,NAP,130,235,0,Normal,145,N,2,Flat,0
272
+ 45,M,ASY,120,225,0,Normal,140,N,0,Up,0
273
+ 32,F,ATA,105,198,0,Normal,165,N,0,Up,0
274
+ 55,M,ASY,140,201,0,Normal,130,Y,3,Flat,1
275
+ 55,M,NAP,120,220,0,LVH,134,N,0,Up,0
276
+ 45,F,ATA,180,295,0,Normal,180,N,0,Up,0
277
+ 59,M,NAP,180,213,0,Normal,100,N,0,Up,0
278
+ 51,M,NAP,135,160,0,Normal,150,N,2,Flat,1
279
+ 52,M,ASY,170,223,0,Normal,126,Y,1.5,Flat,1
280
+ 57,F,ASY,180,347,0,ST,126,Y,0.8,Flat,0
281
+ 54,F,ATA,130,253,0,ST,155,N,0,Up,0
282
+ 60,M,NAP,120,246,0,LVH,135,N,0,Up,0
283
+ 49,M,ASY,150,222,0,Normal,122,N,2,Flat,1
284
+ 51,F,NAP,130,220,0,Normal,160,Y,2,Up,0
285
+ 55,F,ATA,110,344,0,ST,160,N,0,Up,0
286
+ 42,M,ASY,140,358,0,Normal,170,N,0,Up,0
287
+ 51,F,NAP,110,190,0,Normal,120,N,0,Up,0
288
+ 59,M,ASY,140,169,0,Normal,140,N,0,Up,0
289
+ 53,M,ATA,120,181,0,Normal,132,N,0,Up,0
290
+ 48,F,ATA,133,308,0,ST,156,N,2,Up,0
291
+ 36,M,ATA,120,166,0,Normal,180,N,0,Up,0
292
+ 48,M,NAP,110,211,0,Normal,138,N,0,Up,0
293
+ 47,F,ATA,140,257,0,Normal,135,N,1,Up,0
294
+ 53,M,ASY,130,182,0,Normal,148,N,0,Up,0
295
+ 65,M,ASY,115,0,0,Normal,93,Y,0,Flat,1
296
+ 32,M,TA,95,0,1,Normal,127,N,0.7,Up,1
297
+ 61,M,ASY,105,0,1,Normal,110,Y,1.5,Up,1
298
+ 50,M,ASY,145,0,1,Normal,139,Y,0.7,Flat,1
299
+ 57,M,ASY,110,0,1,ST,131,Y,1.4,Up,1
300
+ 51,M,ASY,110,0,1,Normal,92,N,0,Flat,1
301
+ 47,M,ASY,110,0,1,ST,149,N,2.1,Up,1
302
+ 60,M,ASY,160,0,1,Normal,149,N,0.4,Flat,1
303
+ 55,M,ATA,140,0,0,ST,150,N,0.2,Up,0
304
+ 53,M,ASY,125,0,1,Normal,120,N,1.5,Up,1
305
+ 62,F,ASY,120,0,1,ST,123,Y,1.7,Down,1
306
+ 51,M,ASY,95,0,1,Normal,126,N,2.2,Flat,1
307
+ 51,F,ASY,120,0,1,Normal,127,Y,1.5,Up,1
308
+ 55,M,ASY,115,0,1,Normal,155,N,0.1,Flat,1
309
+ 53,M,ATA,130,0,0,ST,120,N,0.7,Down,0
310
+ 58,M,ASY,115,0,1,Normal,138,N,0.5,Up,1
311
+ 57,M,ASY,95,0,1,Normal,182,N,0.7,Down,1
312
+ 65,M,ASY,155,0,0,Normal,154,N,1,Up,0
313
+ 60,M,ASY,125,0,1,Normal,110,N,0.1,Up,1
314
+ 41,M,ASY,125,0,1,Normal,176,N,1.6,Up,1
315
+ 34,M,ASY,115,0,1,Normal,154,N,0.2,Up,1
316
+ 53,M,ASY,80,0,0,Normal,141,Y,2,Down,0
317
+ 74,M,ATA,145,0,1,ST,123,N,1.3,Up,1
318
+ 57,M,NAP,105,0,1,Normal,148,N,0.3,Flat,1
319
+ 56,M,ASY,140,0,1,Normal,121,Y,1.8,Up,1
320
+ 61,M,ASY,130,0,1,Normal,77,N,2.5,Flat,1
321
+ 68,M,ASY,145,0,1,Normal,136,N,1.8,Up,1
322
+ 59,M,NAP,125,0,1,Normal,175,N,2.6,Flat,1
323
+ 63,M,ASY,100,0,1,Normal,109,N,-0.9,Flat,1
324
+ 38,F,ASY,105,0,1,Normal,166,N,2.8,Up,1
325
+ 62,M,ASY,115,0,1,Normal,128,Y,2.5,Down,1
326
+ 46,M,ASY,100,0,1,ST,133,N,-2.6,Flat,1
327
+ 42,M,ASY,105,0,1,Normal,128,Y,-1.5,Down,1
328
+ 45,M,NAP,110,0,0,Normal,138,N,-0.1,Up,0
329
+ 59,M,ASY,125,0,1,Normal,119,Y,0.9,Up,1
330
+ 52,M,ASY,95,0,1,Normal,82,Y,0.8,Flat,1
331
+ 60,M,ASY,130,0,1,ST,130,Y,1.1,Down,1
332
+ 60,M,NAP,115,0,1,Normal,143,N,2.4,Up,1
333
+ 56,M,ASY,115,0,1,ST,82,N,-1,Up,1
334
+ 38,M,NAP,100,0,0,Normal,179,N,-1.1,Up,0
335
+ 40,M,ASY,95,0,1,ST,144,N,0,Up,1
336
+ 51,M,ASY,130,0,1,Normal,170,N,-0.7,Up,1
337
+ 62,M,TA,120,0,1,LVH,134,N,-0.8,Flat,1
338
+ 72,M,NAP,160,0,0,LVH,114,N,1.6,Flat,0
339
+ 63,M,ASY,150,0,1,ST,154,N,3.7,Up,1
340
+ 63,M,ASY,140,0,1,LVH,149,N,2,Up,1
341
+ 64,F,ASY,95,0,1,Normal,145,N,1.1,Down,1
342
+ 43,M,ASY,100,0,1,Normal,122,N,1.5,Down,1
343
+ 64,M,ASY,110,0,1,Normal,114,Y,1.3,Down,1
344
+ 61,M,ASY,110,0,1,Normal,113,N,1.4,Flat,1
345
+ 52,M,ASY,130,0,1,Normal,120,N,0,Flat,1
346
+ 51,M,ASY,120,0,1,Normal,104,N,0,Flat,1
347
+ 69,M,ASY,135,0,0,Normal,130,N,0,Flat,1
348
+ 59,M,ASY,120,0,0,Normal,115,N,0,Flat,1
349
+ 48,M,ASY,115,0,1,Normal,128,N,0,Flat,1
350
+ 69,M,ASY,137,0,0,ST,104,Y,1.6,Flat,1
351
+ 36,M,ASY,110,0,1,Normal,125,Y,1,Flat,1
352
+ 53,M,ASY,120,0,1,Normal,120,N,0,Flat,1
353
+ 43,M,ASY,140,0,0,ST,140,Y,0.5,Up,1
354
+ 56,M,ASY,120,0,0,ST,100,Y,-1,Down,1
355
+ 58,M,ASY,130,0,0,ST,100,Y,1,Flat,1
356
+ 55,M,ASY,120,0,0,ST,92,N,0.3,Up,1
357
+ 67,M,TA,145,0,0,LVH,125,N,0,Flat,1
358
+ 46,M,ASY,115,0,0,Normal,113,Y,1.5,Flat,1
359
+ 53,M,ATA,120,0,0,Normal,95,N,0,Flat,1
360
+ 38,M,NAP,115,0,0,Normal,128,Y,0,Flat,1
361
+ 53,M,NAP,105,0,0,Normal,115,N,0,Flat,1
362
+ 62,M,NAP,160,0,0,Normal,72,Y,0,Flat,1
363
+ 47,M,ASY,160,0,0,Normal,124,Y,0,Flat,1
364
+ 56,M,NAP,155,0,0,ST,99,N,0,Flat,1
365
+ 56,M,ASY,120,0,0,ST,148,N,0,Flat,1
366
+ 56,M,NAP,120,0,0,Normal,97,N,0,Flat,0
367
+ 64,F,ASY,200,0,0,Normal,140,Y,1,Flat,1
368
+ 61,M,ASY,150,0,0,Normal,117,Y,2,Flat,1
369
+ 68,M,ASY,135,0,0,ST,120,Y,0,Up,1
370
+ 57,M,ASY,140,0,0,Normal,120,Y,2,Flat,1
371
+ 63,M,ASY,150,0,0,Normal,86,Y,2,Flat,1
372
+ 60,M,ASY,135,0,0,Normal,63,Y,0.5,Up,1
373
+ 66,M,ASY,150,0,0,Normal,108,Y,2,Flat,1
374
+ 63,M,ASY,185,0,0,Normal,98,Y,0,Up,1
375
+ 59,M,ASY,135,0,0,Normal,115,Y,1,Flat,1
376
+ 61,M,ASY,125,0,0,Normal,105,Y,0,Down,1
377
+ 73,F,NAP,160,0,0,ST,121,N,0,Up,1
378
+ 47,M,NAP,155,0,0,Normal,118,Y,1,Flat,1
379
+ 65,M,ASY,160,0,1,ST,122,N,1.2,Flat,1
380
+ 70,M,ASY,140,0,1,Normal,157,Y,2,Flat,1
381
+ 50,M,ASY,120,0,0,ST,156,Y,0,Up,1
382
+ 60,M,ASY,160,0,0,ST,99,Y,0.5,Flat,1
383
+ 50,M,ASY,115,0,0,Normal,120,Y,0.5,Flat,1
384
+ 43,M,ASY,115,0,0,Normal,145,Y,2,Flat,1
385
+ 38,F,ASY,110,0,0,Normal,156,N,0,Flat,1
386
+ 54,M,ASY,120,0,0,Normal,155,N,0,Flat,1
387
+ 61,M,ASY,150,0,0,Normal,105,Y,0,Flat,1
388
+ 42,M,ASY,145,0,0,Normal,99,Y,0,Flat,1
389
+ 53,M,ASY,130,0,0,LVH,135,Y,1,Flat,1
390
+ 55,M,ASY,140,0,0,Normal,83,N,0,Flat,1
391
+ 61,M,ASY,160,0,1,ST,145,N,1,Flat,1
392
+ 51,M,ASY,140,0,0,Normal,60,N,0,Flat,1
393
+ 70,M,ASY,115,0,0,ST,92,Y,0,Flat,1
394
+ 61,M,ASY,130,0,0,LVH,115,N,0,Flat,1
395
+ 38,M,ASY,150,0,1,Normal,120,Y,0.7,Flat,1
396
+ 57,M,ASY,160,0,1,Normal,98,Y,2,Flat,1
397
+ 38,M,ASY,135,0,1,Normal,150,N,0,Flat,1
398
+ 62,F,TA,140,0,1,Normal,143,N,0,Flat,1
399
+ 58,M,ASY,170,0,1,ST,105,Y,0,Flat,1
400
+ 52,M,ASY,165,0,1,Normal,122,Y,1,Up,1
401
+ 61,M,NAP,200,0,1,ST,70,N,0,Flat,1
402
+ 50,F,ASY,160,0,1,Normal,110,N,0,Flat,1
403
+ 51,M,ASY,130,0,1,ST,163,N,0,Flat,1
404
+ 65,M,ASY,145,0,1,ST,67,N,0.7,Flat,1
405
+ 52,M,ASY,135,0,1,Normal,128,Y,2,Flat,1
406
+ 47,M,NAP,110,0,1,Normal,120,Y,0,Flat,1
407
+ 35,M,ASY,120,0,1,Normal,130,Y,1.2,Flat,1
408
+ 57,M,ASY,140,0,1,Normal,100,Y,0,Flat,1
409
+ 62,M,ASY,115,0,1,Normal,72,Y,-0.5,Flat,1
410
+ 59,M,ASY,110,0,1,Normal,94,N,0,Flat,1
411
+ 53,M,NAP,160,0,1,LVH,122,Y,0,Flat,1
412
+ 62,M,ASY,150,0,1,ST,78,N,2,Flat,1
413
+ 54,M,ASY,180,0,1,Normal,150,N,1.5,Flat,1
414
+ 56,M,ASY,125,0,1,Normal,103,Y,1,Flat,1
415
+ 56,M,NAP,125,0,1,Normal,98,N,-2,Flat,1
416
+ 54,M,ASY,130,0,1,Normal,110,Y,3,Flat,1
417
+ 66,F,ASY,155,0,1,Normal,90,N,0,Flat,1
418
+ 63,M,ASY,140,260,0,ST,112,Y,3,Flat,1
419
+ 44,M,ASY,130,209,0,ST,127,N,0,Up,0
420
+ 60,M,ASY,132,218,0,ST,140,Y,1.5,Down,1
421
+ 55,M,ASY,142,228,0,ST,149,Y,2.5,Up,1
422
+ 66,M,NAP,110,213,1,LVH,99,Y,1.3,Flat,0
423
+ 66,M,NAP,120,0,0,ST,120,N,-0.5,Up,0
424
+ 65,M,ASY,150,236,1,ST,105,Y,0,Flat,1
425
+ 60,M,NAP,180,0,0,ST,140,Y,1.5,Flat,0
426
+ 60,M,NAP,120,0,1,Normal,141,Y,2,Up,1
427
+ 60,M,ATA,160,267,1,ST,157,N,0.5,Flat,1
428
+ 56,M,ATA,126,166,0,ST,140,N,0,Up,0
429
+ 59,M,ASY,140,0,0,ST,117,Y,1,Flat,1
430
+ 62,M,ASY,110,0,0,Normal,120,Y,0.5,Flat,1
431
+ 63,M,NAP,133,0,0,LVH,120,Y,1,Flat,1
432
+ 57,M,ASY,128,0,1,ST,148,Y,1,Flat,1
433
+ 62,M,ASY,120,220,0,ST,86,N,0,Up,0
434
+ 63,M,ASY,170,177,0,Normal,84,Y,2.5,Down,1
435
+ 46,M,ASY,110,236,0,Normal,125,Y,2,Flat,1
436
+ 63,M,ASY,126,0,0,ST,120,N,1.5,Down,0
437
+ 60,M,ASY,152,0,0,ST,118,Y,0,Up,0
438
+ 58,M,ASY,116,0,0,Normal,124,N,1,Up,1
439
+ 64,M,ASY,120,0,1,ST,106,N,2,Flat,1
440
+ 63,M,NAP,130,0,0,ST,111,Y,0,Flat,1
441
+ 74,M,NAP,138,0,0,Normal,116,N,0.2,Up,0
442
+ 52,M,NAP,128,0,0,ST,180,N,3,Up,1
443
+ 69,M,ASY,130,0,1,ST,129,N,1,Flat,1
444
+ 51,M,ASY,128,0,1,ST,125,Y,1.2,Flat,1
445
+ 60,M,ASY,130,186,1,ST,140,Y,0.5,Flat,1
446
+ 56,M,ASY,120,100,0,Normal,120,Y,1.5,Flat,1
447
+ 55,M,NAP,136,228,0,ST,124,Y,1.6,Flat,1
448
+ 54,M,ASY,130,0,0,ST,117,Y,1.4,Flat,1
449
+ 77,M,ASY,124,171,0,ST,110,Y,2,Up,1
450
+ 63,M,ASY,160,230,1,Normal,105,Y,1,Flat,1
451
+ 55,M,NAP,0,0,0,Normal,155,N,1.5,Flat,1
452
+ 52,M,NAP,122,0,0,Normal,110,Y,2,Down,1
453
+ 64,M,ASY,144,0,0,ST,122,Y,1,Flat,1
454
+ 60,M,ASY,140,281,0,ST,118,Y,1.5,Flat,1
455
+ 60,M,ASY,120,0,0,Normal,133,Y,2,Up,0
456
+ 58,M,ASY,136,203,1,Normal,123,Y,1.2,Flat,1
457
+ 59,M,ASY,154,0,0,ST,131,Y,1.5,Up,0
458
+ 61,M,NAP,120,0,0,Normal,80,Y,0,Flat,1
459
+ 40,M,ASY,125,0,1,Normal,165,N,0,Flat,1
460
+ 61,M,ASY,134,0,1,ST,86,N,1.5,Flat,1
461
+ 41,M,ASY,104,0,0,ST,111,N,0,Up,0
462
+ 57,M,ASY,139,277,1,ST,118,Y,1.9,Flat,1
463
+ 63,M,ASY,136,0,0,Normal,84,Y,0,Flat,1
464
+ 59,M,ASY,122,233,0,Normal,117,Y,1.3,Down,1
465
+ 51,M,ASY,128,0,0,Normal,107,N,0,Up,0
466
+ 59,M,NAP,131,0,0,Normal,128,Y,2,Down,1
467
+ 42,M,NAP,134,240,0,Normal,160,N,0,Up,0
468
+ 55,M,NAP,120,0,0,ST,125,Y,2.5,Flat,1
469
+ 63,F,ATA,132,0,0,Normal,130,N,0.1,Up,0
470
+ 62,M,ASY,152,153,0,ST,97,Y,1.6,Up,1
471
+ 56,M,ATA,124,224,1,Normal,161,N,2,Flat,0
472
+ 53,M,ASY,126,0,0,Normal,106,N,0,Flat,1
473
+ 68,M,ASY,138,0,0,Normal,130,Y,3,Flat,1
474
+ 53,M,ASY,154,0,1,ST,140,Y,1.5,Flat,1
475
+ 60,M,NAP,141,316,1,ST,122,Y,1.7,Flat,1
476
+ 62,M,ATA,131,0,0,Normal,130,N,0.1,Up,0
477
+ 59,M,ASY,178,0,1,LVH,120,Y,0,Flat,1
478
+ 51,M,ASY,132,218,1,LVH,139,N,0.1,Up,0
479
+ 61,M,ASY,110,0,1,Normal,108,Y,2,Down,1
480
+ 57,M,ASY,130,311,1,ST,148,Y,2,Flat,1
481
+ 56,M,NAP,170,0,0,LVH,123,Y,2.5,Flat,1
482
+ 58,M,ATA,126,0,1,Normal,110,Y,2,Flat,1
483
+ 69,M,NAP,140,0,1,ST,118,N,2.5,Down,1
484
+ 67,M,TA,142,270,1,Normal,125,N,2.5,Up,1
485
+ 58,M,ASY,120,0,0,LVH,106,Y,1.5,Down,1
486
+ 65,M,ASY,134,0,0,Normal,112,Y,1.1,Flat,1
487
+ 63,M,ATA,139,217,1,ST,128,Y,1.2,Flat,1
488
+ 55,M,ATA,110,214,1,ST,180,N,0.4,Up,0
489
+ 57,M,ASY,140,214,0,ST,144,Y,2,Flat,1
490
+ 65,M,TA,140,252,0,Normal,135,N,0.3,Up,0
491
+ 54,M,ASY,136,220,0,Normal,140,Y,3,Flat,1
492
+ 72,M,NAP,120,214,0,Normal,102,Y,1,Flat,1
493
+ 75,M,ASY,170,203,1,ST,108,N,0,Flat,1
494
+ 49,M,TA,130,0,0,ST,145,N,3,Flat,1
495
+ 51,M,NAP,137,339,0,Normal,127,Y,1.7,Flat,1
496
+ 60,M,ASY,142,216,0,Normal,110,Y,2.5,Flat,1
497
+ 64,F,ASY,142,276,0,Normal,140,Y,1,Flat,1
498
+ 58,M,ASY,132,458,1,Normal,69,N,1,Down,0
499
+ 61,M,ASY,146,241,0,Normal,148,Y,3,Down,1
500
+ 67,M,ASY,160,384,1,ST,130,Y,0,Flat,1
501
+ 62,M,ASY,135,297,0,Normal,130,Y,1,Flat,1
502
+ 65,M,ASY,136,248,0,Normal,140,Y,4,Down,1
503
+ 63,M,ASY,130,308,0,Normal,138,Y,2,Flat,1
504
+ 69,M,ASY,140,208,0,ST,140,Y,2,Flat,1
505
+ 51,M,ASY,132,227,1,ST,138,N,0.2,Up,0
506
+ 62,M,ASY,158,210,1,Normal,112,Y,3,Down,1
507
+ 55,M,NAP,136,245,1,ST,131,Y,1.2,Flat,1
508
+ 75,M,ASY,136,225,0,Normal,112,Y,3,Flat,1
509
+ 40,M,NAP,106,240,0,Normal,80,Y,0,Up,0
510
+ 67,M,ASY,120,0,1,Normal,150,N,1.5,Down,1
511
+ 58,M,ASY,110,198,0,Normal,110,N,0,Flat,1
512
+ 60,M,ASY,136,195,0,Normal,126,N,0.3,Up,0
513
+ 63,M,ASY,160,267,1,ST,88,Y,2,Flat,1
514
+ 35,M,NAP,123,161,0,ST,153,N,-0.1,Up,0
515
+ 62,M,TA,112,258,0,ST,150,Y,1.3,Flat,1
516
+ 43,M,ASY,122,0,0,Normal,120,N,0.5,Up,1
517
+ 63,M,NAP,130,0,1,ST,160,N,3,Flat,0
518
+ 68,M,NAP,150,195,1,Normal,132,N,0,Flat,1
519
+ 65,M,ASY,150,235,0,Normal,120,Y,1.5,Flat,1
520
+ 48,M,NAP,102,0,1,ST,110,Y,1,Down,1
521
+ 63,M,ASY,96,305,0,ST,121,Y,1,Up,1
522
+ 64,M,ASY,130,223,0,ST,128,N,0.5,Flat,0
523
+ 61,M,ASY,120,282,0,ST,135,Y,4,Down,1
524
+ 50,M,ASY,144,349,0,LVH,120,Y,1,Up,1
525
+ 59,M,ASY,124,160,0,Normal,117,Y,1,Flat,1
526
+ 55,M,ASY,150,160,0,ST,150,N,0,Up,0
527
+ 45,M,NAP,130,236,0,Normal,144,N,0.1,Up,0
528
+ 65,M,ASY,144,312,0,LVH,113,Y,1.7,Flat,1
529
+ 61,M,ATA,139,283,0,Normal,135,N,0.3,Up,0
530
+ 49,M,NAP,131,142,0,Normal,127,Y,1.5,Flat,1
531
+ 72,M,ASY,143,211,0,Normal,109,Y,1.4,Flat,1
532
+ 50,M,ASY,133,218,0,Normal,128,Y,1.1,Flat,1
533
+ 64,M,ASY,143,306,1,ST,115,Y,1.8,Flat,1
534
+ 55,M,ASY,116,186,1,ST,102,N,0,Flat,1
535
+ 63,M,ASY,110,252,0,ST,140,Y,2,Flat,1
536
+ 59,M,ASY,125,222,0,Normal,135,Y,2.5,Down,1
537
+ 56,M,ASY,130,0,0,LVH,122,Y,1,Flat,1
538
+ 62,M,NAP,133,0,1,ST,119,Y,1.2,Flat,1
539
+ 74,M,ASY,150,258,1,ST,130,Y,4,Down,1
540
+ 54,M,ASY,130,202,1,Normal,112,Y,2,Flat,1
541
+ 57,M,ASY,110,197,0,LVH,100,N,0,Up,0
542
+ 62,M,NAP,138,204,0,ST,122,Y,1.2,Flat,1
543
+ 76,M,NAP,104,113,0,LVH,120,N,3.5,Down,1
544
+ 54,F,ASY,138,274,0,Normal,105,Y,1.5,Flat,1
545
+ 70,M,ASY,170,192,0,ST,129,Y,3,Down,1
546
+ 61,F,ATA,140,298,1,Normal,120,Y,0,Up,0
547
+ 48,M,ASY,132,272,0,ST,139,N,0.2,Up,0
548
+ 48,M,NAP,132,220,1,ST,162,N,0,Flat,1
549
+ 61,M,TA,142,200,1,ST,100,N,1.5,Down,1
550
+ 66,M,ASY,112,261,0,Normal,140,N,1.5,Up,1
551
+ 68,M,TA,139,181,1,ST,135,N,0.2,Up,0
552
+ 55,M,ASY,172,260,0,Normal,73,N,2,Flat,1
553
+ 62,M,NAP,120,220,0,LVH,86,N,0,Up,0
554
+ 71,M,NAP,144,221,0,Normal,108,Y,1.8,Flat,1
555
+ 74,M,TA,145,216,1,Normal,116,Y,1.8,Flat,1
556
+ 53,M,NAP,155,175,1,ST,160,N,0.3,Up,0
557
+ 58,M,NAP,150,219,0,ST,118,Y,0,Flat,1
558
+ 75,M,ASY,160,310,1,Normal,112,Y,2,Down,0
559
+ 56,M,NAP,137,208,1,ST,122,Y,1.8,Flat,1
560
+ 58,M,NAP,137,232,0,ST,124,Y,1.4,Flat,1
561
+ 64,M,ASY,134,273,0,Normal,102,Y,4,Down,1
562
+ 54,M,NAP,133,203,0,ST,137,N,0.2,Up,0
563
+ 54,M,ATA,132,182,0,ST,141,N,0.1,Up,0
564
+ 59,M,ASY,140,274,0,Normal,154,Y,2,Flat,0
565
+ 55,M,ASY,135,204,1,ST,126,Y,1.1,Flat,1
566
+ 57,M,ASY,144,270,1,ST,160,Y,2,Flat,1
567
+ 61,M,ASY,141,292,0,ST,115,Y,1.7,Flat,1
568
+ 41,M,ASY,150,171,0,Normal,128,Y,1.5,Flat,0
569
+ 71,M,ASY,130,221,0,ST,115,Y,0,Flat,1
570
+ 38,M,ASY,110,289,0,Normal,105,Y,1.5,Down,1
571
+ 55,M,ASY,158,217,0,Normal,110,Y,2.5,Flat,1
572
+ 56,M,ASY,128,223,0,ST,119,Y,2,Down,1
573
+ 69,M,ASY,140,110,1,Normal,109,Y,1.5,Flat,1
574
+ 64,M,ASY,150,193,0,ST,135,Y,0.5,Flat,1
575
+ 72,M,ASY,160,123,1,LVH,130,N,1.5,Flat,1
576
+ 69,M,ASY,142,210,1,ST,112,Y,1.5,Flat,1
577
+ 56,M,ASY,137,282,1,Normal,126,Y,1.2,Flat,1
578
+ 62,M,ASY,139,170,0,ST,120,Y,3,Flat,1
579
+ 67,M,ASY,146,369,0,Normal,110,Y,1.9,Flat,1
580
+ 57,M,ASY,156,173,0,LVH,119,Y,3,Down,1
581
+ 69,M,ASY,145,289,1,ST,110,Y,1.8,Flat,1
582
+ 51,M,ASY,131,152,1,LVH,130,Y,1,Flat,1
583
+ 48,M,ASY,140,208,0,Normal,159,Y,1.5,Up,1
584
+ 69,M,ASY,122,216,1,LVH,84,Y,0,Flat,1
585
+ 69,M,NAP,142,271,0,LVH,126,N,0.3,Up,0
586
+ 64,M,ASY,141,244,1,ST,116,Y,1.5,Flat,1
587
+ 57,M,ATA,180,285,1,ST,120,N,0.8,Flat,1
588
+ 53,M,ASY,124,243,0,Normal,122,Y,2,Flat,1
589
+ 37,M,NAP,118,240,0,LVH,165,N,1,Flat,0
590
+ 67,M,ASY,140,219,0,ST,122,Y,2,Flat,1
591
+ 74,M,NAP,140,237,1,Normal,94,N,0,Flat,1
592
+ 63,M,ATA,136,165,0,ST,133,N,0.2,Up,0
593
+ 58,M,ASY,100,213,0,ST,110,N,0,Up,0
594
+ 61,M,ASY,190,287,1,LVH,150,Y,2,Down,1
595
+ 64,M,ASY,130,258,1,LVH,130,N,0,Flat,1
596
+ 58,M,ASY,160,256,1,LVH,113,Y,1,Up,1
597
+ 60,M,ASY,130,186,1,LVH,140,Y,0.5,Flat,1
598
+ 57,M,ASY,122,264,0,LVH,100,N,0,Flat,1
599
+ 55,M,NAP,133,185,0,ST,136,N,0.2,Up,0
600
+ 55,M,ASY,120,226,0,LVH,127,Y,1.7,Down,1
601
+ 56,M,ASY,130,203,1,Normal,98,N,1.5,Flat,1
602
+ 57,M,ASY,130,207,0,ST,96,Y,1,Flat,0
603
+ 61,M,NAP,140,284,0,Normal,123,Y,1.3,Flat,1
604
+ 61,M,NAP,120,337,0,Normal,98,Y,0,Flat,1
605
+ 74,M,ASY,155,310,0,Normal,112,Y,1.5,Down,1
606
+ 68,M,NAP,134,254,1,Normal,151,Y,0,Up,0
607
+ 51,F,ASY,114,258,1,LVH,96,N,1,Up,0
608
+ 62,M,ASY,160,254,1,ST,108,Y,3,Flat,1
609
+ 53,M,ASY,144,300,1,ST,128,Y,1.5,Flat,1
610
+ 62,M,ASY,158,170,0,ST,138,Y,0,Flat,1
611
+ 46,M,ASY,134,310,0,Normal,126,N,0,Flat,1
612
+ 54,F,ASY,127,333,1,ST,154,N,0,Flat,1
613
+ 62,M,TA,135,139,0,ST,137,N,0.2,Up,0
614
+ 55,M,ASY,122,223,1,ST,100,N,0,Flat,1
615
+ 58,M,ASY,140,385,1,LVH,135,N,0.3,Up,0
616
+ 62,M,ATA,120,254,0,LVH,93,Y,0,Flat,1
617
+ 70,M,ASY,130,322,0,LVH,109,N,2.4,Flat,1
618
+ 67,F,NAP,115,564,0,LVH,160,N,1.6,Flat,0
619
+ 57,M,ATA,124,261,0,Normal,141,N,0.3,Up,1
620
+ 64,M,ASY,128,263,0,Normal,105,Y,0.2,Flat,0
621
+ 74,F,ATA,120,269,0,LVH,121,Y,0.2,Up,0
622
+ 65,M,ASY,120,177,0,Normal,140,N,0.4,Up,0
623
+ 56,M,NAP,130,256,1,LVH,142,Y,0.6,Flat,1
624
+ 59,M,ASY,110,239,0,LVH,142,Y,1.2,Flat,1
625
+ 60,M,ASY,140,293,0,LVH,170,N,1.2,Flat,1
626
+ 63,F,ASY,150,407,0,LVH,154,N,4,Flat,1
627
+ 59,M,ASY,135,234,0,Normal,161,N,0.5,Flat,0
628
+ 53,M,ASY,142,226,0,LVH,111,Y,0,Up,0
629
+ 44,M,NAP,140,235,0,LVH,180,N,0,Up,0
630
+ 61,M,TA,134,234,0,Normal,145,N,2.6,Flat,1
631
+ 57,F,ASY,128,303,0,LVH,159,N,0,Up,0
632
+ 71,F,ASY,112,149,0,Normal,125,N,1.6,Flat,0
633
+ 46,M,ASY,140,311,0,Normal,120,Y,1.8,Flat,1
634
+ 53,M,ASY,140,203,1,LVH,155,Y,3.1,Down,1
635
+ 64,M,TA,110,211,0,LVH,144,Y,1.8,Flat,0
636
+ 40,M,TA,140,199,0,Normal,178,Y,1.4,Up,0
637
+ 67,M,ASY,120,229,0,LVH,129,Y,2.6,Flat,1
638
+ 48,M,ATA,130,245,0,LVH,180,N,0.2,Flat,0
639
+ 43,M,ASY,115,303,0,Normal,181,N,1.2,Flat,0
640
+ 47,M,ASY,112,204,0,Normal,143,N,0.1,Up,0
641
+ 54,F,ATA,132,288,1,LVH,159,Y,0,Up,0
642
+ 48,F,NAP,130,275,0,Normal,139,N,0.2,Up,0
643
+ 46,F,ASY,138,243,0,LVH,152,Y,0,Flat,0
644
+ 51,F,NAP,120,295,0,LVH,157,N,0.6,Up,0
645
+ 58,M,NAP,112,230,0,LVH,165,N,2.5,Flat,1
646
+ 71,F,NAP,110,265,1,LVH,130,N,0,Up,0
647
+ 57,M,NAP,128,229,0,LVH,150,N,0.4,Flat,1
648
+ 66,M,ASY,160,228,0,LVH,138,N,2.3,Up,0
649
+ 37,F,NAP,120,215,0,Normal,170,N,0,Up,0
650
+ 59,M,ASY,170,326,0,LVH,140,Y,3.4,Down,1
651
+ 50,M,ASY,144,200,0,LVH,126,Y,0.9,Flat,1
652
+ 48,M,ASY,130,256,1,LVH,150,Y,0,Up,1
653
+ 61,M,ASY,140,207,0,LVH,138,Y,1.9,Up,1
654
+ 59,M,TA,160,273,0,LVH,125,N,0,Up,1
655
+ 42,M,NAP,130,180,0,Normal,150,N,0,Up,0
656
+ 48,M,ASY,122,222,0,LVH,186,N,0,Up,0
657
+ 40,M,ASY,152,223,0,Normal,181,N,0,Up,1
658
+ 62,F,ASY,124,209,0,Normal,163,N,0,Up,0
659
+ 44,M,NAP,130,233,0,Normal,179,Y,0.4,Up,0
660
+ 46,M,ATA,101,197,1,Normal,156,N,0,Up,0
661
+ 59,M,NAP,126,218,1,Normal,134,N,2.2,Flat,1
662
+ 58,M,NAP,140,211,1,LVH,165,N,0,Up,0
663
+ 49,M,NAP,118,149,0,LVH,126,N,0.8,Up,1
664
+ 44,M,ASY,110,197,0,LVH,177,N,0,Up,1
665
+ 66,M,ATA,160,246,0,Normal,120,Y,0,Flat,1
666
+ 65,F,ASY,150,225,0,LVH,114,N,1,Flat,1
667
+ 42,M,ASY,136,315,0,Normal,125,Y,1.8,Flat,1
668
+ 52,M,ATA,128,205,1,Normal,184,N,0,Up,0
669
+ 65,F,NAP,140,417,1,LVH,157,N,0.8,Up,0
670
+ 63,F,ATA,140,195,0,Normal,179,N,0,Up,0
671
+ 45,F,ATA,130,234,0,LVH,175,N,0.6,Flat,0
672
+ 41,F,ATA,105,198,0,Normal,168,N,0,Up,0
673
+ 61,M,ASY,138,166,0,LVH,125,Y,3.6,Flat,1
674
+ 60,F,NAP,120,178,1,Normal,96,N,0,Up,0
675
+ 59,F,ASY,174,249,0,Normal,143,Y,0,Flat,1
676
+ 62,M,ATA,120,281,0,LVH,103,N,1.4,Flat,1
677
+ 57,M,NAP,150,126,1,Normal,173,N,0.2,Up,0
678
+ 51,F,ASY,130,305,0,Normal,142,Y,1.2,Flat,1
679
+ 44,M,NAP,120,226,0,Normal,169,N,0,Up,0
680
+ 60,F,TA,150,240,0,Normal,171,N,0.9,Up,0
681
+ 63,M,TA,145,233,1,LVH,150,N,2.3,Down,0
682
+ 57,M,ASY,150,276,0,LVH,112,Y,0.6,Flat,1
683
+ 51,M,ASY,140,261,0,LVH,186,Y,0,Up,0
684
+ 58,F,ATA,136,319,1,LVH,152,N,0,Up,1
685
+ 44,F,NAP,118,242,0,Normal,149,N,0.3,Flat,0
686
+ 47,M,NAP,108,243,0,Normal,152,N,0,Up,1
687
+ 61,M,ASY,120,260,0,Normal,140,Y,3.6,Flat,1
688
+ 57,F,ASY,120,354,0,Normal,163,Y,0.6,Up,0
689
+ 70,M,ATA,156,245,0,LVH,143,N,0,Up,0
690
+ 76,F,NAP,140,197,0,ST,116,N,1.1,Flat,0
691
+ 67,F,ASY,106,223,0,Normal,142,N,0.3,Up,0
692
+ 45,M,ASY,142,309,0,LVH,147,Y,0,Flat,1
693
+ 45,M,ASY,104,208,0,LVH,148,Y,3,Flat,0
694
+ 39,F,NAP,94,199,0,Normal,179,N,0,Up,0
695
+ 42,F,NAP,120,209,0,Normal,173,N,0,Flat,0
696
+ 56,M,ATA,120,236,0,Normal,178,N,0.8,Up,0
697
+ 58,M,ASY,146,218,0,Normal,105,N,2,Flat,1
698
+ 35,M,ASY,120,198,0,Normal,130,Y,1.6,Flat,1
699
+ 58,M,ASY,150,270,0,LVH,111,Y,0.8,Up,1
700
+ 41,M,NAP,130,214,0,LVH,168,N,2,Flat,0
701
+ 57,M,ASY,110,201,0,Normal,126,Y,1.5,Flat,0
702
+ 42,M,TA,148,244,0,LVH,178,N,0.8,Up,0
703
+ 62,M,ATA,128,208,1,LVH,140,N,0,Up,0
704
+ 59,M,TA,178,270,0,LVH,145,N,4.2,Down,0
705
+ 41,F,ATA,126,306,0,Normal,163,N,0,Up,0
706
+ 50,M,ASY,150,243,0,LVH,128,N,2.6,Flat,1
707
+ 59,M,ATA,140,221,0,Normal,164,Y,0,Up,0
708
+ 61,F,ASY,130,330,0,LVH,169,N,0,Up,1
709
+ 54,M,ASY,124,266,0,LVH,109,Y,2.2,Flat,1
710
+ 54,M,ASY,110,206,0,LVH,108,Y,0,Flat,1
711
+ 52,M,ASY,125,212,0,Normal,168,N,1,Up,1
712
+ 47,M,ASY,110,275,0,LVH,118,Y,1,Flat,1
713
+ 66,M,ASY,120,302,0,LVH,151,N,0.4,Flat,0
714
+ 58,M,ASY,100,234,0,Normal,156,N,0.1,Up,1
715
+ 64,F,NAP,140,313,0,Normal,133,N,0.2,Up,0
716
+ 50,F,ATA,120,244,0,Normal,162,N,1.1,Up,0
717
+ 44,F,NAP,108,141,0,Normal,175,N,0.6,Flat,0
718
+ 67,M,ASY,120,237,0,Normal,71,N,1,Flat,1
719
+ 49,F,ASY,130,269,0,Normal,163,N,0,Up,0
720
+ 57,M,ASY,165,289,1,LVH,124,N,1,Flat,1
721
+ 63,M,ASY,130,254,0,LVH,147,N,1.4,Flat,1
722
+ 48,M,ASY,124,274,0,LVH,166,N,0.5,Flat,1
723
+ 51,M,NAP,100,222,0,Normal,143,Y,1.2,Flat,0
724
+ 60,F,ASY,150,258,0,LVH,157,N,2.6,Flat,1
725
+ 59,M,ASY,140,177,0,Normal,162,Y,0,Up,1
726
+ 45,F,ATA,112,160,0,Normal,138,N,0,Flat,0
727
+ 55,F,ASY,180,327,0,ST,117,Y,3.4,Flat,1
728
+ 41,M,ATA,110,235,0,Normal,153,N,0,Up,0
729
+ 60,F,ASY,158,305,0,LVH,161,N,0,Up,1
730
+ 54,F,NAP,135,304,1,Normal,170,N,0,Up,0
731
+ 42,M,ATA,120,295,0,Normal,162,N,0,Up,0
732
+ 49,F,ATA,134,271,0,Normal,162,N,0,Flat,0
733
+ 46,M,ASY,120,249,0,LVH,144,N,0.8,Up,1
734
+ 56,F,ASY,200,288,1,LVH,133,Y,4,Down,1
735
+ 66,F,TA,150,226,0,Normal,114,N,2.6,Down,0
736
+ 56,M,ASY,130,283,1,LVH,103,Y,1.6,Down,1
737
+ 49,M,NAP,120,188,0,Normal,139,N,2,Flat,1
738
+ 54,M,ASY,122,286,0,LVH,116,Y,3.2,Flat,1
739
+ 57,M,ASY,152,274,0,Normal,88,Y,1.2,Flat,1
740
+ 65,F,NAP,160,360,0,LVH,151,N,0.8,Up,0
741
+ 54,M,NAP,125,273,0,LVH,152,N,0.5,Down,0
742
+ 54,F,NAP,160,201,0,Normal,163,N,0,Up,0
743
+ 62,M,ASY,120,267,0,Normal,99,Y,1.8,Flat,1
744
+ 52,F,NAP,136,196,0,LVH,169,N,0.1,Flat,0
745
+ 52,M,ATA,134,201,0,Normal,158,N,0.8,Up,0
746
+ 60,M,ASY,117,230,1,Normal,160,Y,1.4,Up,1
747
+ 63,F,ASY,108,269,0,Normal,169,Y,1.8,Flat,1
748
+ 66,M,ASY,112,212,0,LVH,132,Y,0.1,Up,1
749
+ 42,M,ASY,140,226,0,Normal,178,N,0,Up,0
750
+ 64,M,ASY,120,246,0,LVH,96,Y,2.2,Down,1
751
+ 54,M,NAP,150,232,0,LVH,165,N,1.6,Up,0
752
+ 46,F,NAP,142,177,0,LVH,160,Y,1.4,Down,0
753
+ 67,F,NAP,152,277,0,Normal,172,N,0,Up,0
754
+ 56,M,ASY,125,249,1,LVH,144,Y,1.2,Flat,1
755
+ 34,F,ATA,118,210,0,Normal,192,N,0.7,Up,0
756
+ 57,M,ASY,132,207,0,Normal,168,Y,0,Up,0
757
+ 64,M,ASY,145,212,0,LVH,132,N,2,Flat,1
758
+ 59,M,ASY,138,271,0,LVH,182,N,0,Up,0
759
+ 50,M,NAP,140,233,0,Normal,163,N,0.6,Flat,1
760
+ 51,M,TA,125,213,0,LVH,125,Y,1.4,Up,0
761
+ 54,M,ATA,192,283,0,LVH,195,N,0,Up,1
762
+ 53,M,ASY,123,282,0,Normal,95,Y,2,Flat,1
763
+ 52,M,ASY,112,230,0,Normal,160,N,0,Up,1
764
+ 40,M,ASY,110,167,0,LVH,114,Y,2,Flat,1
765
+ 58,M,NAP,132,224,0,LVH,173,N,3.2,Up,1
766
+ 41,F,NAP,112,268,0,LVH,172,Y,0,Up,0
767
+ 41,M,NAP,112,250,0,Normal,179,N,0,Up,0
768
+ 50,F,NAP,120,219,0,Normal,158,N,1.6,Flat,0
769
+ 54,F,NAP,108,267,0,LVH,167,N,0,Up,0
770
+ 64,F,ASY,130,303,0,Normal,122,N,2,Flat,0
771
+ 51,F,NAP,130,256,0,LVH,149,N,0.5,Up,0
772
+ 46,F,ATA,105,204,0,Normal,172,N,0,Up,0
773
+ 55,M,ASY,140,217,0,Normal,111,Y,5.6,Down,1
774
+ 45,M,ATA,128,308,0,LVH,170,N,0,Up,0
775
+ 56,M,TA,120,193,0,LVH,162,N,1.9,Flat,0
776
+ 66,F,ASY,178,228,1,Normal,165,Y,1,Flat,1
777
+ 38,M,TA,120,231,0,Normal,182,Y,3.8,Flat,1
778
+ 62,F,ASY,150,244,0,Normal,154,Y,1.4,Flat,1
779
+ 55,M,ATA,130,262,0,Normal,155,N,0,Up,0
780
+ 58,M,ASY,128,259,0,LVH,130,Y,3,Flat,1
781
+ 43,M,ASY,110,211,0,Normal,161,N,0,Up,0
782
+ 64,F,ASY,180,325,0,Normal,154,Y,0,Up,0
783
+ 50,F,ASY,110,254,0,LVH,159,N,0,Up,0
784
+ 53,M,NAP,130,197,1,LVH,152,N,1.2,Down,0
785
+ 45,F,ASY,138,236,0,LVH,152,Y,0.2,Flat,0
786
+ 65,M,TA,138,282,1,LVH,174,N,1.4,Flat,1
787
+ 69,M,TA,160,234,1,LVH,131,N,0.1,Flat,0
788
+ 69,M,NAP,140,254,0,LVH,146,N,2,Flat,1
789
+ 67,M,ASY,100,299,0,LVH,125,Y,0.9,Flat,1
790
+ 68,F,NAP,120,211,0,LVH,115,N,1.5,Flat,0
791
+ 34,M,TA,118,182,0,LVH,174,N,0,Up,0
792
+ 62,F,ASY,138,294,1,Normal,106,N,1.9,Flat,1
793
+ 51,M,ASY,140,298,0,Normal,122,Y,4.2,Flat,1
794
+ 46,M,NAP,150,231,0,Normal,147,N,3.6,Flat,1
795
+ 67,M,ASY,125,254,1,Normal,163,N,0.2,Flat,1
796
+ 50,M,NAP,129,196,0,Normal,163,N,0,Up,0
797
+ 42,M,NAP,120,240,1,Normal,194,N,0.8,Down,0
798
+ 56,F,ASY,134,409,0,LVH,150,Y,1.9,Flat,1
799
+ 41,M,ASY,110,172,0,LVH,158,N,0,Up,1
800
+ 42,F,ASY,102,265,0,LVH,122,N,0.6,Flat,0
801
+ 53,M,NAP,130,246,1,LVH,173,N,0,Up,0
802
+ 43,M,NAP,130,315,0,Normal,162,N,1.9,Up,0
803
+ 56,M,ASY,132,184,0,LVH,105,Y,2.1,Flat,1
804
+ 52,M,ASY,108,233,1,Normal,147,N,0.1,Up,0
805
+ 62,F,ASY,140,394,0,LVH,157,N,1.2,Flat,0
806
+ 70,M,NAP,160,269,0,Normal,112,Y,2.9,Flat,1
807
+ 54,M,ASY,140,239,0,Normal,160,N,1.2,Up,0
808
+ 70,M,ASY,145,174,0,Normal,125,Y,2.6,Down,1
809
+ 54,M,ATA,108,309,0,Normal,156,N,0,Up,0
810
+ 35,M,ASY,126,282,0,LVH,156,Y,0,Up,1
811
+ 48,M,NAP,124,255,1,Normal,175,N,0,Up,0
812
+ 55,F,ATA,135,250,0,LVH,161,N,1.4,Flat,0
813
+ 58,F,ASY,100,248,0,LVH,122,N,1,Flat,0
814
+ 54,F,NAP,110,214,0,Normal,158,N,1.6,Flat,0
815
+ 69,F,TA,140,239,0,Normal,151,N,1.8,Up,0
816
+ 77,M,ASY,125,304,0,LVH,162,Y,0,Up,1
817
+ 68,M,NAP,118,277,0,Normal,151,N,1,Up,0
818
+ 58,M,ASY,125,300,0,LVH,171,N,0,Up,1
819
+ 60,M,ASY,125,258,0,LVH,141,Y,2.8,Flat,1
820
+ 51,M,ASY,140,299,0,Normal,173,Y,1.6,Up,1
821
+ 55,M,ASY,160,289,0,LVH,145,Y,0.8,Flat,1
822
+ 52,M,TA,152,298,1,Normal,178,N,1.2,Flat,0
823
+ 60,F,NAP,102,318,0,Normal,160,N,0,Up,0
824
+ 58,M,NAP,105,240,0,LVH,154,Y,0.6,Flat,0
825
+ 64,M,NAP,125,309,0,Normal,131,Y,1.8,Flat,1
826
+ 37,M,NAP,130,250,0,Normal,187,N,3.5,Down,0
827
+ 59,M,TA,170,288,0,LVH,159,N,0.2,Flat,1
828
+ 51,M,NAP,125,245,1,LVH,166,N,2.4,Flat,0
829
+ 43,F,NAP,122,213,0,Normal,165,N,0.2,Flat,0
830
+ 58,M,ASY,128,216,0,LVH,131,Y,2.2,Flat,1
831
+ 29,M,ATA,130,204,0,LVH,202,N,0,Up,0
832
+ 41,F,ATA,130,204,0,LVH,172,N,1.4,Up,0
833
+ 63,F,NAP,135,252,0,LVH,172,N,0,Up,0
834
+ 51,M,NAP,94,227,0,Normal,154,Y,0,Up,0
835
+ 54,M,NAP,120,258,0,LVH,147,N,0.4,Flat,0
836
+ 44,M,ATA,120,220,0,Normal,170,N,0,Up,0
837
+ 54,M,ASY,110,239,0,Normal,126,Y,2.8,Flat,1
838
+ 65,M,ASY,135,254,0,LVH,127,N,2.8,Flat,1
839
+ 57,M,NAP,150,168,0,Normal,174,N,1.6,Up,0
840
+ 63,M,ASY,130,330,1,LVH,132,Y,1.8,Up,1
841
+ 35,F,ASY,138,183,0,Normal,182,N,1.4,Up,0
842
+ 41,M,ATA,135,203,0,Normal,132,N,0,Flat,0
843
+ 62,F,NAP,130,263,0,Normal,97,N,1.2,Flat,1
844
+ 43,F,ASY,132,341,1,LVH,136,Y,3,Flat,1
845
+ 58,F,TA,150,283,1,LVH,162,N,1,Up,0
846
+ 52,M,TA,118,186,0,LVH,190,N,0,Flat,0
847
+ 61,F,ASY,145,307,0,LVH,146,Y,1,Flat,1
848
+ 39,M,ASY,118,219,0,Normal,140,N,1.2,Flat,1
849
+ 45,M,ASY,115,260,0,LVH,185,N,0,Up,0
850
+ 52,M,ASY,128,255,0,Normal,161,Y,0,Up,1
851
+ 62,M,NAP,130,231,0,Normal,146,N,1.8,Flat,0
852
+ 62,F,ASY,160,164,0,LVH,145,N,6.2,Down,1
853
+ 53,F,ASY,138,234,0,LVH,160,N,0,Up,0
854
+ 43,M,ASY,120,177,0,LVH,120,Y,2.5,Flat,1
855
+ 47,M,NAP,138,257,0,LVH,156,N,0,Up,0
856
+ 52,M,ATA,120,325,0,Normal,172,N,0.2,Up,0
857
+ 68,M,NAP,180,274,1,LVH,150,Y,1.6,Flat,1
858
+ 39,M,NAP,140,321,0,LVH,182,N,0,Up,0
859
+ 53,F,ASY,130,264,0,LVH,143,N,0.4,Flat,0
860
+ 62,F,ASY,140,268,0,LVH,160,N,3.6,Down,1
861
+ 51,F,NAP,140,308,0,LVH,142,N,1.5,Up,0
862
+ 60,M,ASY,130,253,0,Normal,144,Y,1.4,Up,1
863
+ 65,M,ASY,110,248,0,LVH,158,N,0.6,Up,1
864
+ 65,F,NAP,155,269,0,Normal,148,N,0.8,Up,0
865
+ 60,M,NAP,140,185,0,LVH,155,N,3,Flat,1
866
+ 60,M,ASY,145,282,0,LVH,142,Y,2.8,Flat,1
867
+ 54,M,ASY,120,188,0,Normal,113,N,1.4,Flat,1
868
+ 44,M,ATA,130,219,0,LVH,188,N,0,Up,0
869
+ 44,M,ASY,112,290,0,LVH,153,N,0,Up,1
870
+ 51,M,NAP,110,175,0,Normal,123,N,0.6,Up,0
871
+ 59,M,NAP,150,212,1,Normal,157,N,1.6,Up,0
872
+ 71,F,ATA,160,302,0,Normal,162,N,0.4,Up,0
873
+ 61,M,NAP,150,243,1,Normal,137,Y,1,Flat,0
874
+ 55,M,ASY,132,353,0,Normal,132,Y,1.2,Flat,1
875
+ 64,M,NAP,140,335,0,Normal,158,N,0,Up,1
876
+ 43,M,ASY,150,247,0,Normal,171,N,1.5,Up,0
877
+ 58,F,NAP,120,340,0,Normal,172,N,0,Up,0
878
+ 60,M,ASY,130,206,0,LVH,132,Y,2.4,Flat,1
879
+ 58,M,ATA,120,284,0,LVH,160,N,1.8,Flat,1
880
+ 49,M,ATA,130,266,0,Normal,171,N,0.6,Up,0
881
+ 48,M,ATA,110,229,0,Normal,168,N,1,Down,1
882
+ 52,M,NAP,172,199,1,Normal,162,N,0.5,Up,0
883
+ 44,M,ATA,120,263,0,Normal,173,N,0,Up,0
884
+ 56,F,ATA,140,294,0,LVH,153,N,1.3,Flat,0
885
+ 57,M,ASY,140,192,0,Normal,148,N,0.4,Flat,0
886
+ 67,M,ASY,160,286,0,LVH,108,Y,1.5,Flat,1
887
+ 53,F,NAP,128,216,0,LVH,115,N,0,Up,0
888
+ 52,M,NAP,138,223,0,Normal,169,N,0,Up,0
889
+ 43,M,ASY,132,247,1,LVH,143,Y,0.1,Flat,1
890
+ 52,M,ASY,128,204,1,Normal,156,Y,1,Flat,1
891
+ 59,M,TA,134,204,0,Normal,162,N,0.8,Up,1
892
+ 64,M,TA,170,227,0,LVH,155,N,0.6,Flat,0
893
+ 66,F,NAP,146,278,0,LVH,152,N,0,Flat,0
894
+ 39,F,NAP,138,220,0,Normal,152,N,0,Flat,0
895
+ 57,M,ATA,154,232,0,LVH,164,N,0,Up,1
896
+ 58,F,ASY,130,197,0,Normal,131,N,0.6,Flat,0
897
+ 57,M,ASY,110,335,0,Normal,143,Y,3,Flat,1
898
+ 47,M,NAP,130,253,0,Normal,179,N,0,Up,0
899
+ 55,F,ASY,128,205,0,ST,130,Y,2,Flat,1
900
+ 35,M,ATA,122,192,0,Normal,174,N,0,Up,0
901
+ 61,M,ASY,148,203,0,Normal,161,N,0,Up,1
902
+ 58,M,ASY,114,318,0,ST,140,N,4.4,Down,1
903
+ 58,F,ASY,170,225,1,LVH,146,Y,2.8,Flat,1
904
+ 58,M,ATA,125,220,0,Normal,144,N,0.4,Flat,0
905
+ 56,M,ATA,130,221,0,LVH,163,N,0,Up,0
906
+ 56,M,ATA,120,240,0,Normal,169,N,0,Down,0
907
+ 67,M,NAP,152,212,0,LVH,150,N,0.8,Flat,1
908
+ 55,F,ATA,132,342,0,Normal,166,N,1.2,Up,0
909
+ 44,M,ASY,120,169,0,Normal,144,Y,2.8,Down,1
910
+ 63,M,ASY,140,187,0,LVH,144,Y,4,Up,1
911
+ 63,F,ASY,124,197,0,Normal,136,Y,0,Flat,1
912
+ 41,M,ATA,120,157,0,Normal,182,N,0,Up,0
913
+ 59,M,ASY,164,176,1,LVH,90,N,1,Flat,1
914
+ 57,F,ASY,140,241,0,Normal,123,Y,0.2,Flat,1
915
+ 45,M,TA,110,264,0,Normal,132,N,1.2,Flat,1
916
+ 68,M,ASY,144,193,1,Normal,141,N,3.4,Flat,1
917
+ 57,M,ASY,130,131,0,Normal,115,Y,1.2,Flat,1
918
+ 57,F,ATA,130,236,0,LVH,174,N,0,Flat,1
919
+ 38,M,NAP,138,175,0,Normal,173,N,0,Up,0
src/Heart-Disease/heart_failure.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # import the libraries
3
+ import numpy as np
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.metrics import classification_report
9
+ from sklearn.preprocessing import LabelEncoder
10
+ from sklearn.linear_model import LogisticRegression
11
+ from sklearn.preprocessing import StandardScaler
12
+ from sklearn.metrics import plot_confusion_matrix, accuracy_score, classification_report
13
+ from sklearn import metrics
14
+ from sklearn.tree import DecisionTreeClassifier
15
+ from sklearn.ensemble import RandomForestClassifier
16
+ import joblib
17
+
18
+ # load the data
19
+ data = pd.read_csv("heart.csv")
20
+
21
+ '''LabelEncoder'''
22
+ labelencoder = LabelEncoder()
23
+ data["Sex"] = labelencoder.fit_transform(data["Sex"])
24
+
25
+ data["ChestPainType"] = labelencoder.fit_transform(data["ChestPainType"])
26
+ data["RestingECG"] = labelencoder.fit_transform(data["RestingECG"])
27
+ data["ExerciseAngina"] = labelencoder.fit_transform(data["ExerciseAngina"])
28
+ data["ST_Slope"] = labelencoder.fit_transform(data["ST_Slope"])
29
+
30
+ #### Remove the outlier
31
+ Q1 = data.quantile(0.25)
32
+ Q3 = data.quantile(0.75)
33
+ IQR = Q3-Q1
34
+
35
+ data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis = 1)]
36
+
37
+ '''Prepare the dataset'''
38
+
39
+ label = data["HeartDisease"].copy()
40
+ data = data.drop("HeartDisease",axis=1)
41
+
42
+ '''Train test split'''
43
+ X_train, X_test, y_train, y_test = train_test_split(data, label, test_size = 0.2, random_state = 42)
44
+
45
+ scale = StandardScaler()
46
+ X_train = scale.fit_transform(X_train)
47
+ X_test = scale.fit_transform(X_test)
48
+
49
+ '''Decision Tree Model'''
50
+
51
+ mdl = DecisionTreeClassifier(criterion="entropy", max_depth=6)
52
+ mdl.fit(X_train,y_train)
53
+
54
+ # save the model
55
+ heart_file = 'heart_model.sav'
56
+ joblib.dump(mdl, heart_file)
57
+
58
+ load_model = joblib.load(heart_file)
59
+ y_p = load_model.predict(X_test)
60
+
61
+ print(y_p)
62
+ print()
63
+ print(y_test)
src/Heart-Disease/heart_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1eea631c94b402ca2c376d1eb9a2c88c40b13a028efd541949eeece9c33e6b8f
3
+ size 4128
src/Heart-Disease/heart_model.sav ADDED
Binary file (4.76 kB). View file
 
src/Heart-Disease/scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0427bda7da16b7b20d10929e2f8857c5cc9ac23c4d0d61895e3e06ff9d0d520d
3
+ size 713
src/Malaria-Detection/.ipynb_checkpoints/Malaria_Disease_Prediction-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
src/Malaria-Detection/.virtual_documents/Untitled.ipynb ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ import tensorflow
5
+
6
+
7
+ # import the necessary libraries
8
+ import os
9
+ import pandas as pd
10
+ import numpy as np
11
+ import matplotlib.pyplot as plt
12
+ import seaborn as sns
13
+ from tensor
14
+ import keras
15
+ from keras.models import Sequential
16
+ from keras.layers import Dense, Conv2D , MaxPool2D , Flatten , Dropout , BatchNormalization
17
+ from keras.preprocessing.image import ImageDataGenerator
18
+ from sklearn.model_selection import train_test_split
19
+ from sklearn.metrics import classification_report,confusion_matrix
20
+ from keras.callbacks import ReduceLROnPlateau
21
+ import cv2
22
+ from keras.models import load_model
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+
61
+
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
+
73
+
74
+
75
+
76
+
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+
95
+
96
+
97
+
98
+
99
+
100
+
101
+
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+
114
+
115
+
116
+
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+
125
+
126
+
127
+
128
+
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+
148
+
149
+
150
+
151
+
152
+
153
+
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+
168
+
169
+
170
+
171
+
172
+
173
+
174
+
175
+
176
+
177
+
178
+
179
+
180
+
181
+
182
+
183
+
184
+
185
+
186
+
187
+
188
+
189
+
190
+
191
+
192
+
193
+
194
+
195
+
196
+
197
+
198
+
199
+
200
+
201
+
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_10.png ADDED
src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_11.png ADDED
src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_12.png ADDED
src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_13.png ADDED
src/Malaria-Detection/Dataset/Test/Parasite/C39P4thinF_original_IMG_20150622_105554_cell_14.png ADDED