diff --git "a/notebooks/heart disease prediction.ipynb" "b/notebooks/heart disease prediction.ipynb"
new file mode 100644--- /dev/null
+++ "b/notebooks/heart disease prediction.ipynb"
@@ -0,0 +1,2036 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1f41db61-4f75-4696-84a8-2a906dca3e3e",
+ "metadata": {},
+ "source": [
+ "# Heart Failure analysis and detection using Machine Learning techniques\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "id": "b7897612-92c7-41bc-99ed-0f19a23d16ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import the libraries\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.metrics import classification_report\n",
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.preprocessing import StandardScaler\n",
+ "from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, classification_report, confusion_matrix, RocCurveDisplay\n",
+ "from sklearn import metrics\n",
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "from sklearn.ensemble import RandomForestClassifier"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "d59970e5-184f-4b1e-a269-71223a49dba9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Sex | \n",
+ " ChestPainType | \n",
+ " RestingBP | \n",
+ " Cholesterol | \n",
+ " FastingBS | \n",
+ " RestingECG | \n",
+ " MaxHR | \n",
+ " ExerciseAngina | \n",
+ " Oldpeak | \n",
+ " ST_Slope | \n",
+ " HeartDisease | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 40 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 140 | \n",
+ " 289 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 172 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 49 | \n",
+ " F | \n",
+ " NAP | \n",
+ " 160 | \n",
+ " 180 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 156 | \n",
+ " N | \n",
+ " 1.0 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 37 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 130 | \n",
+ " 283 | \n",
+ " 0 | \n",
+ " ST | \n",
+ " 98 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 48 | \n",
+ " F | \n",
+ " ASY | \n",
+ " 138 | \n",
+ " 214 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 108 | \n",
+ " Y | \n",
+ " 1.5 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 54 | \n",
+ " M | \n",
+ " NAP | \n",
+ " 150 | \n",
+ " 195 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 122 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n",
+ "0 40 M ATA 140 289 0 Normal 172 \n",
+ "1 49 F NAP 160 180 0 Normal 156 \n",
+ "2 37 M ATA 130 283 0 ST 98 \n",
+ "3 48 F ASY 138 214 0 Normal 108 \n",
+ "4 54 M NAP 150 195 0 Normal 122 \n",
+ "\n",
+ " ExerciseAngina Oldpeak ST_Slope HeartDisease \n",
+ "0 N 0.0 Up 0 \n",
+ "1 N 1.0 Flat 1 \n",
+ "2 N 0.0 Up 0 \n",
+ "3 Y 1.5 Flat 1 \n",
+ "4 N 0.0 Up 0 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "## Read the data\n",
+ "data = pd.read_csv(\"heart.csv\")\n",
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "992daf53-ba71-44ee-93f9-bf9f74af90fc",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 918 entries, 0 to 917\n",
+ "Data columns (total 12 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Age 918 non-null int64 \n",
+ " 1 Sex 918 non-null object \n",
+ " 2 ChestPainType 918 non-null object \n",
+ " 3 RestingBP 918 non-null int64 \n",
+ " 4 Cholesterol 918 non-null int64 \n",
+ " 5 FastingBS 918 non-null int64 \n",
+ " 6 RestingECG 918 non-null object \n",
+ " 7 MaxHR 918 non-null int64 \n",
+ " 8 ExerciseAngina 918 non-null object \n",
+ " 9 Oldpeak 918 non-null float64\n",
+ " 10 ST_Slope 918 non-null object \n",
+ " 11 HeartDisease 918 non-null int64 \n",
+ "dtypes: float64(1), int64(6), object(5)\n",
+ "memory usage: 86.2+ KB\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Basic information about the dataset\n",
+ "data.info()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "df134866-a405-434d-8603-4cefd3181e4e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(918, 12)"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "effd23f1-8bc0-42a8-9dc4-1f1c9f4c3b6f",
+ "metadata": {},
+ "source": [
+ "There are 918 rows and 12 columns\r\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "f9b33bee-56a3-4448-ab53-9132732929c9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "11016"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.size"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "ce154df8-9364-4988-b840-a8cd3d493c21",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Age 0\n",
+ "Sex 0\n",
+ "ChestPainType 0\n",
+ "RestingBP 0\n",
+ "Cholesterol 0\n",
+ "FastingBS 0\n",
+ "RestingECG 0\n",
+ "MaxHR 0\n",
+ "ExerciseAngina 0\n",
+ "Oldpeak 0\n",
+ "ST_Slope 0\n",
+ "HeartDisease 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "5c13c288-af55-498c-a5bb-edf9d289b569",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABLIAAAL2CAYAAABVBb+5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3e0lEQVR4nOzdeVjV1fr//9cGZCMIW2XmqEhqTjhrjhmmoeRxaHDKyPyYR0+OkKY0fLROSnqorGNampqeMv00YJxSFFNJc0hRSsvUHDINJIdAoLYC+/dHP/e3HaBu2JwN8nxc17quWO/1Xute7v66r3utt8FisVgEAAAAAAAAVHIuzg4AAAAAAAAAuBkksgAAAAAAAFAlkMgCAAAAAABAlUAiCwAAAAAAAFUCiSwAAAAAAABUCSSyAAAAAAAAUCWQyAIAAAAAAECVQCILAAAAAAAAVQKJLAAAAAAAAFQJJLIAAAAAAABQJTg1kbVo0SKFhYXJw8NDHTp00Pbt250ZDgAAAAAAACoxpyWy1q5dq6lTp+rpp5/WgQMHdOeddyoqKkqnT592VkgAAAAAAABVkj3FQhkZGXrooYfUtGlTubi4aOrUqSWO+/DDD9WiRQsZjUa1aNFCiYmJ5VrXEZyWyHr55Zc1ZswYPfbYY2revLkWLFig+vXra/Hixc4KCQAAAAAAoMqxt1jIbDbL399fTz/9tNq0aVPimF27dmnYsGGKjo7WV199pejoaA0dOlR79uwp87qOYLBYLJYKm70UV65ckaenp95//33dd9991v4pU6YoPT1dqamp/+2QAAAAAAAAqqTOnTurffv2NsVBzZs31+DBgxUfH3/ddyMiItS2bVstWLDApn/YsGHKycnRhg0brH39+vVTnTp19N5775V73bJySkXW+fPnVVhYqMDAQJv+wMBAZWZmFhtvNpuVk5Nj08xm838rXAAAAAAAgP8ae/IgV65cUVpamiIjI236IyMjtXPnzjLHsGvXrmJz9u3b1zpnRa17I24VNvNNMBgMNn9bLJZifZIUHx+v5557zqYv7qmn9PTTT1dofAAAAAAAVHdenp7ODsEpDHe2c9ras3oPKpYHmTVrlmbPnl1srL3FQjcrMzPzunNW1Lo34pRElp+fn1xdXYttLCsrq9g/gCTFxcUpNjbWpq+gsLBCYwQAAAAAAHCGkvIgRqPxuu/cbLGQPW5mzopY93qccrTQ3d1dHTp0UEpKik1/SkqKunXrVmy80WiUj4+PTbvRDwgAAAAAAFAV2ZMHsbdY6GYFBQVdd86KWvdGnPbVwtjYWL311ltavny5Dh8+rJiYGJ0+fVrjx493VkgAAAAAAAC/c3FxXrODvcVCN6tr167F5ty0aZN1zopa90acdkfWsGHDdOHCBT3//PPKyMhQeHi41q9fr9DQUGeFBAAAAAAAUOXExsYqOjpaHTt2VNeuXbVkyRKbYqG4uDidPXtWq1atsr6Tnp4uScrNzdXPP/+s9PR0ubu7q0WLFpKkKVOmqGfPnpo3b54GDRqkjz/+WJs3b9aOHTtuet2KYLBYLJYKm70C5eXnOzsEAAAAAABuedX2sveITk5b27Jtr93vLFq0SPPnz7cWC73yyivq2bOnJOnRRx/VqVOntG3bNuv4ku6xCg0N1alTp6x/f/DBB3rmmWd04sQJNWrUSHPmzNH9999/0+tWBBJZAAAAAACgVCSy/vvKksiqLpx2tBAAAAAAAKDScqm4L++h7Jx22TsAAAAAAABgD4cnsuLj49WpUyd5e3srICBAgwcP1pEjR2zGfPTRR+rbt6/8/PxkMBisF4wBAAAAAAAApXF4Iis1NVUTJkzQ7t27lZKSooKCAkVGRiovL886Ji8vT927d9eLL77o6OUBAAAAAADKz8XFeQ2lcvgdWcnJyTZ/r1ixQgEBAUpLS7PeWh8dHS1JNjfhAwAAAAAAANdT4Ze9Z2dnS5Lq1q1b0UsBAAAAAAA4hoHKqMqoQn8Vi8Wi2NhY9ejRQ+Hh4RW5FAAAAAAAAG5xFVqRNXHiRH399dfasWNHueYxm80ym802fQWFhTIajeWaFwAAAAAAAFVHhVVkTZo0SUlJSdq6davq1atXrrni4+NlMplsWkJCgoMiBQAAAAAA+BMue6+UHF6RZbFYNGnSJCUmJmrbtm0KCwsr95xxcXGKjY216SsoLCz3vAAAAAAAAKg6HJ7ImjBhglavXq2PP/5Y3t7eyszMlCSZTCbVrFlTknTx4kWdPn1aP/30kyTpyJEjkqSgoCAFBQUVm9NoNBY7RpiXn+/o0AEAAAAAAH5HZVSlZLBYLBaHTmgwlNi/YsUKPfroo5Kkt99+W6NHjy42ZtasWZo9e/ZNrUMiCwAAAACAiufl6ensEJzCENXTaWtbNnzutLUrO4cnsv5bSGQBAAAAAFDxqm0i6967nLa2ZX2q09au7KiTAwAAAAAAQJVAIgsAAAAAAABVgsMvewcAAAAAAKjyuOy9UqrwXyU+Pl4Gg0FTp06VJF29elUzZsxQq1at5OXlpZCQED3yyCPWLxgCAAAAAAAAJanQRNbevXu1ZMkStW7d2tqXn5+v/fv369lnn9X+/fv10Ucf6ejRoxo4cGBFhgIAAAAAAHDzDC7OayhVhR0tzM3N1ciRI7V06VK98MIL1n6TyaSUlBSbsf/61790xx136PTp02rQoEFFhQQAAAAAAIAqrMLSfBMmTFD//v3Vp0+fG47Nzs6WwWBQ7dq1KyocAAAAAAAAVHEVUpG1Zs0a7d+/X3v37r3h2N9++00zZ87UQw89JB8fn4oIBwAAAAAAwD5c9l4pOTyR9eOPP2rKlCnatGmTPDw8rjv26tWrGj58uIqKirRo0aJSx5nNZpnNZpu+gsJCGY1Gh8QMAAAAAACAys/h6cW0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa6/Jzc1NhYWFkn5PYg0dOlQnT55USkrKdaux4uPjZTKZbFpCQoKjQwcAAAAAAPidi4vzGkplsFgsFkdOePnyZf3www82faNHj1azZs00Y8YMhYeHW5NYx44d09atW+Xv73/dOanIAgAAAADAObw8PZ0dglMY7uvrtLUtiRudtnZl5/Cjhd7e3goPD7fp8/Lykq+vr8LDw1VQUKAHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d/dicxqNxmJJq7z8fEeHDgAAAAAAIEkyGAzODgElqJDL3q/nzJkzSkpKkiS1bdvW5tnWrVsVERHx3w4JAAAAAAAAVcB/JZG1bds26383bNhQDj7NCAAAAAAAgGrgv16RBQAAAAAAUOlx6XqlxK8CAAAAAACAKoGKLAAAAAAAgD+jIqtSqpBf5ezZs3r44Yfl6+srT09PtW3bVmlpadbns2fPVrNmzeTl5aU6deqoT58+2rNnT0WEAgAAAAAAgFuEwxNZly5dUvfu3VWjRg1t2LBB3377rV566SXVrl3bOub222/XwoULdfDgQe3YsUMNGzZUZGSkfv75Z0eHAwAAAAAAgFuEweLgTwjOnDlTX3zxhbZv337T7+Tk5MhkMmnz5s3q3bv3Tb2Tl59f1hABAAAAAMBN8vL0dHYITuEybKDT1i5am+S0tSs7h1dkJSUlqWPHjhoyZIgCAgLUrl07LV26tNTxV65c0ZIlS2QymdSmTRtHhwMAAAAAAIBbhMMTWSdOnNDixYvVpEkTbdy4UePHj9fkyZO1atUqm3GffPKJatWqJQ8PD73yyitKSUmRn5+fo8MBAAAAAACwn4uL8xpK5fCjhe7u7urYsaN27txp7Zs8ebL27t2rXbt2Wfvy8vKUkZGh8+fPa+nSpdqyZYv27NmjgICAYnOazWaZzWabvoLCQhmNRkeGDgAAAAAA/qTaHi0cMdhpaxe9t85pa1d2Dk/zBQcHq0WLFjZ9zZs31+nTp236vLy81LhxY3Xp0kXLli2Tm5ubli1bVuKc8fHxMplMNi0hIcHRoQMAAAAAAPzOxeC8hlK5OXrC7t2768iRIzZ9R48eVWho6HXfs1gsxaquromLi1NsbKxNX0FhYfkCBQAAAAAAQJXi8ERWTEyMunXrprlz52ro0KH68ssvtWTJEi1ZskTS70cK58yZo4EDByo4OFgXLlzQokWLdObMGQ0ZMqTEOY1GY7FjhHy1EAAAAAAAoHpxeCKrU6dOSkxMVFxcnJ5//nmFhYVpwYIFGjlypCTJ1dVV3333nVauXKnz58/L19dXnTp10vbt29WyZUtHhwMAAAAAAGA/A5euV0YOv+z9v4WKLAAAAAAAKl61vez94QectnbROx86be3KzuEVWQAAAAAAAFWeCxVZlRG/CgAAAAAAAKoEElkAAAAAAACoEhyeyCooKNAzzzyjsLAw1axZU7fddpuef/55FRUVlTh+3LhxMhgMWrBggaNDAQAAAAAAKBsXF+c1lMrhd2TNmzdPb7zxhlauXKmWLVtq3759Gj16tEwmk6ZMmWIzdt26ddqzZ49CQkIcHQYAAAAAAABuMQ5PZO3atUuDBg1S//79JUkNGzbUe++9p3379tmMO3v2rCZOnKiNGzdaxwIAAAAAAFQKBiqjKiOH/yo9evTQZ599pqNHj0qSvvrqK+3YsUP33nuvdUxRUZGio6M1ffp0tWzZ0tEhAAAAAAAA4Bbk8IqsGTNmKDs7W82aNZOrq6sKCws1Z84cjRgxwjpm3rx5cnNz0+TJkx29PAAAAAAAQPm5GJwdAUrg8ETW2rVr9c4772j16tVq2bKl0tPTNXXqVIWEhGjUqFFKS0vTq6++qv3798tguLn/Kcxms8xms01fQWGhjEajo8MHAAAAAABAJeXwo4XTp0/XzJkzNXz4cLVq1UrR0dGKiYlRfHy8JGn79u3KyspSgwYN5ObmJjc3N/3www964okn1LBhwxLnjI+Pl8lksmkJCQmODh0AAAAAAACVmMMrsvLz8+Xyp09Furq6qqioSJIUHR2tPn362Dzv27evoqOjNXr06BLnjIuLU2xsrE1fQWGhA6MGAAAAAAD4Axcue6+MHJ7IGjBggObMmaMGDRqoZcuWOnDggF5++WX9z//8jyTJ19dXvr6+Nu/UqFFDQUFBatq0aYlzGo3GYscI8/LzHR06AAAAAAAAKjGHJ7L+9a9/6dlnn9Xjjz+urKwshYSEaNy4cfrf//1fRy8FAAAAAABQMQxUZFVGBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4hcvfHnHa2kVLVjlt7cqO9CIAAAAAAACqBIcfLQQAAAAAAKjqDFz2XinxqwAAAAAAAKBKsDuR9fnnn2vAgAEKCQmRwWDQunXrbJ5bLBbNnj1bISEhqlmzpiIiIvTNN9/YjImIiJDBYLBpw4cPL9dGAAAAAAAAHMXFxcVpDaWz+18nLy9Pbdq00cKFC0t8Pn/+fL388stauHCh9u7dq6CgIN1zzz26fPmyzbixY8cqIyPD2t58882y7QAAAAAAAADVgt13ZEVFRSkqKqrEZxaLRQsWLNDTTz+t+++/X5K0cuVKBQYGavXq1Ro3bpx1rKenp4KCgsoYNgAAAAAAAKobh9arnTx5UpmZmYqMjLT2GY1G3XXXXdq5c6fN2HfffVd+fn5q2bKlpk2bVqxiCwAAAAAAwFk4Wlg5OfSrhZmZmZKkwMBAm/7AwED98MMP1r9HjhypsLAwBQUF6dChQ4qLi9NXX32llJQUR4YDAAAAAACAW4hDE1nXGAwGm78tFotN39ixY63/HR4eriZNmqhjx47av3+/2rdvX2w+s9kss9ls01dQWCij0ejgyAEAAAAAAERlVCXl0F/l2p1X1yqzrsnKyipWpfVH7du3V40aNXTs2LESn8fHx8tkMtm0hIQExwUOAAAAAACASs+hFVnXjgumpKSoXbt2kqQrV64oNTVV8+bNK/W9b775RlevXlVwcHCJz+Pi4hQbG2vTV1BY6LjAAQAAAAAA/oCKrMrJ7l8lNzdX6enpSk9Pl/T7Be/p6ek6ffq0DAaDpk6dqrlz5yoxMVGHDh3So48+Kk9PTz300EOSpOPHj+v555/Xvn37dOrUKa1fv15DhgxRu3bt1L179xLXNBqN8vHxsWkcKwQAAAAAAPjdokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPI+IiJDBYCjW+vfvbx0ze/bsYs+vndarKHZXZO3bt0+9evWy/n2tUmrUqFF6++239eSTT+rXX3/V448/rkuXLqlz587atGmTvL29JUnu7u767LPP9Oqrryo3N1f169dX//79NWvWLLm6ujpoWwAAAAAAANXD2rVrNXXqVC1atEjdu3fXm2++qaioKH377bdq0KBBsfEnT57Uvffeq7Fjx+qdd97RF198occff1z+/v564IEHJEkfffSRrly5Yn3nwoULatOmjYYMGWIzV8uWLbV582br3xWd2zFYLBZLha5QQfLy850dAgAAAAAAtzwvT09nh+AU3rGPO23tyy8vsmt8586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXrhLXWLBggf73f/9XGRkZ8vLykvR7Rda6deusp/b+GzjwCQAAAAAAUImYzWbl5OTYNLPZXOLYK1euKC0tTZGRkTb9kZGR2rlzZ4nv7Nq1q9j4vn37at++fbp69WqJ7yxbtkzDhw+3JrGuOXbsmEJCQhQWFqbhw4frxIkTN7vNMiGRBQAAAAAA8CcuBoPTWnx8vEwmk00rqbJKks6fP6/CwkIFBgba9AcGBiozM7PEdzIzM0scX1BQoPPnzxcb/+WXX+rQoUN67LHHbPo7d+6sVatWaePGjVq6dKkyMzPVrVs3XbhwwZ5/ars49KuFAAAAAAAAKJ+4uDjrneTX3OijdwaDweZvi8VSrO9G40vql36vxgoPD9cdd9xh0x8VFWX971atWqlr165q1KiRVq5cWSx+RyGRBQAAAAAAUIkYjcYbJq6u8fPzk6ura7Hqq6ysrGJVV9cEBQWVON7NzU2+vr42/fn5+VqzZo2ef/75G8bi5eWlVq1a6dixYzcVe1nYfbTw888/14ABAxQSEiKDwaB169ZZn129elUzZsxQq1at5OXlpZCQED3yyCP66aefis2za9cu3X333fLy8lLt2rUVERGhX3/9tVybAQAAAAAAcAQXFxenNXu4u7urQ4cOSklJselPSUlRt27dSnyna9euxcZv2rRJHTt2VI0aNWz6/+///k9ms1kPP/zwDWMxm806fPiwgoOD7dqDPexOZOXl5alNmzZauHBhsWf5+fnav3+/nn32We3fv18fffSRjh49qoEDB9qM27Vrl/r166fIyEh9+eWX2rt3ryZOnGj3jwUAAAAAAFDdxcbG6q233tLy5ct1+PBhxcTE6PTp0xo/fryk348qPvLII9bx48eP1w8//KDY2FgdPnxYy5cv17JlyzRt2rRicy9btkyDBw8uVqklSdOmTVNqaqpOnjypPXv26MEHH1ROTo5GjRpVYXu1+2hhVFSUzRnIPzKZTMUyev/61790xx136PTp02rQoIEkKSYmRpMnT9bMmTOt45o0aWJvKAAAAAAAABWiKhXbDBs2TBcuXNDzzz+vjIwMhYeHa/369QoNDZUkZWRk6PTp09bxYWFhWr9+vWJiYvT6668rJCREr732mh544AGbeY8ePaodO3Zo06ZNJa575swZjRgxQufPn5e/v7+6dOmi3bt3W9etCAbLtdu8yvKywaDExEQNHjy41DGbN29WZGSkfvnlF/n4+FjPaL722mt67733dPz4cTVr1kxz5sxRjx49bnrtvPz8soYNAAAAAABukpenp7NDcArfGVOctvaFea86be3KrkIve//tt980c+ZMPfTQQ/Lx8ZEknThxQpI0e/ZsJSQkqG3btlq1apV69+6tQ4cOlViZZTabZTabbfoKCgtv+uIzAAAAAAAAe1SliqzqpMJ+latXr2r48OEqKirSokWLrP1FRUWSpHHjxmn06NFq166dXnnlFTVt2lTLly8vca74+HiZTCablpCQUFGhAwAAAAAAoBKqkIqsq1evaujQoTp58qS2bNlircaSZL25vkWLFjbvNG/e3Oa85h/FxcUpNjbWpq+gsNDBUQMAAAAAAKAyc3gi61oS69ixY9q6dWuxW+0bNmyokJAQHTlyxKb/6NGjpV4ibzQaix0j5I4sAAAAAABQUThaWDnZncjKzc3V999/b/375MmTSk9PV926dRUSEqIHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d3cZDAZNnz5ds2bNUps2bdS2bVutXLlS3333nT744APH7QwAAAAAAAC3FLsTWfv27VOvXr2sf1878jdq1CjNnj1bSUlJkqS2bdvavLd161ZFRERIkqZOnarffvtNMTExunjxotq0aaOUlBQ1atSojNsAAAAAAABwHCqyKieDxWKxODuIsuBoIQAAAAAAFc/L09PZIThF8LPTnbZ2xj/+6bS1KzvSiwAAAAAAAKgSKuSrhQAAAAAAAFUZRwsrJ34VAAAAAAAAVAl2J7I+//xzDRgwQCEhITIYDFq3bl2pY8eNGyeDwaAFCxZY+06dOiWDwVBie//998uyBwAAAAAAAIdydXFxWkPp7P7XycvLU5s2bbRw4cLrjlu3bp327NmjkJAQm/769esrIyPDpj333HPy8vJSVFSUveEAAAAAAACgmrD7jqyoqKgbJpzOnj2riRMnauPGjerfv7/NM1dXVwUFBdn0JSYmatiwYapVq5a94QAAAAAAADgcd2RVTg7/VYqKihQdHa3p06erZcuWNxyflpam9PR0jRkzxtGhAAAAAAAA4Bbi8K8Wzps3T25ubpo8efJNjV+2bJmaN2+ubt26lTrGbDbLbDbb9BUUFspoNJYrVgAAAAAAAFQdDq3ISktL06uvvqq3335bBoPhhuN//fVXrV69+obVWPHx8TKZTDYtISHBUWEDAAAAAADYcHFxcVpD6Rz6r7N9+3ZlZWWpQYMGcnNzk5ubm3744Qc98cQTatiwYbHxH3zwgfLz8/XII49cd964uDhlZ2fbtGnTpjkydAAAAAAAAFRyDj1aGB0drT59+tj09e3bV9HR0Ro9enSx8cuWLdPAgQPl7+9/3XmNRmOxY4R5+fnlDxgAAAAAAKAEVEZVTnYnsnJzc/X9999b/z558qTS09NVt25dNWjQQL6+vjbja9SooaCgIDVt2tSm//vvv9fnn3+u9evXlzF0AAAAAAAAVCd2J7L27dunXr16Wf+OjY2VJI0aNUpvv/32Tc+zfPly/eUvf1FkZKS9IQAAAAAAAKAaMlgsFouzgygLjhYCAAAAAFDxvDw9nR2CU9w+7zmnrX10xiynrV3ZceATAAAAAAAAVYJDL3sHAAAAAAC4FXDZe+XErwIAAAAAAIAqwe5E1ueff64BAwYoJCREBoNB69atKzbm8OHDGjhwoEwmk7y9vdWlSxedPn3a+jwzM1PR0dEKCgqSl5eX2rdvrw8++KBcGwEAAAAAAHAUF4PBaQ2lszuRlZeXpzZt2mjhwoUlPj9+/Lh69OihZs2aadu2bfrqq6/07LPPysPDwzomOjpaR44cUVJSkg4ePKj7779fw4YN04EDB8q+EwAAAAAAANzSyvXVQoPBoMTERA0ePNjaN3z4cNWoUUP//ve/S32vVq1aWrx4saKjo619vr6+mj9/vsaMGXNTa/PVQgAAAAAAKl51/Wphi4QXnLb2t9OecdralZ1D78gqKirSp59+qttvv119+/ZVQECAOnfuXOz4YY8ePbR27VpdvHhRRUVFWrNmjcxmsyIiIhwZDgAAAAAAQJm4uLg4raF0Dv3XycrKUm5url588UX169dPmzZt0n333af7779fqamp1nFr165VQUGBfH19ZTQaNW7cOCUmJqpRo0Ylzms2m5WTk2PTzGazI0MHAAAAAABAJefwiixJGjRokGJiYtS2bVvNnDlTf/3rX/XGG29Yxz3zzDO6dOmSNm/erH379ik2NlZDhgzRwYMHS5w3Pj5eJpPJpiUkJDgydAAAAAAAACsqsionN0dO5ufnJzc3N7Vo0cKmv3nz5tqxY4ek3y+DX7hwoQ4dOqSWLVtKktq0aaPt27fr9ddft0l4XRMXF6fY2FibvoLCQkeGDgAAAAAAgErOoYksd3d3derUSUeOHLHpP3r0qEJDQyVJ+f//Je1/zjC6urpaK7r+zGg0ymg02vRx2TsAAAAAAED1YnciKzc3V99//73175MnTyo9PV1169ZVgwYNNH36dA0bNkw9e/ZUr169lJycrP/85z/atm2bJKlZs2Zq3Lixxo0bp4SEBPn6+mrdunVKSUnRJ5984rCNAQAAAAAAlBVH/Cong8VisdjzwrZt29SrV69i/aNGjdLbb78tSVq+fLni4+N15swZNW3aVM8995wGDRpkHXvs2DHNnDlTO3bsUG5urho3bqxp06YpOjr6puOgIgsAAAAAgIrn5enp7BCcou1r8522dvrkJ522dmVndyKrsiCRBQAAAABAxauuiaz2C533kbn9E6c5be3Kjjo5AAAAAAAAVAkOvewdAAAAAADgVsAdWZUTvwoAAAAAAACqBLsTWZ9//rkGDBigkJAQGQwGrVu3zuZ5bm6uJk6cqHr16qlmzZpq3ry5Fi9ebDPm+PHjuu++++Tv7y8fHx8NHTpU586dK9dGAAAAAAAAcGuzO5GVl5enNm3aaOHChSU+j4mJUXJyst555x0dPnxYMTExmjRpkj7++GPr+5GRkTIYDNqyZYu++OILXblyRQMGDFBRUVH5dgMAAAAAAOAALi4uTmsond13ZEVFRSkqKqrU57t27dKoUaMUEREhSfrb3/6mN998U/v27dOgQYP0xRdf6NSpUzpw4IB8fHwkSStWrFDdunW1ZcsW9enTp2w7AQAAAAAAwC3N4Wm+Hj16KCkpSWfPnpXFYtHWrVt19OhR9e3bV5JkNptlMBhkNBqt73h4eMjFxUU7duxwdDgAAAAAAAB2c3VxcVpD6Rz+r/Paa6+pRYsWqlevntzd3dWvXz8tWrRIPXr0kCR16dJFXl5emjFjhvLz85WXl6fp06erqKhIGRkZJc5pNpuVk5Nj08xms6NDBwAAAAAAQCVWIYms3bt3KykpSWlpaXrppZf0+OOPa/PmzZIkf39/vf/++/rPf/6jWrVqyWQyKTs7W+3bt5erq2uJc8bHx8tkMtm0hIQER4cOAAAAAACASszuO7Ku59dff9VTTz2lxMRE9e/fX5LUunVrpaenKyEhwXr/VWRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkqcNy4uTrGxsTZ9BYWFjgwdAAAAAADAiiN+lZNDE1lXr17V1atXi92w7+rqWuIXCf38/CRJW7ZsUVZWlgYOHFjivEaj0eZOLUnKy893UNQAAAAAAACoCuxOZOXm5ur777+3/n3y5Emlp6erbt26atCgge666y5Nnz5dNWvWVGhoqFJTU7Vq1Sq9/PLL1ndWrFih5s2by9/fX7t27dKUKVMUExOjpk2bOmZXAAAAAAAA5UBFVuVkdyJr37596tWrl/Xva0f+Ro0apbfffltr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjre8cOXJEcXFxunjxoho2bKinn35aMTExDtgOAAAAAAAAblUGi8VicXYQZcHRQgAAAAAAKp6Xp6ezQ3CKu99+w2lrb3l0/I0HVVPUyQEAAAAAAKBKIJEFAAAAAACAKsGhXy0EAAAAAAC4Fbi6UvtTGdn1q8THx6tTp07y9vZWQECABg8erCNHjtiM+eijj9S3b1/5+fnJYDAoPT292Dxms1mTJk2Sn5+fvLy8NHDgQJ05c6ZcGwEAAAAAAMCtza5EVmpqqiZMmKDdu3crJSVFBQUFioyMVF5ennVMXl6eunfvrhdffLHUeaZOnarExEStWbNGO3bsUG5urv7617+qsLCw7DsBAAAAAABwEFcXF6c1lK5cXy38+eefFRAQoNTUVPXs2dPm2alTpxQWFqYDBw6obdu21v7s7Gz5+/vr3//+t4YNGyZJ+umnn1S/fn2tX79effv2vam1+WohAAAAAAAVr7p+tbDfu285be3kkY85be3KrlxpvuzsbElS3bp1b/qdtLQ0Xb16VZGRkda+kJAQhYeHa+fOneUJBwAAAAAAALewMl/2brFYFBsbqx49eig8PPym38vMzJS7u7vq1Klj0x8YGKjMzMwS3zGbzTKbzTZ9BYWFMhqN9gcOAAAAAABwAxzxq5zK/KtMnDhRX3/9td577z2HBGKxWGQwGEp8Fh8fL5PJZNMSEhIcsi4AAAAAAACqhjJVZE2aNElJSUn6/PPPVa9ePbveDQoK0pUrV3Tp0iWbqqysrCx169atxHfi4uIUGxtr01fAxfAAAAAAAKCCUJFVOdn1q1gsFk2cOFEfffSRtmzZorCwMLsX7NChg2rUqKGUlBRrX0ZGhg4dOlRqIstoNMrHx8emcawQAAAAAACgerGrImvChAlavXq1Pv74Y3l7e1vvtDKZTKpZs6Yk6eLFizp9+rR++uknSdKRI0ck/V6JFRQUJJPJpDFjxuiJJ56Qr6+v6tatq2nTpqlVq1bq06ePI/cGAAAAAACAW4hdiazFixdLkiIiImz6V6xYoUcffVSSlJSUpNGjR1ufDR8+XJI0a9YszZ49W5L0yiuvyM3NTUOHDtWvv/6q3r176+2335arq2sZtwEAAAAAAOA4LhwtrJQMFovF4uwgyiIvP9/ZIQAAAAAAcMvz8vR0dghOMfj9VU5be92QR5y2dmVXpsveAQAAAAAAbmVc9l458asAAAAAAACgSqAiCwAAAAAA4E+oyKqc7PpV4uPj1alTJ3l7eysgIECDBw+2fpXwmtmzZ6tZs2by8vJSnTp11KdPH+3Zs8dmzJIlSxQRESEfHx8ZDAb98ssv5d4IAAAAAABAdbVo0SKFhYXJw8NDHTp00Pbt2687PjU1VR06dJCHh4duu+02vfHGGzbP3377bRkMhmLtt99+K9e65WVXIis1NVUTJkzQ7t27lZKSooKCAkVGRiovL8865vbbb9fChQt18OBB7dixQw0bNlRkZKR+/vln65j8/Hz169dPTz31lON2AgAAAAAAUA2tXbtWU6dO1dNPP60DBw7ozjvvVFRUlE6fPl3i+JMnT+ree+/VnXfeqQMHDuipp57S5MmT9eGHH9qM8/HxUUZGhk3z8PAo87qOUK6vFv78888KCAhQamqqevbsWeKYnJwcmUwmbd68Wb1797Z5tm3bNvXq1UuXLl1S7dq17VqbrxYCAAAAAFDxqutXC0d8vMZpa783aLhd4zt37qz27dtr8eLF1r7mzZtr8ODBio+PLzZ+xowZSkpK0uHDh61948eP11dffaVdu3ZJ+r0ia+rUqdc9RWfvuo5QrgOf2dnZkqS6deuW+PzKlStasmSJTCaT2rRpU56lAAAAAAAAqgWz2aycnBybZjabSxx75coVpaWlKTIy0qY/MjJSO3fuLPGdXbt2FRvft29f7du3T1evXrX25ebmKjQ0VPXq1dNf//pXHThwoFzrOkKZE1kWi0WxsbHq0aOHwsPDbZ598sknqlWrljw8PPTKK68oJSVFfn5+ZQ7Snh8QAAAAAACgvFxdDU5r8fHxMplMNq20Cqfz58+rsLBQgYGBNv2BgYHKzMws8Z3MzMwSxxcUFOj8+fOSpGbNmuntt99WUlKS3nvvPXl4eKh79+46duxYmdd1hDInsiZOnKivv/5a7733XrFnvXr1Unp6unbu3Kl+/fpp6NChysrKKnOQJf2ACQkJZZ4PAAAAAACgsoqLi1N2drZNi4uLu+47BoPB5m+LxVKs70bj/9jfpUsXPfzww2rTpo3uvPNO/d///Z9uv/12/etf/yrXuuXlVpaXJk2apKSkJH3++eeqV69esedeXl5q3LixGjdurC5duqhJkyZatmzZDf/RSxMXF6fY2FibvoLCwjLNBQAAAAAAUJkZjUYZjcabGuvn5ydXV9diVVBZWVnFqqWuCQoKKnG8m5ubfH19S3zHxcVFnTp1slZklWVdR7CrIstisWjixIn66KOPtGXLFoWFhd30e+U5Cmg0GuXj42PTbvYHBQAAAAAAsJeri4vTmj3c3d3VoUMHpaSk2PSnpKSoW7duJb7TtWvXYuM3bdqkjh07qkaNGiW+Y7FYlJ6eruDg4DKv6wh2VWRNmDBBq1ev1scffyxvb29r1s1kMqlmzZrKy8vTnDlzNHDgQAUHB+vChQtatGiRzpw5oyFDhljnyczMVGZmpr7//ntJ0sGDB+Xt7a0GDRqUenE8AAAAAAAAiouNjVV0dLQ6duyorl27asmSJTp9+rTGjx8v6feTbmfPntWqVask/f6FwoULFyo2NlZjx47Vrl27tGzZMpvro5577jnrKbucnBy99tprSk9P1+uvv37T61YEuxJZ1z6nGBERYdO/YsUKPfroo3J1ddV3332nlStX6vz58/L19VWnTp20fft2tWzZ0jr+jTfe0HPPPWf9u2fPnjbzAAAAAAAAOJO9lVHONGzYMF24cEHPP/+8MjIyFB4ervXr1ys0NFSSlJGRodOnT1vHh4WFaf369YqJidHrr7+ukJAQvfbaa3rggQesY3755Rf97W9/U2Zmpkwmk9q1a6fPP/9cd9xxx02vWxEMlmu3eVUxefn5zg4BAAAAAIBbnpenp7NDcIr/Sf7QaWsv7/fAjQdVU2W67B0AAAAAAOBWVpUqsqoTfhUAAAAAAABUCSSyAAAAAAAAUCXYlciKj49Xp06d5O3trYCAAA0ePFhHjhyxGfPoo4/KYDDYtC5dulifX7x4UZMmTVLTpk3l6empBg0aaPLkycrOznbMjgAAAAAAAMrJ1cXFaQ2ls+tfJzU1VRMmTNDu3buVkpKigoICRUZGKi8vz2Zcv379lJGRYW3r16+3Pvvpp5/0008/KSEhQQcPHtTbb7+t5ORkjRkzxjE7AgAAAAAAwC3Jrsvek5OTbf5esWKFAgIClJaWpp49e1r7jUajgoKCSpwjPDxcH374/27+b9SokebMmaOHH35YBQUFcnPj/nkAAAAAAOBcVEZVTuX6Va4dB6xbt65N/7Zt2xQQEKDbb79dY8eOVVZW1g3n8fHxIYkFAAAAAACAUpU5kWWxWBQbG6sePXooPDzc2h8VFaV3331XW7Zs0UsvvaS9e/fq7rvvltlsLnGeCxcu6B//+IfGjRtX1lAAAAAAAABQDZS5BGrixIn6+uuvtWPHDpv+YcOGWf87PDxcHTt2VGhoqD799FPdf//9NmNzcnLUv39/tWjRQrNmzSp1LbPZXCwRVlBYKKPRWNbwAQAAAAAASsXRwsqpTL/KpEmTlJSUpK1bt6pevXrXHRscHKzQ0FAdO3bMpv/y5cvq16+fatWqpcTERNWoUaPUOeLj42UymWxaQkJCWUIHAAAAAABAFWVXRZbFYtGkSZOUmJiobdu2KSws7IbvXLhwQT/++KOCg4OtfTk5Oerbt6+MRqOSkpLk4eFx3Tni4uIUGxtr01dQWGhP6AAAAAAAADeNiqzKya5E1oQJE7R69Wp9/PHH8vb2VmZmpiTJZDKpZs2ays3N1ezZs/XAAw8oODhYp06d0lNPPSU/Pz/dd999kn6vxIqMjFR+fr7eeecd5eTkKCcnR5Lk7+8vV1fXYusajcZixwjz8vPLtGEAAAAAAABUTXYlshYvXixJioiIsOlfsWKFHn30Ubm6uurgwYNatWqVfvnlFwUHB6tXr15au3atvL29JUlpaWnas2ePJKlx48Y285w8eVINGzYs41YAAAAAAAAcg4qsysnuo4XXU7NmTW3cuPG6YyIiIm44DwAAAAAAAPBnpBcBAAAAAABQJdhVkQUAAAAAAFAduLpS+1MZ8asAAAAAAACgSrArkRUfH69OnTrJ29tbAQEBGjx4sI4cOWIzxmAwlNj++c9/WseMGzdOjRo1Us2aNeXv769Bgwbpu+++c8yOAAAAAAAAysnVxcVpDaWz618nNTVVEyZM0O7du5WSkqKCggJFRkYqLy/POiYjI8OmLV++XAaDQQ888IB1TIcOHbRixQodPnxYGzdulMViUWRkpAoLCx23MwAAAAAAANxSDJZyfELw559/VkBAgFJTU9WzZ88SxwwePFiXL1/WZ599Vuo8X3/9tdq0aaPvv/9ejRo1uqm18/LzyxQzAAAAAAC4eV6ens4OwSme2lN6HqOize3c22lrV3bluuw9OztbklS3bt0Sn587d06ffvqpVq5cWeoceXl5WrFihcLCwlS/fv3yhAMAAAAAAOAQHPGrnMr8q1gsFsXGxqpHjx4KDw8vcczKlSvl7e2t+++/v9izRYsWqVatWqpVq5aSk5OVkpIid3f3soYDAAAAAACAW1yZK7ImTpyor7/+Wjt27Ch1zPLlyzVy5Eh5eHgUezZy5Ejdc889ysjIUEJCgoYOHaovvviixLFms1lms9mmr6CwUEajsazhAwAAAAAAlIqKrMqpTL/KpEmTlJSUpK1bt6pevXoljtm+fbuOHDmixx57rMTnJpNJTZo0Uc+ePfXBBx/ou+++U2JiYolj4+PjZTKZbFpCQkJZQgcAAAAAAEAVZVdFlsVi0aRJk5SYmKht27YpLCys1LHLli1Thw4d1KZNm5ue+89VV9fExcUpNjbWpq+ALxwCAAAAAIAK4kJFVqVkVyJrwoQJWr16tT7++GN5e3srMzNT0u/VVTVr1rSOy8nJ0fvvv6+XXnqp2BwnTpzQ2rVrFRkZKX9/f509e1bz5s1TzZo1de+995a4rtFoLHaMkK8WAgAAAAAAVC92pRcXL16s7OxsRUREKDg42NrWrl1rM27NmjWyWCwaMWJEsTk8PDy0fft23XvvvWrcuLGGDh0qLy8v7dy5UwEBAeXbDQAAAAAAAG5ZBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4xZz00j9uV9GebtvDaWtXdhz4BAAAAAAAQJVg1x1ZAAAAAAAA1YGrgdqfyohfBQAAAAAAAFWCXYms+Ph4derUSd7e3goICNDgwYN15MgRmzHnzp3To48+qpCQEHl6eqpfv346duxYifNZLBZFRUXJYDBo3bp1Zd4EAAAAAAAAbn12JbJSU1M1YcIE7d69WykpKSooKFBkZKTy8vIk/Z6YGjx4sE6cOKGPP/5YBw4cUGhoqPr06WMd80cLFiyQwWBwzE4AAAAAAAAcxNVgcFpD6ey6Iys5Odnm7xUrViggIEBpaWnq2bOnjh07pt27d+vQoUNq2bKlJGnRokUKCAjQe++9p8cee8z67ldffaWXX35Ze/fuVXBwsAO2AgAAAAAAgFtZue7Iys7OliTVrVtXkmQ2myVJHh4e1jGurq5yd3fXjh3/77OV+fn5GjFihBYuXKigoKDyhAAAAAAAAOBwVGRVTmVOZFksFsXGxqpHjx4KDw+XJDVr1kyhoaGKi4vTpUuXdOXKFb344ovKzMxURkaG9d2YmBh169ZNgwYNKv8OAAAAAAAAUC3YdbTwjyZOnKivv/7aptKqRo0a+vDDDzVmzBjVrVtXrq6u6tOnj6KioqxjkpKStGXLFh04cOCm1zKbzdZqr2sKCgtlNBrLGj4AAAAAAECpXAzlOsSGClKmX2XSpElKSkrS1q1bVa9ePZtnHTp0UHp6un755RdlZGQoOTlZFy5cUFhYmCRpy5YtOn78uGrXri03Nze5uf2eS3vggQcUERFR4nrx8fEymUw2LSEhoSyhAwAAAAAAoIoyWCwWy80OtlgsmjRpkhITE7Vt2zY1adLkhu8cO3ZMzZo104YNGxQZGanMzEydP3/eZkyrVq306quvasCAAdaE1x9RkQUAAAAAgHN4eXo6OwSnWHDoS6etPTX8DqetXdnZdbRwwoQJWr16tT7++GN5e3srMzNTkmQymVSzZk1J0vvvvy9/f381aNBABw8e1JQpUzR48GBFRkZKkoKCgkq84L1BgwYlJrEkyWg0Fkta5eXn2xM6AAAAAADATePS9crJrkTW4sWLJanYEcAVK1bo0UcflSRlZGQoNjZW586dU3BwsB555BE9++yzDgkWAAAAAAAA1ZddRwsrEyqyAAAAAACoeNX1aOGiw2lOW/vx5h2ctnZlxxX8AAAAAAAAqBJIZAEAAAAAAKBKsOuOLAAAAAAAgOqAy94rJ7sqshYvXqzWrVvLx8dHPj4+6tq1qzZs2GB9/tFHH6lv377y8/OTwWBQenp6sTkiIiJkMBhs2vDhw8u9EQAAAAAAANza7KrIqlevnl588UU1btxYkrRy5UoNGjRIBw4cUMuWLZWXl6fu3btryJAhGjt2bKnzjB07Vs8//7z175o1a5YxfAAAAAAAAMdzoSKrUrIrkTVgwACbv+fMmaPFixdr9+7datmypaKjoyVJp06duu48np6eCgoKsi9SAAAAAAAAVGtlvuy9sLBQa9asUV5enrp27WrXu++++678/PzUsmVLTZs2TZcvXy5rGAAAAAAAAA7nanBxWkPp7L7s/eDBg+ratat+++031apVS4mJiWrRosVNvz9y5EiFhYUpKChIhw4dUlxcnL766iulpKTYGwoAAAAAAACqEbsTWU2bNlV6erp++eUXffjhhxo1apRSU1NvOpn1x7uzwsPD1aRJE3Xs2FH79+9X+/btS3zHbDbLbDbb9BUUFspoNNobPgAAAAAAAKoou+vV3N3d1bhxY3Xs2FHx8fFq06aNXn311TIH0L59e9WoUUPHjh0rdUx8fLxMJpNNS0hIKPOaAAAAAAAA1+NqMDitoXR2V2T9mcViKVYtZY9vvvlGV69eVXBwcKlj4uLiFBsba9NXUFhY5jUBAAAAAABQ9diVyHrqqacUFRWl+vXr6/Lly1qzZo22bdum5ORkSdLFixd1+vRp/fTTT5KkI0eOSJKCgoIUFBSk48eP691339W9994rPz8/ffvtt3riiSfUrl07de/evdR1jUZjsWOEefn5dm0UAAAAAADgZnHpeuVkVyLr3Llzio6OVkZGhkwmk1q3bq3k5GTdc889kqSkpCSNHj3aOn748OGSpFmzZmn27Nlyd3fXZ599pldffVW5ubmqX7+++vfvr1mzZsnV1dWB2wIAAAAAAMCtxmCxWCzODqIsqMgCAAAAAKDieXl6OjsEp3jn+0NOW/vhxuFOW7uyK/cdWQAAAAAAALcaLl2vnDjwCQAAAAAAgCqBiiwAAAAAAIA/caEiq1KyqyJr8eLFat26tXx8fOTj46OuXbtqw4YN1uezZ89Ws2bN5OXlpTp16qhPnz7as2dPsXl27dqlu+++W15eXqpdu7YiIiL066+/ln83AAAAAAAAuGXZlciqV6+eXnzxRe3bt0/79u3T3XffrUGDBumbb76RJN1+++1auHChDh48qB07dqhhw4aKjIzUzz//bJ1j165d6tevnyIjI/Xll19q7969mjhxolxcOOUIAAAAAACA0pX7q4V169bVP//5T40ZM6bYs5ycHJlMJm3evFm9e/eWJHXp0kX33HOP/vGPf5RnWb5aCAAAAADAf0F1/WrhB6e+c9raDzZs5rS1K7syl0EVFhZqzZo1ysvLU9euXYs9v3LlipYsWSKTyaQ2bdpIkrKysrRnzx4FBASoW7duCgwM1F133aUdO3aUfQcAAAAAAACoFuy+7P3gwYPq2rWrfvvtN9WqVUuJiYlq0aKF9fknn3yi4cOHKz8/X8HBwUpJSZGfn58k6cSJE5J+v0srISFBbdu21apVq9S7d28dOnRITZo0cdC2AAAAAAAAys6Vy94rJbsrspo2bar09HTt3r1bf//73zVq1Ch9++231ue9evVSenq6du7cqX79+mno0KHKysqSJBUVFUmSxo0bp9GjR6tdu3Z65ZVX1LRpUy1fvrzUNc1ms3Jycmya2Wy2N3QAAAAAAABUYXYnstzd3dW4cWN17NhR8fHxatOmjV599VXrcy8vLzVu3FhdunTRsmXL5ObmpmXLlkmSgoODJcmmgkuSmjdvrtOnT5e6Znx8vEwmk01LSEiwN3QAAAAAAICb4mpwcVpD6cr9r2OxWK5bHfXH5w0bNlRISIiOHDliM+bo0aMKDQ0tdY64uDhlZ2fbtGnTppU3dAAAAAAAgFvCokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPF+6dKnuvPNO1alTR3Xq1FGfPn305Zdf2oyZPXu2DAaDTQsKCnL43v7IrjuynnrqKUVFRal+/fq6fPmy1qxZo23btik5OVl5eXmaM2eOBg4cqODgYF24cEGLFi3SmTNnNGTIEEmSwWDQ9OnTNWvWLLVp00Zt27bVypUr9d133+mDDz4odV2j0Sij0WjTx1cLAQAAAAAApLVr12rq1KlatGiRunfvrjfffFNRUVH69ttv1aBBg2LjT548qXvvvVdjx47VO++8oy+++EKPP/64/P399cADD0iStm3bphEjRqhbt27y8PDQ/PnzFRkZqW+++UZ/+ctfrHO1bNlSmzdvtv7t6upaoXu1K5F17tw5RUdHKyMjQyaTSa1bt1ZycrLuuece/fbbb/ruu++0cuVKnT9/Xr6+vurUqZO2b9+uli1bWueYOnWqfvvtN8XExOjixYtq06aNUlJS1KhRI4dvDgAAAAAAoCyq0mXvL7/8ssaMGaPHHntMkrRgwQJt3LhRixcvVnx8fLHxb7zxhho0aKAFCxZI+v3Kp3379ikhIcGayHr33Xdt3lm6dKk++OADffbZZ3rkkUes/W5ubhVehfVHdiWyrt11VRIPDw999NFHNzXPzJkzNXPmTHuWBgAAAAAAqBbMZnOxa5xKOq0mSVeuXFFaWlqxPEtkZKR27txZ4vy7du1SZGSkTV/fvn21bNkyXb16VTVq1Cj2Tn5+vq5evaq6deva9B87dkwhISEyGo3q3Lmz5s6dq9tuu+2m9lkW3CAGAAAAAADwJy4GF6e1kj56V1JllSSdP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz58v8Z2ZM2fqL3/5i/r06WPt69y5s1atWqWNGzdq6dKlyszMVLdu3XThwgV7/qntYldFFgAAAAAAACpWXFycYmNjbfpKqsb6I8OfjkJaLJZifTcaX1K/JM2fP1/vvfeetm3bJg8PD2t/VFSU9b9btWqlrl27qlGjRlq5cmWx+B2FRBYAAAAAAEAlUtoxwpL4+fnJ1dW1WPVVVlZWsaqra4KCgkoc7+bmJl9fX5v+hIQEzZ07V5s3b1br1q2vG4uXl5datWqlY8eO3VTsZcHRQgAAAAAAgD9xNRic1uzh7u6uDh06KCUlxaY/JSVF3bp1K/Gdrl27Fhu/adMmdezY0eZ+rH/+85/6xz/+oeTkZHXs2PGGsZjNZh0+fFjBwcF27cEediWyFi9erNatW8vHx0c+Pj7q2rWrNmzYYH3+6KOPymAw2LQuXbpYn586darY82vt/fffd9yuAAAAAAAAqonY2Fi99dZbWr58uQ4fPqyYmBidPn1a48ePl/T7UcU/fmlw/Pjx+uGHHxQbG6vDhw9r+fLlWrZsmaZNm2YdM3/+fD3zzDNavny5GjZsqMzMTGVmZio3N9c6Ztq0aUpNTdXJkye1Z88ePfjgg8rJydGoUaMqbK92HS2sV6+eXnzxRTVu3FiStHLlSg0aNEgHDhxQy5YtJUn9+vXTihUrrO+4u7tb/7t+/frKyMiwmXPJkiWaP3++zblKAAAAAAAAZ7K3MsqZhg0bpgsXLuj5559XRkaGwsPDtX79eoWGhkqSMjIydPr0aev4sLAwrV+/XjExMXr99dcVEhKi1157TQ888IB1zKJFi3TlyhU9+OCDNmvNmjVLs2fPliSdOXNGI0aM0Pnz5+Xv768uXbpo9+7d1nUrgsFy7TavMqpbt67++c9/asyYMXr00Uf1yy+/aN26dTf9frt27dS+fXstW7bMrnXz8vPtjBQAAAAAANjLy9PT2SE4xWc/nXLa2r1DGjpt7cquzJe9FxYW6v3331deXp66du1q7d+2bZsCAgJUu3Zt3XXXXZozZ44CAgJKnCMtLU3p6el6/fXXyxoGAAAAAACAw7m6cK14ZWR3IuvgwYPq2rWrfvvtN9WqVUuJiYlq0aKFpN8/uzhkyBCFhobq5MmTevbZZ3X33XcrLS2txNv2ly1bpubNm5d6+dg1ZrNZZrPZpq+gsPCmb/AHAAAAAABA1Wd3erFp06ZKT0/X7t279fe//12jRo3St99+K+n3M5n9+/dXeHi4BgwYoA0bNujo0aP69NNPi83z66+/avXq1RozZswN14yPj5fJZLJpCQkJ9oYOAAAAAACAKqzcd2T16dNHjRo10ptvvlni8yZNmuixxx7TjBkzbPr//e9/a8yYMTp79qz8/f2vuwYVWQAAAAAAOEd1vSPr83M/Om3tnoH1nbZ2ZVfmO7KusVgsxZJM11y4cEE//vijgoODiz1btmyZBg4ceMMkliQZjcZiSSsuewcAAAAAAKhe7EpkPfXUU4qKilL9+vV1+fJlrVmzRtu2bVNycrJyc3M1e/ZsPfDAAwoODtapU6f01FNPyc/PT/fdd5/NPN9//70+//xzrV+/3qGbAQAAAAAAcARXA5e9V0Z2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999yjX3/9VQcPHtSqVav0yy+/KDg4WL169dLatWvl7e1tM8/y5cv1l7/8RZGRkQ7dDAAAAAAAAG5d5b4jy1k4WggAAAAAQMWrrndkfZF11mlrdw/4i9PWruzKfUcWAAAAAADArcbVYHB2CCgBBz4BAAAAAABQJVCRBQAAAAAA8CcuoiKrMrKrImvx4sVq3bq1fHx85OPjo65du2rDhg3W5waDocT2z3/+0zomMzNT0dHRCgoKkpeXl9q3b68PPvjAcTsCAAAAAADALcmuiqx69erpxRdfVOPGjSVJK1eu1KBBg3TgwAG1bNlSGRkZNuM3bNigMWPG6IEHHrD2RUdHKzs7W0lJSfLz89Pq1as1bNgw7du3T+3atXPAlgAAAAAAAMrHhYKsSqncXy2sW7eu/vnPf2rMmDHFng0ePFiXL1/WZ599Zu2rVauWFi9erOjoaGufr6+v5s+fX+IcpeGrhQAAAAAAVLzq+tXCfeczbjyognT0C3ba2pVdmS97Lyws1Jo1a5SXl6euXbsWe37u3Dl9+umnxZJTPXr00Nq1a3Xx4kUVFRVpzZo1MpvNioiIKGsoAAAAAAAAqAbsvuz94MGD6tq1q3777TfVqlVLiYmJatGiRbFxK1eulLe3t+6//36b/rVr12rYsGHy9fWVm5ubPD09lZiYqEaNGpW6ptlsltlstukrKCyU0Wi0N3wAAAAAAIAbMnDZe6Vkd0VW06ZNlZ6ert27d+vvf/+7Ro0apW+//bbYuOXLl2vkyJHy8PCw6X/mmWd06dIlbd68Wfv27VNsbKyGDBmigwcPlrpmfHy8TCaTTUtISLA3dAAAAAAAAFRh5b4jq0+fPmrUqJHefPNNa9/27dvVs2dPpaenq02bNtb+48ePq3Hjxjp06JBatmxpM0fjxo31xhtvlLgGFVkAAAAAADhHdb0j68CFc05bu51voNPWruzsPlr4ZxaLpViSadmyZerQoYNNEkuS8v//C9pdXGwLwVxdXVVUVFTqGkajsVjSisveAQAAAAAAqhe7EllPPfWUoqKiVL9+fV2+fFlr1qzRtm3blJycbB2Tk5Oj999/Xy+99FKx95s1a6bGjRtr3LhxSkhIkK+vr9atW6eUlBR98skn5d8NAAAAAAAAbll2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999xjHbNmzRpZLBaNGDGi2Ps1atTQ+vXrNXPmTA0YMEC5ublq3LixVq5cqXvvvbf8uwEAAAAAAHAAuy8Vx39Fue/IchaOFgIAAAAAUPGq6x1ZXznxjqw23JFVqnLfkQUAAAAAAHCrcTEYnB0CSkClHAAAAAAAAKoEKrIAAAAAAAD+hMqfysmu32Xx4sVq3bq1fHx85OPjo65du2rDhg3W5+fOndOjjz6qkJAQeXp6ql+/fjp27JjNHMePH9d9990nf39/+fj4aOjQoTp3znnnTgEAAAAAAFA12JXIqlevnl588UXt27dP+/bt0913361Bgwbpm2++kcVi0eDBg3XixAl9/PHHOnDggEJDQ9WnTx/l5eVJkvLy8hQZGSmDwaAtW7boiy++0JUrVzRgwAAVFRVVyAYBAAAAAABwayj3Vwvr1q2rf/7zn7rzzjvVtGlTHTp0SC1btpQkFRYWKiAgQPPmzdNjjz2mTZs2KSoqSpcuXZKPj48k6dKlS6pbt65SUlLUp0+fm16XrxYCAAAAAFDxqutXC7+9+LPT1m5R199pa1d2ZT7yWVhYqDVr1igvL09du3aV2WyWJHl4eFjHuLq6yt3dXTt27JAkmc1mGQwGGY1G6xgPDw+5uLhYxwAAAAAAAAAlsTuRdfDgQdWqVUtGo1Hjx49XYmKiWrRooWbNmik0NFRxcXG6dOmSrly5ohdffFGZmZnKyMiQJHXp0kVeXl6aMWOG8vPzlZeXp+nTp6uoqMg6piRms1k5OTk27VriDAAAAAAAwNFcDAanNZTO7kRW06ZNlZ6ert27d+vvf/+7Ro0apW+//VY1atTQhx9+qKNHj6pu3bry9PTUtm3bFBUVJVdXV0mSv7+/3n//ff3nP/9RrVq1ZDKZlJ2drfbt21vHlCQ+Pl4mk8mmJSQklH3XAAAAAAAAqHLKfUdWnz591KhRI7355pvWvuzsbF25ckX+/v7q3LmzOnbsqNdff93mvfPnz8vNzU21a9dWUFCQnnjiCU2fPr3ENcxmc7EKrILCQpsjigAAAAAAwPGq6x1Z310677S1m9Xxc9ralZ1beSewWCzFkkwmk0mSdOzYMe3bt0//+Mc/ir3n5/f7j7JlyxZlZWVp4MCBpa5hNBqLJa247B0AAAAAAFSUMl8qjgplVyLrqaeeUlRUlOrXr6/Lly9rzZo12rZtm5KTkyVJ77//vvz9/dWgQQMdPHhQU6ZM0eDBgxUZGWmdY8WKFWrevLn8/f21a9cuTZkyRTExMWratKljdwYAAAAAAIBbil2JrHPnzik6OloZGRkymUxq3bq1kpOTdc8990iSMjIyFBsbq3Pnzik4OFiPPPKInn32WZs5jhw5ori4OF28eFENGzbU008/rZiYGMftCAAAAAAAoJy4dL1yKvcdWc7C0UIAAAAAACpedb0j6/tfLjht7ca1fZ22dmVX7juyAAAAAAAAbjUuoiKrMuLuMgAAAAAAAFQJJLIAAAAAAABQJZQrkRUfHy+DwaCpU6dKkq5evaoZM2aoVatW8vLyUkhIiB555BH99NNPNu+ZzWZNmjRJfn5+8vLy0sCBA3XmzJnyhAIAAAAAAOAwBoPzGkpX5kTW3r17tWTJErVu3dral5+fr/379+vZZ5/V/v379dFHH+no0aMaOHCgzbtTp05VYmKi1qxZox07dig3N1d//etfVVhYWPadAAAAAAAA4JZWpq8W5ubmqn379lq0aJFeeOEFtW3bVgsWLChx7N69e3XHHXfohx9+UIMGDZSdnS1/f3/9+9//1rBhwyRJP/30k+rXr6/169erb9++NxUDXy0EAAAAAKDiVdevFv6Qfclpa4ea6jht7cquTBVZEyZMUP/+/dWnT58bjs3OzpbBYFDt2rUlSWlpabp69aoiIyOtY0JCQhQeHq6dO3eWJRwAAAAAAABUA272vrBmzRrt379fe/fuveHY3377TTNnztRDDz0kHx8fSVJmZqbc3d1Vp45tdjEwMFCZmZklzmM2m2U2m236CgoLZTQa7Q0fAAAAAAAAVZRdFVk//vijpkyZonfeeUceHh7XHXv16lUNHz5cRUVFWrRo0Q3ntlgsMpRyo1l8fLxMJpNNS0hIsCd0AAAAAACAm+bixIbS2XVH1rp163TffffJ1dXV2ldYWCiDwSAXFxeZzWa5urrq6tWrGjp0qE6cOKEtW7bI19fXOn7Lli3q3bu3Ll68aFOV1aZNGw0ePFjPPfdcsXWpyAIAAAAAwDmq6x1ZPzrxjqz63JFVKruOFvbu3VsHDx606Rs9erSaNWumGTNm2CSxjh07pq1bt9oksSSpQ4cOqlGjhlJSUjR06FBJUkZGhg4dOqT58+eXuK7RaCyWtOKydwAAAAAAUFFcSjk1BueyK5Hl7e2t8PBwmz4vLy/5+voqPDxcBQUFevDBB7V//3598sknKiwstN57VbduXbm7u8tkMmnMmDF64okn5Ovrq7p162ratGlq1arVTV0eDwAAAAAAgOrJ7sver+fMmTNKSkqSJLVt29bm2datWxURESFJeuWVV+Tm5qahQ4fq119/Ve/evfX222/bHFkEAAAAAABwFhdRkVUZ2XVHVmXC0UIAAAAAACpedb0jKyMn22lrB/uYnLZ2Zcdl+AAAAAAAAKgSHHq0EAAAAAAA4FbAXe+VExVZAAAAAAAAqBLKlciKj4+XwWDQ1KlTS3w+btw4GQwGLViwwKZ/yZIlioiIkI+PjwwGg3755ZfyhAEAAAAAAOBQLjI4raF0ZU5k7d27V0uWLFHr1q1LfL5u3Trt2bNHISEhxZ7l5+erX79+euqpp8q6PAAAAAAAAKqZMiWycnNzNXLkSC1dulR16tQp9vzs2bOaOHGi3n33XdWoUaPY86lTp2rmzJnq0qVLWZYHAAAAAABANVSmRNaECRPUv39/9enTp9izoqIiRUdHa/r06WrZsmW5AwQAAAAAAPhvczEYnNZQOru/WrhmzRrt379fe/fuLfH5vHnz5ObmpsmTJ5c7uGvMZrPMZrNNX0FhoYxGo8PWAAAAAAAAQOVmV0XWjz/+qClTpuidd96Rh4dHsedpaWl69dVX9fbbb8vgwAxifHy8TCaTTUtISHDY/AAAAAAAAH/k4sSG0hksFovlZgevW7dO9913n1xdXa19hYWFMhgMcnFx0bx58zR9+nS5uLjYPHdxcVH9+vV16tQpm/m2bdumXr166dKlS6pdu3ap61KRBQAAAACAc3h5ejo7BKe4mHvZaWvXreXttLUrO7uOFvbu3VsHDx606Rs9erSaNWumGTNmKDg4WH379rV53rdvX0VHR2v06NFlDtJoNBZLWuXl55d5PgAAAAAAAFQ9diWyvL29FR4ebtPn5eUlX19fa7+vr6/N8xo1aigoKEhNmza19mVmZiozM1Pff/+9JOngwYPy9vZWgwYNVLdu3TJtBAAAAAAAwFFcxKXrlZFTjl6+8cYbateuncaOHStJ6tmzp9q1a6ekpCRnhAMAAAAAAIAqwK47sioTjhYCAAAAAFDxqusdWdl5uU5b2+RVy2lrV3Zchg8AAAAAAIAqwa47sgAAAAAAAKoD7siqnKjIAgAAAAAAqOIWLVqksLAweXh4qEOHDtq+fft1x6empqpDhw7y8PDQbbfdpjfeeKPYmA8//FAtWrSQ0WhUixYtlJiYWO51y6tciaz4+HgZDAZNnTrVpv/w4cMaOHCgTCaTvL291aVLF50+fVqSdPHiRU2aNElNmzaVp6enGjRooMmTJys7O7s8oQAAAAAAAFRLa9eu1dSpU/X000/rwIEDuvPOOxUVFWXNxfzZyZMnde+99+rOO+/UgQMH9NRTT2ny5Mn68MMPrWN27dqlYcOGKTo6Wl999ZWio6M1dOhQ7dmzp8zrOkKZL3vfu3evhg4dKh8fH/Xq1UsLFiyQJB0/flx33HGHxowZoxEjRshkMunw4cPq1KmTAgICdOjQIc2aNUuPPvqoWrRooR9++EHjx49X69at9cEHH9z0+lz2DgAAAABAxauul707M+9g7795586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXLknSsGHDlJOTow0bNljH9OvXT3Xq1NF7771XpnUdoUwVWbm5uRo5cqSWLl2qOnXq2Dx7+umnde+992r+/Plq166dbrvtNvXv318BAQGSpPDwcH344YcaMGCAGjVqpLvvvltz5szRf/7zHxUUFJR/RwAAAAAAAFWY2WxWTk6OTTObzSWOvXLlitLS0hQZGWnTHxkZqZ07d5b4zq5du4qN79u3r/bt26erV69ed8y1OcuyriOUKZE1YcIE9e/fX3369LHpLyoq0qeffqrbb79dffv2VUBAgDp37qx169Zdd77s7Gz5+PjIzY275wEAAAAAgPMZZHFai4+Pl8lksmmlVTidP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz5+/7phrc5ZlXUewO5G1Zs0a7d+/v8R/wKysLOXm5urFF19Uv379tGnTJt133326//77lZqaWuJ8Fy5c0D/+8Q+NGzfO/ugBAAAAAABuMXFxccrOzrZpcXFx133HYLD9yqLFYinWd6Pxf+6/mTntXbe87CqB+vHHHzVlyhRt2rRJHh4exZ4XFRVJkgYNGqSYmBhJUtu2bbVz50698cYbuuuuu2zG5+TkqH///mrRooVmzZpV6rpms7lYCV1BYaGMRqM94QMAAAAAAFR6RqPxpnMefn5+cnV1LVYFlZWVVaxa6pqgoKASx7u5ucnX1/e6Y67NWZZ1HcGuiqy0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa69ZN+vm5qYWLVrYvNe8efNiN9ZfvnxZ/fr1U61atZSYmKgaNWqUum5JJXUJCQn2hA4AAAAAAHDzLEXOa3Zwd3dXhw4dlJKSYtOfkpKibt26lfhO165di43ftGmTOnbsaM3PlDbm2pxlWdcR7KrI6t27tw4ePGjTN3r0aDVr1kwzZsyQ0WhUp06ddOTIEZsxR48eVWhoqPXvnJwc9e3bV0ajUUlJSSVWd/1RXFycYmNjbfoKCgvtCR0AAAAAAOCWFBsbq+joaHXs2FFdu3bVkiVLdPr0aY0fP17S73mVs2fPatWqVZJ+/0LhwoULFRsbq7Fjx2rXrl1atmyZ9WuEkjRlyhT17NlT8+bN06BBg/Txxx9r8+bN2rFjx02vWxHsSmR5e3srPDzcps/Ly0u+vr7W/unTp2vYsGHq2bOnevXqpeTkZP3nP//Rtm3bJP1eiRUZGan8/Hy988471tv3Jcnf31+urq7F1i2ppM6Zn8EEAAAAAAC3Ovsqo5xp2LBhunDhgp5//nllZGQoPDxc69evtxYVZWRk2JyUCwsL0/r16xUTE6PXX39dISEheu211/TAAw9Yx3Tr1k1r1qzRM888o2effVaNGjXS2rVr1blz55tetyIYLNdu8yqjiIgItW3bVgsWLLD2LV++XPHx8Tpz5oyaNm2q5557ToMGDZIkbdu2Tb169SpxrpMnT6phw4Y3tS6JLAAAAAAAKp6Xp6ezQ3CK/Lxsp63t6WVy2tqVXbkTWc5CIgsAAAAAgIpXbRNZuZectrZnrTpOW7uys+uydwAAAAAAAMBZSGQBAAAAAACgSrDrsncAAAAAAIDqoepc9l6dlKsiKz4+XgaDQVOnTrX25ebmauLEiapXr55q1qyp5s2ba/HixTbvjRs3To0aNVLNmjXl7++vQYMG6bvvvitPKAAAAAAAALjFlTmRtXfvXi1ZskStW7e26Y+JiVFycrLeeecdHT58WDExMZo0aZI+/vhj65gOHTpoxYoVOnz4sDZu3CiLxaLIyEgVFhaWfScAAAAAAACOYilyXkOpypTIys3N1ciRI7V06VLVqWN7k/6uXbs0atQoRUREqGHDhvrb3/6mNm3aaN++fdYxf/vb39SzZ081bNhQ7du31wsvvKAff/xRp06dKtdmAAAAAAAAcOsqUyJrwoQJ6t+/v/r06VPsWY8ePZSUlKSzZ8/KYrFo69atOnr0qPr27VviXHl5eVqxYoXCwsJUv379soQDAAAAAACAasDuy97XrFmj/fv3a+/evSU+f+211zR27FjVq1dPbm5ucnFx0VtvvaUePXrYjFu0aJGefPJJ5eXlqVmzZkpJSZG7u3vZdgEAAAAAAOBQHPGrjOyqyPrxxx81ZcoUvfPOO/Lw8ChxzGuvvabdu3crKSlJaWlpeumll/T4449r8+bNNuNGjhypAwcOKDU1VU2aNNHQoUP122+/lTin2WxWTk6OTTObzfaEDgAAAAAAgCrOYLFYLDc7eN26dbrvvvvk6upq7SssLJTBYJCLi4uys7NVp04dJSYmqn///tYxjz32mM6cOaPk5OQS571y5Yrq1Kmjt956SyNGjCj2fPbs2Xruueds+uKeekpPP/30zYYOAAAAAADKwMvT09khOEV+TobT1vb0CXba2pWdXUcLe/furYMHD9r0jR49Ws2aNdOMGTNUWFioq1evysXFttDL1dVVRUXXL8mzWCylVlnFxcUpNjbWpq+ALxwCAAAAAABUK3Ylsry9vRUeHm7T5+XlJV9fX2v/XXfdpenTp6tmzZoKDQ1VamqqVq1apZdfflmSdOLECa1du1aRkZHy9/fX2bNnNW/ePNWsWVP33ntviesajUYZjUabvrz8fHtCBwAAAAAAsAN3ZFVGdl/2fiNr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjJUkeHh7avn27FixYoEuXLikwMFA9e/bUzp07FRAQ4OhwAAAAAAAAcIuw646syoSKLAAAAAAAKl71vSPrrNPW9vT5i9PWruwcXpEFAAAAAABQ5Vk4WlgZudx4CAAAAAAAAOB8VGQBAAAAAAAUQ0VWZWRXRdbs2bNlMBhsWlBQkPW5xWLR7NmzFRISopo1ayoiIkLffPNNiXNZLBZFRUXJYDBo3bp15doEAAAAAAAAbn12Hy1s2bKlMjIyrO3gwYPWZ/Pnz9fLL7+shQsXau/evQoKCtI999yjy5cvF5tnwYIFMhgM5YseAAAAAAAA1YbdRwvd3NxsqrCusVgsWrBggZ5++mndf//9kqSVK1cqMDBQq1ev1rhx46xjv/rqK7388svau3evgoODyxE+AAAAAABABeCy90rJ7oqsY8eOKSQkRGFhYRo+fLhOnDghSTp58qQyMzMVGRlpHWs0GnXXXXdp586d1r78/HyNGDFCCxcuLDEhBgAAAAAAAJTErkRW586dtWrVKm3cuFFLly5VZmamunXrpgsXLigzM1OSFBgYaPNOYGCg9ZkkxcTEqFu3bho0aJADwgcAAAAAAKgIRU5sKI1dRwujoqKs/92qVSt17dpVjRo10sqVK9WlSxdJKnbvlcVisfYlJSVpy5YtOnDggF1Bms1mmc1mm76CwkIZjUa75gEAAAAAAEDVZffRwj/y8vJSq1atdOzYMesxwT9WX0lSVlaWtUpry5YtOn78uGrXri03Nze5uf2eR3vggQcUERFR6jrx8fEymUw2LSEhoTyhAwAAAAAAlMpgsTitoXTlSmSZzWYdPnxYwcHBCgsLU1BQkFJSUqzPr1y5otTUVHXr1k2SNHPmTH399ddKT0+3Nkl65ZVXtGLFilLXiYuLU3Z2tk2bNm1aeUIHAAAAAABAFWPX0cJp06ZpwIABatCggbKysvTCCy8oJydHo0aNksFg0NSpUzV37lw1adJETZo00dy5c+Xp6amHHnpIkhQUFFTiBe8NGjRQWFhYqesajcZixwjz8vPtCR0AAAAAAABVnF2JrDNnzmjEiBE6f/68/P391aVLF+3evVuhoaGSpCeffFK//vqrHn/8cV26dEmdO3fWpk2b5O3tXSHBAwAAAAAAVAwuXa+MDBZL1Tx8SUUWAAAAAAAVz8vT09khOMWvl446be2adW532tqVnV0VWQAAAAAAANWChYqsyqhcl70DAAAAAAAA/y0ksgAAAAAAAFAl2JXImj17tgwGg0279hXCq1evasaMGWrVqpW8vLwUEhKiRx55RD/99JPNHBEREcXmGD58uON2BAAAAAAAUG5FTmwojd13ZLVs2VKbN2+2/u3q6ipJys/P1/79+/Xss8+qTZs2unTpkqZOnaqBAwdq3759NnOMHTtWzz//vPXvmjVrljV+AAAAAAAAVBN2J7Lc3NysVVh/ZDKZlJKSYtP3r3/9S3fccYdOnz6tBg0aWPs9PT1LnAMAAAAAAKBS4LL3SsnuO7KOHTumkJAQhYWFafjw4Tpx4kSpY7Ozs2UwGFS7dm2b/nfffVd+fn5q2bKlpk2bpsuXL9sdOAAAAAAAAKoXg8Visdzs4A0bNig/P1+33367zp07pxdeeEHfffedvvnmG/n6+tqM/e2339SjRw81a9ZM77zzjrV/6dKlCgsLU1BQkA4dOqS4uDg1bty4WDXXjeTl59s1HgAAAAAA2M/L09PZITjFrxe+dtraNX1bO23tys6uRNaf5eXlqVGjRnryyScVGxtr7b969aqGDBmi06dPa9u2bfLx8Sl1jrS0NHXs2FFpaWlq3759iWPMZrPMZrNNX0FhoYxGY1lDBwAAAAAAN4FE1n8fiazS2X208I+8vLzUqlUrHTt2zNp39epVDR06VCdPnlRKSsp1k1iS1L59e9WoUcNmjj+Lj4+XyWSyaQkJCeUJHQAAAAAAAFWM3Ze9/5HZbNbhw4d15513Svp/Saxjx45p69atxY4bluSbb77R1atXFRwcXOqYuLg4m4ov6feKLAAAAAAAgArBZe+Vkl2JrGnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo1SQUGBHnzwQe3fv1+ffPKJCgsLlZmZKUmqW7eu3N3ddfz4cb377ru699575efnp2+//VZPPPGE2rVrp+7du5e6rtFoLHaMkDuyAAAAAAAAqhe7EllnzpzRiBEjdP78efn7+6tLly7avXu3QkNDderUKSUlJUmS2rZta/Pe1q1bFRERIXd3d3322Wd69dVXlZubq/r166t///6aNWuWXF1dHbYpAAAAAACA8qEiqzIq12XvzkRFFgAAAAAAFa/aXvZ+fr/T1q7pV/LH8FDOy94BAAAAAACA/5ZyXfYOAAAAAABwS+Ky90qJiiwAAAAAAABUCXYlsmbPni2DwWDTgoKCShw7btw4GQwGLViwoNizXbt26e6775aXl5dq166tiIgI/frrr2XaAAAAAAAAgOMVObGhNHYfLWzZsqU2b95s/bukrw2uW7dOe/bsUUhISLFnu3btUr9+/RQXF6d//etfcnd311dffSUXF4rDAAAAAAAAUDq7E1lubm6lVmFJ0tmzZzVx4kRt3LhR/fv3L/Y8JiZGkydP1syZM619TZo0sTcMAAAAAACAisMdWZWS3WVQx44dU0hIiMLCwjR8+HCdOHHC+qyoqEjR0dGaPn26WrZsWezdrKws7dmzRwEBAerWrZsCAwN11113aceOHeXbBQAAAAAAAG55diWyOnfurFWrVmnjxo1aunSpMjMz1a1bN124cEGSNG/ePLm5uWny5Mklvn8t6TV79myNHTtWycnJat++vXr37q1jx46VcysAAAAAAAC4ldl1tDAqKsr6361atVLXrl3VqFEjrVy5UnfddZdeffVV7d+/XwaDocT3i4p+L8sbN26cRo8eLUlq166dPvvsMy1fvlzx8fElvmc2m2U2m236CgoLZTQa7QkfAAAAAADgJnG0sDIq1w3rXl5eatWqlY4dO6bt27crKytLDRo0kJubm9zc3PTDDz/oiSeeUMOGDSVJwcHBkqQWLVrYzNO8eXOdPn261HXi4+NlMplsWkJCQnlCBwAAAAAAQBVj92Xvf2Q2m3X48GHdeeedio6OVp8+fWye9+3bV9HR0dbqq4YNGyokJERHjhyxGXf06FGbaq8/i4uLU2xsrE1fQWFheUIHAAAAAAAoHZe9V0p2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sr6+vvL19bUZX6NGDQUFBalp06aSJIPBoOnTp2vWrFlq06aN2rZtq5UrV+q7777TBx98UOq6RqOx2DHCvPx8e0IHAAAAAABAFWdXIuvMmTMaMWKEzp8/L39/f3Xp0kW7d+9WaGjoTc8xdepU/fbbb4qJidHFixfVpk0bpaSkqFGjRnYHDwAAAAAAgOrDYLFYLM4OoiyoyAIAAAAAoOJ5eXo6OwSnyM9MddrankF3OW3tyq5cl70DAAAAAAAA/y3luuwdAAAAAADgVmQp4rL3yoiKLAAAAAAAAFQJdiWyZs+eLYPBYNOCgoJsxhw+fFgDBw6UyWSSt7e3unTpotOnT0uSTp06Vez9a+3999933K4AAAAAAABwy7H7aGHLli21efNm69+urq7W/z5+/Lh69OihMWPG6LnnnpPJZNLhw4fl4eEhSapfv74yMjJs5luyZInmz5+vqKiosu4BAAAAAADAoSyWQmeHgBLYnchyc3MrVoV1zdNPP617771X8+fPt/bddttt1v92dXUt9m5iYqKGDRumWrVq2RsKAAAAAAAAqhG778g6duyYQkJCFBYWpuHDh+vEiROSpKKiIn366ae6/fbb1bdvXwUEBKhz585at25dqXOlpaUpPT1dY8aMKfMGAAAAAAAAHM1SVOi0htLZlcjq3LmzVq1apY0bN2rp0qXKzMxUt27ddOHCBWVlZSk3N1cvvvii+vXrp02bNum+++7T/fffr9TU1BLnW7ZsmZo3b65u3bo5ZDMAAAAAAAC4dRksFoulrC/n5eWpUaNGevLJJzV8+HD95S9/0YgRI7R69WrrmIEDB8rLy0vvvfeezbu//vqrgoOD9eyzz+qJJ5647jpms1lms9mmr6CwUEajsayhAwAAAACAm+Dl6ensEJwi5/R6p63t0+Bep61d2dl9tPCPvLy81KpVKx07dkx+fn5yc3NTixYtbMY0b97c+tXCP/rggw+Un5+vRx555IbrxMfHy2Qy2bSEhITyhA4AAAAAAFCtXLp0SdHR0dbcSnR0tH755ZfrvmOxWDR79myFhISoZs2aioiI0DfffGN9fvHiRU2aNElNmzaVp6enGjRooMmTJys7O9tmnoYNG8pgMNi0mTNn2r2HciWyzGazDh8+rODgYLm7u6tTp046cuSIzZijR48qNDS02LvLli3TwIED5e/vf8N14uLilJ2dbdOmTZtWntABAAAAAACqlYceekjp6elKTk5WcnKy0tPTFR0dfd135s+fr5dfflkLFy7U3r17FRQUpHvuuUeXL1+WJP3000/66aeflJCQoIMHD+rtt99WcnJyifehP//888rIyLC2Z555xu492PXVwmnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo2SJE2fPl3Dhg1Tz5491atXLyUnJ+s///mPtm3bZjPP999/r88//1zr199cmZ7RaCx2jDAvP9+e0AEAAAAAAG5eUZGzI3Cow4cPKzk5Wbt371bnzp0lSUuXLlXXrl115MgRNW3atNg7FotFCxYs0NNPP637779fkrRy5UoFBgZq9erVGjdunMLDw/Xhhx9a32nUqJHmzJmjhx9+WAUFBXJz+3+pJ29vbwUFBZVrH3ZVZJ05c0YjRoxQ06ZNdf/998vd3V27d++2Vlzdd999euONNzR//ny1atVKb731lj788EP16NHDZp7ly5frL3/5iyIjI8sVPAAAAAAAwK3GbDYrJyfHpv357nB77dq1SyaTyZrEkqQuXbrIZDJp586dJb5z8uRJZWZm2uRvjEaj7rrrrlLfkaTs7Gz5+PjYJLEkad68efL19VXbtm01Z84cXblyxe592FWRtWbNmhuO+Z//+R/9z//8z3XHzJ07V3PnzrVnaQAAAAAAgP8ai6XQaWvHx8frueees+mbNWuWZs+eXeY5MzMzFRAQUKw/ICBAmZmZpb4jSYGBgTb9gYGB+uGHH0p858KFC/rHP/6hcePG2fRPmTJF7du3V506dfTll18qLi5OJ0+e1FtvvWXXPuxKZAEAAAAAAKBixcXFKTY21qbvz1cuXTN79uxiSa8/27t3ryTJYDAUe2axWErs/6M/Py/tnZycHPXv318tWrTQrFmzbJ7FxMRY/7t169aqU6eOHnzwQWuV1s0ikQUAAAAAAFCJlHRXeGkmTpyo4cOHX3dMw4YN9fXXX+vcuXPFnv3888/FKq6uuXafVWZmpoKDg639WVlZxd65fPmy+vXrp1q1aikxMVE1atS4bkxdunSR9Ps96iSyAAAAAAAAysFS5Lyjhfbw8/OTn5/fDcd17dpV2dnZ+vLLL3XHHXdIkvbs2aPs7Gx169atxHfCwsIUFBSklJQUtWvXTpJ05coVpaamat68edZxOTk56tu3r4xGo5KSkuTh4XHDeA4cOCBJNgmym0EiCwAAAAAA4BbXvHlz9evXT2PHjtWbb74pSfrb3/6mv/71rzZfLGzWrJni4+N13333yWAwaOrUqZo7d66aNGmiJk2aaO7cufL09NRDDz0k6fdKrMjISOXn5+udd96xXk4vSf7+/nJ1ddWuXbu0e/du9erVSyaTSXv37lVMTIwGDhyoBg0a2LUPu75aOHv2bBkMBpv2x88m5ubmauLEiapXr55q1qyp5s2ba/HixTZzZGZmKjo6WkFBQfLy8lL79u31wQcf2BU0AAAAAABARbJYCp3WKsq7776rVq1aKTIyUpGRkWrdurX+/e9/24w5cuSIsrOzrX8/+eSTmjp1qh5//HF17NhRZ8+e1aZNm+Tt7S1JSktL0549e3Tw4EE1btxYwcHB1vbjjz9K+v2o5Nq1axUREaEWLVrof//3fzV27Fi99957du/BYLFYLDc7ePbs2frggw+0efNma5+rq6v8/f0lSWPHjtXWrVv11ltvqWHDhtq0aZMef/xxffjhhxo0aJAk6Z577lF2drYWLlwoPz8/rV69WrNmzdK+ffusZWo3Iy8//6bHAgAAAACAsvHy9HR2CE5x6fv3nbZ2ncZDnLZ2ZWdXRZYkubm5KSgoyNquJbEkadeuXRo1apQiIiLUsGFD/e1vf1ObNm20b98+mzGTJk3SHXfcodtuu03PPPOMateurf379ztmRwAAAAAAAOVkKSpyWkPp7E5kHTt2TCEhIQoLC9Pw4cN14sQJ67MePXooKSlJZ8+elcVi0datW3X06FH17dvXZszatWt18eJFFRUVac2aNTKbzYqIiHDIhgAAAAAAAHBrsuuy986dO2vVqlW6/fbbde7cOb3wwgvq1q2bvvnmG/n6+uq1117T2LFjVa9ePbm5ucnFxUVvvfWWevToYZ1j7dq1GjZsmHx9feXm5iZPT08lJiaqUaNGpa5rNptlNptt+goKC2/6U5QAAAAAAACo+uyqyIqKitIDDzygVq1aqU+fPvr0008lSStXrpQkvfbaa9q9e7eSkpKUlpaml156SY8//rjNnVrPPPOMLl26pM2bN2vfvn2KjY3VkCFDdPDgwVLXjY+Pl8lksmkJCQll2S8AAAAAAMAN3YqXvd8K7LrsvST33HOPGjdurJdfflkmk0mJiYnq37+/9fljjz2mM2fOKDk5WcePH1fjxo116NAhtWzZ0jqmT58+aty4sd54440S16AiCwAAAAAA56iul71fOLLaaWv7Nn3IaWtXdnYdLfwzs9msw4cP684779TVq1d19epVubjYFnm5urqq6P+/qCz////S4PXGlMRoNBZLWvHVQgAAAAAAUFEsRVRGVUZ2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sj4+Prrrrrs0ffp01axZU6GhoUpNTdWqVav08ssvS5KaNWumxo0ba9y4cUpISJCvr6/WrVunlJQUffLJJxWyQQAAAAAAANwa7EpknTlzRiNGjND58+fl7++vLl26aPfu3QoNDZUkrVmzRnFxcRo5cqQuXryo0NBQzZkzR+PHj5ck1ahRQ+vXr9fMmTM1YMAA5ebmqnHjxlq5cqXuvfdex+8OAAAAAAAAt4xy35HlLBwtBAAAAACg4lXXO7J+/vZtp63t3+JRp61d2dn11UIAAAAAAADAWcp12TsAAAAAAMCtyHKdj9LBeajIAgAAAAAAQJVgdyLr7Nmzevjhh+Xr6ytPT0+1bdtWaWlp1ucWi0WzZ89WSEiIatasqYiICH3zzTc2cxw/flz33Xef/P395ePjo6FDh+rcuXPl3w0AAAAAAIADWCyFTmsonV2JrEuXLql79+6qUaOGNmzYoG+//VYvvfSSateubR0zf/58vfzyy1q4cKH27t2roKAg3XPPPbp8+bIkKS8vT5GRkTIYDNqyZYu++OILXblyRQMGDFARZXsAAAAAAAAohV1fLZw5c6a++OILbd++vcTnFotFISEhmjp1qmbMmCFJMpvNCgwM1Lx58zRu3Dht2rRJUVFRunTpknx8fCT9niCrW7euUlJS1KdPn5uKha8WAgAAAABQ8arrVwvPHVzqtLUDW4112tqVnV0VWUlJSerYsaOGDBmigIAAtWvXTkuX/r8f9uTJk8rMzFRkZKS1z2g06q677tLOnTsl/Z7YMhgMMhqN1jEeHh5ycXHRjh07yrsfAAAAAACA8isqdF5DqexKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrJEmZmZmSpMDAQJv3AgMDrc+6dOkiLy8vzZgxQ/n5+crLy9P06dNVVFSkjIyMEtc1m83KycmxaWaz2e7NAgAAAAAAoOqyK5FVVFSk9u3ba+7cuWrXrp3GjRunsWPHavHixTbjDAaDzd8Wi8Xa5+/vr/fff1//+c9/VKtWLZlMJmVnZ6t9+/ZydXUtcd34+HiZTCablpCQYE/oAAAAAAAAN43L3isnN3sGBwcHq0WLFjZ9zZs314cffihJCgoKkvR7ZVZwcLB1TFZWlk2VVmRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkpcNy4uTrGxsTZ9BYX8sAAAAAAAANWJXRVZ3bt315EjR2z6jh49qtDQUElSWFiYgoKClJKSYn1+5coVpaamqlu3bsXm8/PzU+3atbVlyxZlZWVp4MCBJa5rNBrl4+Nj0/54xxYAAAAAAABufXZVZMXExKhbt26aO3euhg4dqi+//FJLlizRkiVLJP1+pHDq1KmaO3eumjRpoiZNmmju3Lny9PTUQw89ZJ1nxYoVat68ufz9/bVr1y5NmTJFMTExatq0qWN3BwAAAAAAUAaWoiJnh4AS2JXI6tSpkxITExUXF6fnn39eYWFhWrBggUaOHGkd8+STT+rXX3/V448/rkuXLqlz587atGmTvL29rWOOHDmiuLg4Xbx4UQ0bNtTTTz+tmJgYx+0KAAAAAAAAtxyDxWKxODuIssjLz3d2CAAAAAAA3PK8PD2dHYJT/JS2wGlrh3SY6rS1Kzu77sgCAAAAAAAAnMWuo4UAAAAAAADVgaWo0NkhoARUZAEAAAAAAKBKsDuRdfbsWT388MPy9fWVp6en2rZtq7S0NOvz2bNnq1mzZvLy8lKdOnXUp08f7dmzx2YOs9msSZMmyc/PT15eXho4cKDOnDlT/t0AAAAAAADglmVXIuvSpUvq3r27atSooQ0bNujbb7/VSy+9pNq1a1vH3H777Vq4cKEOHjyoHTt2qGHDhoqMjNTPP/9sHTN16lQlJiZqzZo12rFjh3Jzc/XXv/5VhYWU7QEAAAAAAOezWAqd1lA6u75aOHPmTH3xxRfavn37TS+Qk5Mjk8mkzZs3q3fv3srOzpa/v7/+/e9/a9iwYZKkn376SfXr19f69evVt2/fm5qXrxYCAAAAAFDxqutXC898Od9pa9e740mnrV3Z2VWRlZSUpI4dO2rIkCEKCAhQu3bttHTp0lLHX7lyRUuWLJHJZFKbNm0kSWlpabp69aoiIyOt40JCQhQeHq6dO3eWcRsAAAAAAACOYykqclpD6exKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrbMZ98sknqlWrljw8PPTKK68oJSVFfn5+kqTMzEy5u7urTp06Nu8EBgYqMzOzxHXNZrNycnJsmtlstid0AAAAAAAAVHF2JbKKiorUvn17zZ07V+3atdO4ceM0duxYLV682GZcr169lJ6erp07d6pfv34aOnSosrKyrju3xWKRwWAo8Vl8fLxMJpNNS0hIsCd0AAAAAAAAVHF2JbKCg4PVokULm77mzZvr9OnTNn1eXl5q3LixunTpomXLlsnNzU3Lli2TJAUFBenKlSu6dOmSzTtZWVkKDAwscd24uDhlZ2fbtGnTptkTOgAAAAAAwE3jsvfKya5EVvfu3XXkyBGbvqNHjyo0NPS671ksFutRwA4dOqhGjRpKSUmxPs/IyNChQ4fUrVu3Et83Go3y8fGxaUaj0Z7QAQAAAAAAUMW52TM4JiZG3bp109y5czV06FB9+eWXWrJkiZYsWSJJysvL05w5czRw4EAFBwfrwoULWrRokc6cOaMhQ4ZIkkwmk8aMGaMnnnhCvr6+qlu3rqZNm6ZWrVqpT58+jt8hAAAAAACAnSxFVEZVRnYlsjp16qTExETFxcXp+eefV1hYmBYsWKCRI0dKklxdXfXdd99p5cqVOn/+vHx9fdWpUydt375dLVu2tM7zyiuvyM3NTUOHDtWvv/6q3r176+2335arq6tjdwcAAAAAAIBbhsFisVicHURZ5OXnOzsEAAAAAABueV6ens4OwSlO7ZjltLUb9njOaWtXdnbdkQUAAAAAAAA4C4ksAAAAAAAAVAl23ZEFAAAAAABQHXDZe+Vkd0XW2bNn9fDDD8vX11eenp5q27at0tLSrM8fffRRGQwGm9alSxebOZYsWaKIiAj5+PjIYDDol19+KfdGAAAAAAAAcGuzqyLr0qVL6t69u3r16qUNGzYoICBAx48fV+3atW3G9evXTytWrLD+7e7ubvM8Pz9f/fr1U79+/RQXF1f26AEAAAAAACqApZCKrMrIrkTWvHnzVL9+fZskVcOGDYuNMxqNCgoKKnWeqVOnSpK2bdtmz/IAAAAAAACoxuw6WpiUlKSOHTtqyJAhCggIULt27bR06dJi47Zt26aAgADdfvvtGjt2rLKyshwWMAAAAAAAAKonuyqyTpw4ocWLFys2NlZPPfWUvvzyS02ePFlGo1GPPPKIJCkqKkpDhgxRaGioTp48qWeffVZ333230tLSZDQayxSk2WyW2Wy26SsoLCzzfAAAAAAAANfDZe+Vk10VWUVFRWrfvr3mzp2rdu3aady4cRo7dqwWL15sHTNs2DD1799f4eHhGjBggDZs2KCjR4/q008/LXOQ8fHxMplMNi0hIaHM8wEAAAAA/r/27jysxvz/H/jztJdyRDvaLClr2Zexq+yGj132fV/G0pgRYwmTZTD2JNsw1sEQEUa2imQpRSFLibQpSp3794ef850zFZ3E3ann47ru6+q87+15zhzT6XXeCxGR6lGqR5a5uTkcHBwU2uzt7XHw4MFPnmNlZYX79+8XLiEAd3d3TJ8+XaEtm5OuEREREREREdFXwsneiyelClnNmzdHZGSkQltUVBSsrKzyPScxMRFPnjyBubl54RLiw+Tx/x1GmJ6RUejrERERERERERGR6lGqkDVt2jQ0a9YMS5YsQZ8+fRAUFITNmzdj8+bNAIA3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffy+/Tnx8POLj4/HgwQMAwO3bt2FgYABLS0uUL1++CJ8eEREREREREZHyZJwjq1hSao6shg0b4vDhw/jjjz9Qq1YtLFy4EKtXr8bAgQMBAOrq6rh9+za6d++O6tWrY8iQIahevTquXLkCAwMD+XU2btwIR0dHjBo1CgDQsmVLODo64ujRo0X41IiIiIiIiIiIqCSRCIIgiB2iMDi0kIiIiIiIiOjrK6OnJ3YEUUT5TRXt3tVdV4t27+JOqaGFRERERERERESlASd7L56UGlpIREREREREREQkFvbIIiIiIiIiIiL6D/bIKp6U7pH17NkzDBo0CBUqVICenh7q1auH69evy/dLJJI8t19//RUA8Pr1a0yaNAl2dnbQ09ODpaUlJk+ejJSUlKJ7VkREREREREREVOIo1SMrKSkJzZs3R5s2bXDy5EmYmJggOjoa5cqVkx8TFxencM7JkycxYsQI9OrVCwDw/PlzPH/+HF5eXnBwcMDjx48xduxYPH/+HAcOHPjyZ0RERERERERERCWSUqsWzpkzB5cuXcLFixcLfIMePXogLS0NZ8+ezfeY/fv3Y9CgQUhPT4eGRsFqa1y1kIiIiIiIiOjrK62rFkYcGS3ave17bBbt3sWdUkMLjx49igYNGqB3794wMTGBo6MjtmzZku/xL168wN9//40RI0Z88ropKSkoW7ZsgYtYRERERERERERU+ihVOYqJicGGDRswffp0/PjjjwgKCsLkyZOhra2NwYMH5zre19cXBgYG6NmzZ77XTExMxMKFCzFmzJh8j8nMzERmZqZCW3ZODrS1tZWJT0RERERERERUIDJO9l4sKdUjSyaTwcnJCUuWLIGjoyPGjBmDUaNGYcOGDXkev23bNgwcOBA6Ojp57k9NTUXnzp3h4OAADw+PfO/r6ekJqVSqsHl5eSkTnYiIiIiIiIiIVJxSPbLMzc3h4OCg0GZvb4+DBw/mOvbixYuIjIzEvn378rxWWloaXF1doa+vj8OHD0NTUzPf+7q7u2P69OkKbdmsjBIRERERERERlSpKFbKaN2+OyMhIhbaoqChYWVnlOtbb2xv169dH3bp1c+1LTU2Fi4sLtLW1cfTo0Xx7bH2kra2daxghJ3snIiIiIiIioq9FkLEDTXGk1NDCadOm4erVq1iyZAkePHiAPXv2YPPmzZgwYYLCcampqdi/fz9GjhyZ6xppaWlwdnZGeno6vL29kZqaivj4eMTHxyOHvayIiIiIiIiIiCgfSvXIatiwIQ4fPgx3d3f88ssvsLGxwerVqzFw4ECF4/bu3QtBENC/f/9c17h+/TquXbsGAKhatarCvocPH8La2lrJp0BEREREREREVLQEdrYpliSCIAhihygMDi0kIiIiIiIi+vrK6OmJHUEUt/e6iXbv2v12inbv4k6pHllERERERERERKUB58gqnpSaI4uIiIiIiIiIiFRTUlIS3NzcIJVKIZVK4ebmhuTk5E+eIwgC5s+fDwsLC+jq6qJ169a4e/euwjGtW7eGRCJR2Pr16/fF984LC1lERERERERERKXAgAEDcPPmTfj5+cHPzw83b96Em9unh1AuX74cK1euxLp16xAcHAwzMzN06NABaWlpCseNGjUKcXFx8m3Tpk1ffO+8KF3IevbsGQYNGoQKFSpAT08P9erVw/Xr1+X7X7x4gaFDh8LCwgJ6enpwdXXF/fv3Fa4xZswYVKlSBbq6ujA2Nkb37t1x7949pcMTEREREREREX0Nspwc0bavISIiAn5+fti6dSuaNm2Kpk2bYsuWLTh+/DgiIyPzPEcQBKxevRpz585Fz549UatWLfj6+iIjIwN79uxROFZPTw9mZmbyTSqVftG986NUISspKQnNmzeHpqYmTp48ifDwcKxYsQLlypWTP8EePXogJiYGf/31F0JDQ2FlZYX27dsjPT1dfp369evDx8cHEREROHXqFARBgLOzM3K4IgARERERERERlXKZmZlITU1V2DIzM7/omleuXIFUKkXjxo3lbU2aNIFUKsXly5fzPOfhw4eIj4+Hs7OzvE1bWxutWrXKdc7u3bthZGSEmjVr4ocfflDosVWYe+dHqcnely1bhsqVK8PHx0feZm1tLf/5/v37uHr1Ku7cuYOaNWsCANavXw8TExP88ccfGDlyJABg9OjRCucvWrQIdevWxaNHj1ClShWlngARERERERERUVETc7J3T09PLFiwQKHNw8MD8+fPL/Q14+PjYWJikqvdxMQE8fHx+Z4DAKampgrtpqamePz4sfzxwIEDYWNjAzMzM9y5cwfu7u4ICwuDv79/oe+dH6V6ZB09ehQNGjRA7969YWJiAkdHR2zZskW+/2N1UEdHR96mrq4OLS0tBAYG5nnN9PR0+Pj4wMbGBpUrV1YqPBERERERERFRSePu7o6UlBSFzd3dPc9j58+fn2ui9f9uISEhAACJRJLrfEEQ8mz/t//u/+85o0aNQvv27VGrVi3069cPBw4cwJkzZ3Djxo18r1HQe/+XUoWsmJgYbNiwAdWqVcOpU6cwduxYTJ48GTt27AAA1KhRA1ZWVnB3d0dSUhKysrKwdOlSxMfHIy4uTuFa69evh76+PvT19eHn5wd/f39oaWkpFZ6IiIiIiIiIqKTR1tZG2bJlFTZtbe08j504cSIiIiI+udWqVQtmZmZ48eJFrvNfvnyZq8fVR2ZmZgCQq9dUQkJCvucAgJOTEzQ1NeVzphfm3vlRamihTCZDgwYNsGTJEgCAo6Mj7t69iw0bNmDw4MHQ1NTEwYMHMWLECJQvXx7q6upo3749OnbsmOtaAwcORIcOHRAXFwcvLy/06dMHly5dUujN9VFmZmausaDZOTn5/kckIiIiIiIiIvoSgorM421kZAQjI6PPHte0aVOkpKQgKCgIjRo1AgBcu3YNKSkpaNasWZ7nfBwu6O/vD0dHRwBAVlYWLly4gGXLluV7r7t37+L9+/cwNzcv9L3zo1SPLHNzczg4OCi02dvbIzY2Vv64fv36uHnzJpKTkxEXFwc/Pz8kJibCxsZG4TypVIpq1aqhZcuWOHDgAO7du4fDhw/neV9PT09IpVKFzcvLS5noRERERERERESllr29PVxdXTFq1ChcvXoVV69exahRo9ClSxfY2dnJj6tRo4a8PiORSDB16lQsWbIEhw8fxp07dzB06FDo6elhwIABAIDo6Gj88ssvCAkJwaNHj3DixAn07t0bjo6OaN68uVL3LgilemQ1b94817KIUVFRsLKyynXsx2UW79+/j5CQECxcuPCT1xYEId8Z+N3d3TF9+nSFtmwVqYwSERERERERkeoRcrLFjlDkdu/ejcmTJ8tXIezWrRvWrVuncExkZCRSUlLkj2fNmoW3b99i/PjxSEpKQuPGjXH69GkYGBgAALS0tHD27Fn89ttvePPmDSpXrozOnTvDw8MD6urqSt27ICSCIAgFPTg4OBjNmjXDggUL0KdPHwQFBWHUqFHYvHkzBg4cCADYv38/jI2NYWlpidu3b2PKlCmoX78+Dh48CODDPFv79u2Ds7MzjI2N8ezZMyxbtgwXL15EREREnrPY5yU9I0PpJ0tEREREREREyimjpyd2BFFc39JVtHvXH3VMtHsXd0r1yGrYsCEOHz4Md3d3/PLLL7CxscHq1avlRSwAiIuLw/Tp0/HixQuYm5tj8ODB+Pnnn+X7dXR0cPHiRaxevRpJSUkwNTVFy5Ytcfny5QIXsYiIiIiIiIiIviaZjCPBiiOlemQVJ+yRRURERERERPT1ldYeWcGbOol274ZjToh27+JOqcneiYiIiIiIiIiIxKLU0EIiIiIiIiIiotJA4CJzxRJ7ZBERERERERERkUpQqpBlbW0NiUSSa5swYQIA4NChQ3BxcYGRkREkEglu3ryZ77UEQUDHjh0hkUhw5MiRL3kORERERERERERFSpDliLZR/pQqZAUHByMuLk6++fv7AwB69+4NAEhPT0fz5s2xdOnSz15r9erVkEgkhYhMRERERERERESlkVJzZBkbGys8Xrp0KapUqYJWrVoBANzc3AAAjx49+uR1wsLCsHLlSgQHB8Pc3FyZCEREREREREREVEoVerL3rKws7Nq1C9OnT1eqZ1VGRgb69++PdevWwczMrLC3JyIiIiIiIiL6ajjZe/FU6Mnejxw5guTkZAwdOlSp86ZNm4ZmzZqhe/fuhb01ERERERERERGVQoXukeXt7Y2OHTvCwsKiwOccPXoUAQEBCA0NVepemZmZyMzMVGjLzsmBtra2UtchIiIiIiIiIioIGSddL5YK1SPr8ePHOHPmDEaOHKnUeQEBAYiOjka5cuWgoaEBDY0PdbRevXqhdevW+Z7n6ekJqVSqsHl5eRUmOhERERERERERqahC9cjy8fGBiYkJOnfurNR5c+bMyVX8ql27NlatWoWuXbvme567uzumT5+u0JbNsapERERERERE9JVwjqziSelClkwmg4+PD4YMGSLvUfXR69evERsbi+fPnwMAIiMjAQBmZmYK239ZWlrCxsYm33tqa2vnGkaYnpGhbHQiIiIiIiIiIlJhSg8tPHPmDGJjYzF8+PBc+44ePQpHR0d5T61+/frB0dERGzdu/PKkRERERERERERUqkkEQRDEDlEY7JFFRERERERE9PWV0dMTO4IoApc3Fu3eLWZdE+3exV2hJnsnIiIiIiIiIiL61go12TsRERERERERUUnGyd6LJ/bIIiIiIiIiIiIilaBUIcva2hoSiSTXNmHCBADA/PnzUaNGDZQpUwaGhoZo3749rl1THNfZunXrXOf369ev6J4RERERERERERGVSEoNLQwODkbOv7rW3blzBx06dEDv3r0BANWrV8e6detga2uLt2/fYtWqVXB2dsaDBw9gbGwsP2/UqFH45Zdf5I91dXW/9HkQERERERERERUZmYxDC4sjpQpZ/y5GAcDSpUtRpUoVtGrVCgAwYMAAhf0rV66Et7c3bt26hXbt2snb9fT0YGZmVtjMRERERERERERUChV6jqysrCzs2rULw4cPh0QiyXP/5s2bIZVKUbduXYV9u3fvhpGREWrWrIkffvgBaWlphY1BRERERERERFTkhJwc0TbKX6FXLTxy5AiSk5MxdOhQhfbjx4+jX79+yMjIgLm5Ofz9/WFkZCTfP3DgQNjY2MDMzAx37tyBu7s7wsLC4O/vX+gnQUREREREREREJZ9EEAShMCe6uLhAS0sLx44dU2hPT09HXFwcXr16hS1btiAgIADXrl2DiYlJnte5fv06GjRogOvXr8PJySnPYzIzM5GZmanQlp2TA21t7cJEJyIiIiIiIqICKqOnJ3YEUQTMry3avdvOvy3avYu7Qg0tfPz4Mc6cOYORI0fm2lemTBlUrVoVTZo0gbe3NzQ0NODt7Z3vtZycnKCpqYn79+/ne4ynpyekUqnC5uXlVZjoRERERERERESkogo1tNDHxwcmJibo3LnzZ48VBCFXb6p/u3v3Lt6/fw9zc/N8j3F3d8f06dMV2rI5ZpSIiIiIiIiIqFRRupAlk8ng4+ODIUOGQEPj/05PT0/H4sWL0a1bN5ibmyMxMRHr16/H06dP0bt3bwBAdHQ0du/ejU6dOsHIyAjh4eGYMWMGHB0d0bx583zvqa2tnWsYYXpGhrLRiYiIiIiIiIgKRCaTiR2B8qB0IevMmTOIjY3F8OHDFdrV1dVx7949+Pr64tWrV6hQoQIaNmyIixcvombNmgAALS0tnD17Fr/99hvevHmDypUro3PnzvDw8IC6unrRPCMiIiIiIiIiIiqRCj3Zu9jYI4uIiIiIiIjo6yutk72f/slBtHs7LwoX7d7FXaEmeyciIiIiIiIiIvrWWMgiIiIiIiIiIiKVUKhVC4mIiIiIiIiISjKZTCVnYirxlOqRZW1tDYlEkmubMGECAGDo0KG59jVp0iTXda5cuYK2bduiTJkyKFeuHFq3bo23b98WzTMiIiIiIiIiIqISSakeWcHBwcjJyZE/vnPnDjp06IDevXvL21xdXeHj4yN/rKWlpXCNK1euwNXVFe7u7li7di20tLQQFhYGNTWOciQiIiIiIiKi4kEmyMSOQHlQqpBlbGys8Hjp0qWoUqUKWrVqJW/T1taGmZlZvteYNm0aJk+ejDlz5sjbqlWrpkwMIiIiIiIiIiIqhQrdDSorKwu7du3C8OHDIZFI5O3nz5+HiYkJqlevjlGjRiEhIUG+LyEhAdeuXYOJiQmaNWsGU1NTtGrVCoGBgV/2LIiIiIiIiIiIipBMJoi2Uf4KXcg6cuQIkpOTMXToUHlbx44dsXv3bgQEBGDFihUIDg5G27ZtkZmZCQCIiYkBAMyfPx+jRo2Cn58fnJyc0K5dO9y/f//LngkREREREREREZVohV610NvbGx07doSFhYW8rW/fvvKfa9WqhQYNGsDKygp///03evbsCZnsw/jSMWPGYNiwYQAAR0dHnD17Ftu2bYOnp2ee98rMzJQXwz7KzsmBtrZ2YeMTEREREREREZGKKVSPrMePH+PMmTMYOXLkJ48zNzeHlZWVvLeVubk5AMDBwUHhOHt7e8TGxuZ7HU9PT0ilUoXNy8urMNGJiIiIiIiIiD5LJpOJtlH+CtUjy8fHByYmJujcufMnj0tMTMSTJ0/kBSxra2tYWFggMjJS4bioqCh07Ngx3+u4u7tj+vTpCm3Z/1o9kYiIiIiIiIiISj6lC1kymQw+Pj4YMmQINDT+7/Q3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffw8AkEgkmDlzJjw8PFC3bl3Uq1cPvr6+uHfvHg4cOJDvPbW1tXMNI0zPyFA2OhERERERERFRgXDS9eJJ6ULWmTNnEBsbi+HDhyu0q6ur4/bt29ixYweSk5Nhbm6ONm3aYN++fTAwMJAfN3XqVLx79w7Tpk3D69evUbduXfj7+6NKlSpf/myIiIiIiIiIiKjEkgiCoJIlRvbIIiIiIiIiIvr6yujpiR1BFEdmiNfhpseKaNHuXdwVetVCIiIiIiIiIqKSikMLi6dCrVpIRERERERERET0rbFHFhERERERERHRf8hkMrEjUB6U6pFlbW0NiUSSa5swYQIA5LlPIpHg119/BQA8evQo32P2799f9M+OiIiIiIiIiIhKDKV6ZAUHByMnJ0f++M6dO+jQoQN69+4NAIiLi1M4/uTJkxgxYgR69eoFAKhcuXKuYzZv3ozly5ejY8eOhXoCRERERERERERFjXNkFU9KFbKMjY0VHi9duhRVqlRBq1atAABmZmYK+//66y+0adMGtra2AAB1dfVcxxw+fBh9+/aFvr6+0uGJiIiIiIiIiKj0KPRk71lZWdi1axeGDx8OiUSSa/+LFy/w999/Y8SIEfle4/r167h58+YnjyEiIiIiIiIiIgK+YLL3I0eOIDk5GUOHDs1zv6+vLwwMDNCzZ898r+Ht7Q17e3s0a9assDGIiIiIiIiIiIochxYWT4UuZHl7e6Njx46wsLDIc/+2bdswcOBA6Ojo5Ln/7du32LNnD37++efP3iszMxOZmZkKbdk5OdDW1lY+OBERERERERERqaRCDS18/Pgxzpw5g5EjR+a5/+LFi4iMjMx3PwAcOHAAGRkZGDx48Gfv5+npCalUqrB5eXkVJjoRERERERER0WfJBJloG+VPIgiC0n3l5s+fj02bNuHJkyfQ0MjdqWvo0KG4c+cOQkJC8r1G69atYWRkhAMHDnz2fuyRRURERERERCSOMnp6YkcQxZ7xlUS794D1T0W7d3Gn9NBCmUwGHx8fDBkyJM8iVmpqKvbv348VK1bke40HDx7gn3/+wYkTJwp0T21t7VxFq/SMDOWCExERERERERGRSlO6kHXmzBnExsZi+PDhee7fu3cvBEFA//79873Gtm3bULFiRTg7Oyt7eyIiIiIiIiKir46TvRdPhRpaWBywRxYRERERERHR11dahxbuGltRtHsP2vhMtHsXd4VetZCIiIiIiIiIqKSSyTjpenFUqFULiYiIiIiIiIiIvjUWsoiIiIiIiIiISCUoVciytraGRCLJtU2YMAEA8OLFCwwdOhQWFhbQ09ODq6sr7t+/r3CN+Ph4uLm5wczMDGXKlIGTkxMOHDhQdM+IiIiIiIiIiOgLyWSCaBvlT6lCVnBwMOLi4uSbv78/AKB3794QBAE9evRATEwM/vrrL4SGhsLKygrt27dHenq6/Bpubm6IjIzE0aNHcfv2bfTs2RN9+/ZFaGho0T4zIiIiIiIiIiIqUb5o1cKpU6fi+PHjuH//Pu7fvw87OzvcuXMHNWvWBADk5OTAxMQEy5Ytw8iRIwEA+vr62LBhA9zc3OTXqVChApYvX44RI0YU+N5ctZCIiIiIiIjo6yutqxZuG24q2r2Hb3sh2r2Lu0LPkZWVlYVdu3Zh+PDhkEgkyMzMBADo6OjIj1FXV4eWlhYCAwPlbS1atMC+ffvw+vVryGQy7N27F5mZmWjdunXhnwUREREREREREZV4hS5kHTlyBMnJyRg6dCgAoEaNGrCysoK7uzuSkpKQlZWFpUuXIj4+HnFxcfLz9u3bh+zsbFSoUAHa2toYM2YMDh8+jCpVqnzxkyEiIiIiIiIiKgoymUy0jfJX6EKWt7c3OnbsCAsLCwCApqYmDh48iKioKJQvXx56eno4f/48OnbsCHV1dfl5P/30E5KSknDmzBmEhIRg+vTp6N27N27fvp3vvTIzM5GamqqwfewBRkREREREREREn5eUlAQ3NzdIpVJIpVK4ubkhOTn5k+cIgoD58+fDwsICurq6aN26Ne7evSvf/+jRozwXBpRIJNi/f7/8uLwWEJwzZ47Sz6FQhazHjx/jzJkz8nmvPqpfvz5u3ryJ5ORkxMXFwc/PD4mJibCxsQEAREdHY926ddi2bRvatWuHunXrwsPDAw0aNMDvv/+e7/08PT3lL/LHzcvLqzDRiYiIiIiIiIhKpQEDBuDmzZvw8/ODn58fbt68qTCHeV6WL1+OlStXYt26dQgODoaZmRk6dOiAtLQ0AEDlypUVFgaMi4vDggULUKZMGXTs2FHhWr/88ovCcT/99JPSz0FD6TMA+Pj4wMTEBJ07d85zv1QqBQDcv38fISEhWLhwIQAg4/9P0K6mplg/U1dX/2TXOXd3d0yfPl2hLTsnpzDRiYiIiIiIiIg+SyYr9Np4xVJERAT8/Pxw9epVNG7cGACwZcsWNG3aFJGRkbCzs8t1jiAIWL16NebOnYuePXsCAHx9fWFqaoo9e/ZgzJgxUFdXh5mZmcJ5hw8fRt++faGvr6/QbmBgkOtYZSndI0smk8HHxwdDhgyBhoZiHWz//v04f/48YmJi8Ndff6FDhw7o0aMHnJ2dAXyYR6tq1aoYM2YMgoKCEB0djRUrVsDf3x89evTI957a2tooW7aswqatra1sdCIiIiIiIiKiYu9rTLF05coVSKVSeRELAJo0aQKpVIrLly/nec7Dhw8RHx8vr+sAH2o0rVq1yvec69ev4+bNmxgxYkSufcuWLUOFChVQr149LF68GFlZWUo/D6ULWWfOnEFsbCyGDx+ea19cXBzc3NxQo0YNTJ48GW5ubvjjjz/k+zU1NXHixAkYGxuja9euqFOnDnbs2AFfX1906tRJ6fBERERERERERF+DTCaItuU1xZKnp+cXPZ/4+HiYmJjkajcxMUF8fHy+5wCAqampQrupqWm+53h7e8Pe3h7NmjVTaJ8yZQr27t2Lc+fOYeLEiVi9ejXGjx+v9PNQemihs7MzBCHv7nWTJ0/G5MmTP3l+tWrVcPDgQWVvS0RERERERERUKuQ1xVJ+I9Pmz5+PBQsWfPJ6wcHBAACJRJJrnyAIebb/23/353fO27dvsWfPHvz888+59k2bNk3+c506dWBoaIj//e9/8l5aBVWoObKIiIiIiIiIiOjr0NbWLvCUShMnTkS/fv0+eYy1tTVu3bqFFy9e5Nr38uXLXD2uPvo4n1V8fDzMzc3l7QkJCXmec+DAAWRkZGDw4MGfzd2kSRMAwIMHD1jIIiIiIiIiIiL6Ep9alK44MTIygpGR0WePa9q0KVJSUhAUFIRGjRoBAK5du4aUlJRcwwA/srGxgZmZGfz9/eHo6AgAyMrKwoULF7Bs2bJcx3t7e6Nbt24wNjb+bJ7Q0FAAUCiQFQQLWUREREREREREJZy9vT1cXV0xatQobNq0CQAwevRodOnSRWHFwho1asDT0xPff/89JBIJpk6diiVLlqBatWqoVq0alixZAj09PQwYMEDh+g8ePMA///yDEydO5Lr3lStXcPXqVbRp0wZSqRTBwcGYNm0aunXrBktLS6WeBwtZRERERERERET/IctnfnBVtnv3bkyePFm+CmG3bt2wbt06hWMiIyORkpIifzxr1iy8ffsW48ePR1JSEho3bozTp0/DwMBA4bxt27ahYsWKCiscfqStrY19+/ZhwYIFyMzMhJWVFUaNGoVZs2Yp/RwkQn4zt+chOzsb8+fPx+7du+XjI4cOHYqffvoJamofFkA8dOgQNm3ahOvXryMxMRGhoaGoV6+ewnWio6Pxww8/IDAwEJmZmXB1dcXatWvzHZOZl/SMjAIfS0RERERERESFU0ZPT+wIoljXv5xo9574R7Jo9y7u1JQ5eNmyZdi4cSPWrVuHiIgILF++HL/++ivWrl0rPyY9PR3NmzfH0qVL87xGeno6nJ2dIZFIEBAQgEuXLiErKwtdu3ZVmfGnRERERERERFSyyWQy0TbKn1JDC69cuYLu3bujc+fOAD7Mev/HH38gJCREfoybmxsA4NGjR3le49KlS3j06BFCQ0NRtmxZAICPjw/Kly+PgIAAtG/fvjDPg4iIiIiIiIiISjilemS1aNECZ8+eRVRUFAAgLCwMgYGB6NSpU4GvkZmZCYlEorCMpI6ODtTU1BAYGKhMHCIiIiIiIiIiKkWU6pE1e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37F/gaTZo0QZkyZTB79mwsWbIEgiBg9uzZkMlkiIuLy/OczMxMZGZmKrRl5+QoFMOIiIiIiIiIiIqKTFbyJnsvCZTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voW+BrGxsbYv38/jh07Bn19fUilUqSkpMDJyQnq6up5nuPp6QmpVKqweXl5KROdiIiIiIiIiIhUnFI9smbOnIk5c+agX79+AIDatWvj8ePH8PT0xJAhQwp8HWdnZ0RHR+PVq1fQ0NBAuXLlYGZmBhsbmzyPd3d3x/Tp0xXasnNylIlORERERERERFRg7JFVPClVyMrIyICammInLnV19ULPqG9kZAQACAgIQEJCArp165bncdra2rmGEaZnZBTqnkREREREREREpJqUKmR17doVixcvhqWlJWrWrInQ0FCsXLkSw4cPlx/z+vVrxMbG4vnz5wCAyMhIAICZmRnMzMwAfFil0N7eHsbGxrhy5QqmTJmCadOmwc7OrqieFxERERERERERlTASQRAK3FcuLS0NP//8Mw4fPoyEhARYWFigf//+mDdvHrS0tAAA27dvx7Bhw3Kd6+Hhgfnz5wMA5syZg+3bt+P169ewtrbG2LFjMW3aNEgkkgIHZ48sIiIiIiIioq+vjJ6e2BFE4fV9GdHu/cPhdNHuXdwpVcgqTljIIiIiIiIiIvr6WMj69ljIyp9SQwuJiIiIiIiIiEoDzvVePKl9/hAiIiIiIiIiIiLxsUcWEREREREREdF/sEdW8aRUj6zs7Gz89NNPsLGxga6uLmxtbfHLL79AJpPlefyYMWMgkUiwevVqhfbMzExMmjQJRkZGKFOmDLp164anT58W+kkQEREREREREVHJp1Qha9myZdi4cSPWrVuHiIgILF++HL/++ivWrl2b69gjR47g2rVrsLCwyLVv6tSpOHz4MPbu3YvAwEC8efMGXbp0QU5OTuGfCRERERERERERlWhKDS28cuUKunfvjs6dOwMArK2t8ccffyAkJEThuGfPnmHixIk4deqU/NiPUlJS4O3tjZ07d6J9+/YAgF27dqFy5co4c+YMXFxcvuT5EBERERERERF9sRyOLSyWlOqR1aJFC5w9exZRUVEAgLCwMAQGBqJTp07yY2QyGdzc3DBz5kzUrFkz1zWuX7+O9+/fw9nZWd5mYWGBWrVq4fLly4V9HkREREREREREVMIp1SNr9uzZSElJQY0aNaCuro6cnBwsXrwY/fv3lx+zbNkyaGhoYPLkyXleIz4+HlpaWjA0NFRoNzU1RXx8fJ7nZGZmIjMzU6EtOycH2traysQnIiIiIiIiIioQdsgqnpTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voC+NDb6rfffsP27dshkUiUCiIIQr7neHp6QiqVKmxeXl5KXZ+IiIiIiIiIiFSbUj2yZs6ciTlz5qBfv34AgNq1a+Px48fw9PTEkCFDcPHiRSQkJMDS0lJ+Tk5ODmbMmIHVq1fj0aNHMDMzQ1ZWFpKSkhR6ZSUkJKBZs2Z53tfd3R3Tp09XaMvmxPBERERERERERKWKUoWsjIwMqKkpduJSV1eHTCYDALi5uckncP/IxcUFbm5uGDZsGACgfv360NTUhL+/P/r06QMAiIuLw507d7B8+fI876utrZ1rGGF6RoYy0YmIiIiIiIiICoxDC4snpQpZXbt2xeLFi2FpaYmaNWsiNDQUK1euxPDhwwEAFSpUQIUKFRTO0dTUhJmZGezs7AAAUqkUI0aMwIwZM1ChQgWUL18eP/zwA2rXrp2rCEZERERERERERPSRUoWstWvX4ueff8b48eORkJAACwsLjBkzBvPmzVPqpqtWrYKGhgb69OmDt2/fol27dti+fTvU1dWVug4RERERERER0dfAHlnFk0QQBJX8T8OhhURERERERERfXxk9PbEjiMKjk3jPe8EJ1jzyo1SPLCIiIiIiIiKi0uD/TwdOxYza5w8hIiIiIiIiIiISHwtZRERERERERESkEpQqZGVnZ+Onn36CjY0NdHV1YWtri19++QWy//S3i4iIQLdu3SCVSmFgYIAmTZogNjZWvn/z5s1o3bo1ypYtC4lEguTk5CJ5MkRERERERERERSFHEETbKH9KzZG1bNkybNy4Eb6+vqhZsyZCQkIwbNgwSKVSTJkyBQAQHR2NFi1aYMSIEViwYAGkUikiIiKgo6Mjv05GRgZcXV3h6uoKd3f3on1GRERERERERERUIim1amGXLl1gamoKb29veVuvXr2gp6eHnTt3AgD69esHTU1N+eNPOX/+PNq0aYOkpCSUK1dOqeBctZCIiIiIiIjo6yutqxbOcdYV7d5LT78V7d7FnVJDC1u0aIGzZ88iKioKABAWFobAwEB06tQJACCTyfD333+jevXqcHFxgYmJCRo3bowjR44UeXAiIiIiIiIiIipdlCpkzZ49G/3790eNGjWgqakJR0dHTJ06Ff379wcAJCQk4M2bN1i6dClcXV1x+vRpfP/99+jZsycuXLhQ6JCZmZlITU1V2DIzMwt9PSIiIiIiIiIiUj1KFbL27duHXbt2Yc+ePbhx4wZ8fX3h5eUFX19fAJBP+t69e3dMmzYN9erVw5w5c9ClSxds3Lix0CE9PT0hlUoVNi8vr0Jfj4iIiIiIiIjoU2Qy8TbKn1KTvc+cORNz5sxBv379AAC1a9fG48eP4enpiSFDhsDIyAgaGhpwcHBQOM/e3h6BgYGFDunu7o7p06crtGXn5BT6ekREREREREREpHqUKmRlZGRATU2xE5e6urq8J5aWlhYaNmyIyMhIhWOioqJgZWVV6JDa2trQ1tZWaONk70RERERERET0tcgKvDQefUtKFbK6du2KxYsXw9LSEjVr1kRoaChWrlyJ4cOHy4+ZOXMm+vbti5YtW6JNmzbw8/PDsWPHcP78efkx8fHxiI+Px4MHDwAAt2/fhoGBASwtLVG+fPmieWZERERERERERFSiSARBKHCNMS0tDT///DMOHz6MhIQEWFhYoH///pg3bx60tLTkx23btg2enp54+vQp7OzssGDBAnTv3l2+f/78+ViwYEGu6/v4+GDo0KEFysIeWURERERERERfXxk9PbEjiGJ6W13R7r0y4K1o9y7ulCpkFScsZBERERERERF9fSxkfXssZOVPqVULiYiIiIiIiIiIxKLUHFlERERERERERKVBjmoOYCvx2COLiIiIiIiIiIhUglKFrOzsbPz000+wsbGBrq4ubG1t8csvv0Amk8mPefPmDSZOnIhKlSpBV1cX9vb22LBhg3z/69evMWnSJNjZ2UFPTw+WlpaYPHkyUlJSiu5ZERERERERERF9AZlMvI3yp9TQwmXLlmHjxo3w9fVFzZo1ERISgmHDhkEqlWLKlCkAgGnTpuHcuXPYtWsXrK2tcfr0aYwfPx4WFhbo3r07nj9/jufPn8PLywsODg54/Pgxxo4di+fPn+PAgQNf5UkSEREREREREZHqU2rVwi5dusDU1BTe3t7ytl69ekFPTw87d+4EANSqVQt9+/bFzz//LD+mfv366NSpExYuXJjndffv349BgwYhPT0dGhoFq61x1UIiIiIiIiKir6+0rlo4qZWOaPdee+GdaPcu7pQaWtiiRQucPXsWUVFRAICwsDAEBgaiU6dOCsccPXoUz549gyAIOHfuHKKiouDi4pLvdVNSUlC2bNkCF7GIiIiIiIiIiL4mmSDeRvlTqnI0e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37y49Zs2YNRo0ahUqVKkFDQwNqamrYunUrWrRokec1ExMTsXDhQowZMybf+2ZmZiIzM1OhLTsnB9ra2srEJyIiIiIiIiIiFaZUj6x9+/Zh165d2LNnD27cuAFfX194eXnB19dXfsyaNWtw9epVHD16FNevX8eKFSswfvx4nDlzJtf1UlNT0blzZzg4OMDDwyPf+3p6ekIqlSpsXl5eykQnIiIiIiIiIiow9sgqnpSaI6ty5cqYM2cOJkyYIG9btGgRdu3ahXv37uHt27eQSqU4fPgwOnfuLD9m5MiRePr0Kfz8/ORtaWlpcHFxgZ6eHo4fPw4dnfzHnrJHFhEREREREZE4SuscWeO+E2+OrA0XOUdWfpQaWpiRkQE1NcVOXOrq6pD9/7Uh379/j/fv33/yGOBDTywXFxdoa2vj6NGjnyxiAYC2tnauohUneyciIiIiIiKir+VfZQwqRpQqZHXt2hWLFy+GpaUlatasidDQUKxcuRLDhw8HAJQtWxatWrXCzJkzoaurCysrK1y4cAE7duzAypUrAXzoieXs7IyMjAzs2rULqampSE1NBQAYGxtDXV29iJ8iERERERERERGVBEoNLUxLS8PPP/+Mw4cPIyEhARYWFujfvz/mzZsHLS0tAEB8fDzc3d1x+vRpvH79GlZWVhg9ejSmTZsGiUSC8+fPo02bNnle/+HDh7C2ti5QFvbIIiIiIiIiIvr6SuvQwjHNxRtauOkShxbmR6lCVnHCQhYRERERERHR11daC1kjm4k3L/fWy5mfP6iUUmrVQiIiIiIiIiIiIrEoNUcWEREREREREVFpIFPJ8WslH3tkERERERERERGRSlC6kJWWloapU6fCysoKurq6aNasGYKDg+X7BUHA/PnzYWFhAV1dXbRu3Rp3795VuMaYMWNQpUoV6OrqwtjYGN27d8e9e/e+/NkQEREREREREVGJpXQha+TIkfD398fOnTtx+/ZtODs7o3379nj27BkAYPny5Vi5ciXWrVuH4OBgmJmZoUOHDkhLS5Nfo379+vDx8UFERAROnToFQRDg7OyMnJycontmRERERERERESFJJOJt1H+lFq18O3btzAwMMBff/2Fzp07y9vr1auHLl26YOHChbCwsMDUqVMxe/ZsAEBmZiZMTU2xbNkyjBkzJs/r3rp1C3Xr1sWDBw9QpUqVAmXhqoVEREREREREX19pXbVwaGPxVi3cfo2rFuZHqR5Z2dnZyMnJgY6OjkK7rq4uAgMD8fDhQ8THx8PZ2Vm+T1tbG61atcLly5fzvGZ6ejp8fHxgY2ODypUrF+IpEBEREREREREVLZkg3kb5U6qQZWBggKZNm2LhwoV4/vw5cnJysGvXLly7dg1xcXGIj48HAJiamiqcZ2pqKt/30fr166Gvrw99fX34+fnB398fWlpaed43MzMTqampCltmJquTRERERERERESlidJzZO3cuROCIKBixYrQ1tbGmjVrMGDAAKirq8uPkUgkCucIgpCrbeDAgQgNDcWFCxdQrVo19OnTB+/evcvznp6enpBKpQqbl5eXstGJiIiIiIiIiEiFKTVH1r+lp6cjNTUV5ubm6Nu3L968eYO1a9eiSpUquHHjBhwdHeXHdu/eHeXKlYOvr2+e18rKyoKhoSG2bt2K/v3759qfmZmZqwdWdk4OtLXFG69KREREREREVBqU1jmyBjUUr+awK5ij0PKjdI+sj8qUKQNzc3MkJSXh1KlT6N69O2xsbGBmZgZ/f3/5cVlZWbhw4QKaNWv2yesJgpDvcEFtbW2ULVtWYWMRi4iIiIiIiIiodNFQ9oRTp05BEATY2dnhwYMHmDlzJuzs7DBs2DBIJBJMnToVS5YsQbVq1VCtWjUsWbIEenp6GDBgAAAgJiYG+/btg7OzM4yNjfHs2TMsW7YMurq66NSpU5E/QSIiIiIiIiIiZeUUbgAbfWVKF7JSUlLg7u6Op0+fonz58ujVqxcWL14MTU1NAMCsWbPw9u1bjB8/HklJSWjcuDFOnz4NAwMDAICOjg4uXryI1atXIykpCaampmjZsiUuX74MExOTon12RERERERERERUYhR6jiyxpWdkiB2BiIiIiIiIqMQrrXNk9XXSEu3e+25kiXbv4q7Qc2QREREREREREZHqSEpKgpubG6RSKaRSKdzc3JCcnPzJcw4dOgQXFxcYGRlBIpHg5s2buY7JzMzEpEmTYGRkhDJlyqBbt254+vTpF987LyxkERERERERERGVAgMGDMDNmzfh5+cHPz8/3Lx5E25ubp88Jz09Hc2bN8fSpUvzPWbq1Kk4fPgw9u7di8DAQLx58wZdunRBTk7OF907LxxaSERERERERET5Kq1DC3s7ije0cH9o0Q8tjIiIgIODA65evYrGjRsDAK5evYqmTZvi3r17sLOz++T5jx49go2NDUJDQ1GvXj15e0pKCoyNjbFz50707dsXAPD8+XNUrlwZJ06cgIuLyxff+9/YI4uIiIiIiIiIqBjJzMxEamqqwpaZmflF17xy5QqkUqm8kAQATZo0gVQqxeXLlwt93evXr+P9+/dwdnaWt1lYWKBWrVry6xblvZVetbC4UIWKcGZmJjw9PeHu7g5tbW2x46gsvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WhYdvpZFg69j0eFrWbx9jV5RBTV//nwsWLBAoc3DwwPz588v9DXj4+NhYmKSq93ExATx8fFfdF0tLS0YGhoqtJuamsqvW5T3Zo+srygzMxMLFiz44qppacfXsejwtSw6fC2LBl/HosPXsujwtSwafB2LDl/LosPXsmjwdSw6fC0pP+7u7khJSVHY3N3d8zx2/vz5kEgkn9xCQkIAABKJJNf5giDk2f6l/nvdorq3yvbIIiIiIiIiIiIqibS1tQvcS2/ixIno16/fJ4+xtrbGrVu38OLFi1z7Xr58CVNT00LlBAAzMzNkZWUhKSlJoVdWQkICmjVrJj+mqO7NQhYRERERERERkYoyMjKCkZHRZ49r2rQpUlJSEBQUhEaNGgEArl27hpSUFHnBqTDq168PTU1N+Pv7o0+fPgCAuLg43LlzB8uXLy/ye7OQRURERERERERUwtnb28PV1RWjRo3Cpk2bAACjR49Gly5dFFYNrFGjBjw9PfH9998DAF6/fo3Y2Fg8f/4cABAZGQngQy8rMzMzSKVSjBgxAjNmzECFChVQvnx5/PDDD6hduzbat2+v1L0LgnNkfUXa2trw8PDgpH1fiK9j0eFrWXT4WhYNvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WtK3tnv3btSuXRvOzs5wdnZGnTp1sHPnToVjIiMjkZKSIn989OhRODo6onPnzgCAfv36wdHRERs3bpQfs2rVKvTo0QN9+vRB8+bNoaenh2PHjkFdXV2pexeERBAEQemziIiIiIiIiIiIvjH2yCIiIiIiIiIiIpXAQhYREREREREREakEFrKIiIiIiIiIiEglsJBFREREREREREQqgYUsIiIiIiIiIiJSCSxkfQVZWVmIjIxEdna22FGI5Pi+JCIiotLmyZMn+e67evXqN0xScvAzJRGJjYWsIpSRkYERI0ZAT08PNWvWRGxsLABg8uTJWLp0qcjpVMuZM2fy3bdp06ZvmET18X1ZNNLS0uDv748TJ07g1atXYsdROampqQXeiKjkOnDggNgRqJTp0KEDEhMTc7VfunQJrq6uIiRSXfxMSUTFBQtZRcjd3R1hYWE4f/48dHR05O3t27fHvn37REymejp37owZM2YgKytL3vby5Ut07doV7u7uIiZTPXxffrlbt26hRo0acHV1RZcuXVC1atVPFlspt3LlysHQ0PCT28dj6PMePHiA69evK7SdPXsWbdq0QaNGjbBkyRKRkqmeuLg4zJ07V/64RYsWcHJykm8NGzbEs2fPREyoWrKzs3H37l1ERUUptP/111+oW7cuBg4cKFIyKq2+++47ODs7Iy0tTd72zz//oFOnTvDw8BAxmerhZ8qilZycjK1bt8Ld3R2vX78GANy4cYO/c4gKQEPsACXJkSNHsG/fPjRp0gQSiUTe7uDggOjoaBGTqZ5//vkHbm5uOHPmDPbs2YNHjx5h+PDhcHBwQFhYmNjxVArfl19uzpw5sLS0xP79+6Gjo4MFCxZg4sSJuHfvntjRVMa5c+fEjlCizJw5E7Vq1UL9+vUBAA8fPkTXrl3x3XffoU6dOvD09ISenh6mTp0qblAVsH79eiQnJ8sfh4WFYfjw4ShfvjwA4OTJk1i1ahW8vLxESqg6wsPD0aVLFzx+/BgA0L17d2zYsAF9+vRBWFgYRo4ciePHj4ucUrUcOHAAf/75J2JjYxW+3AM+/MFLn7d582b07t0bnTt3xunTp3HlyhV069YNixYtwpQpU8SOp1L4mbLo3Lp1C+3bt4dUKsWjR48watQolC9fHocPH8bjx4+xY8cOsSMSFW8CFRldXV0hOjpaEARB0NfXl/988+ZNoWzZsmJGU0lv3rwRBg0aJGhrawuamprCsmXLBJlMJnYslcP35ZczNjYWgoOD5Y9fvXolqKmpCWlpaSKmotKsUqVKwuXLl+WPFy5cKNStW1f+eOvWrQqPKX9169YVTp8+LX/87/9PCoIg+Pn5CQ4ODmJEUzldu3YV2rZtKxw7dkzo16+fIJFIhGrVqgkLFiwQUlNTxY6ncn777TdBX19fmDBhgqClpSWMGTNGaN++vSCVSoUff/xR7HgqJSsrS+jQoYPQrFkzQV9fX1i7dq3YkVQSP1MWnXbt2gkzZ84UBEHxtbx06ZJgZWUlYjIi1cChhUWoYcOG+Pvvv+WPP35TsWXLFjRt2lSsWCorMjISwcHBqFSpEjQ0NHDv3j1kZGSIHUvl8H355V69egVLS0v54woVKkBPTw8vX74UMZVqS05OxooVKzBy5EiMGjUKq1atQkpKitixVMarV69QqVIl+eNz586ha9eu8setW7fGo0ePREimeh49eoQqVarIH3fo0AFlypSRP7azs8PDhw/FiKZygoKC8Ouvv6JLly7YsGEDgA+9B+fNmwcDAwOR06me9evXY/PmzVi3bh20tLQwa9Ys+Pv7Y/Lkyfz/5WfcunVLYYuIiICHhweePHmCQYMGoWXLlvJ9VHD8TFl0goODMWbMmFztFStWRHx8vAiJiFQLhxYWIU9PT7i6uiI8PBzZ2dn47bffcPfuXVy5cgUXLlwQO55KWbp0KTw8PDB69Gj8+uuviI6OxqBBg1CnTh3s2rWLvyyVwPfll5NIJEhLS5PPByEIgrzt35OTly1bVqyIKiUkJAQuLi7Q1dVFo0aNIAgCVq5cicWLF+P06dNwcnISO2KxV758ecTFxaFy5cqQyWQICQnBtGnT5PuzsrIgCIKICVVHdna2QlHg0KFDCvuTkpKgpsbv/QoiISEBFStWBPBhXjw9PT20atVK5FSqKzY2Fs2aNQMA6Orqyud4cnNzQ5MmTbBu3Tox4xVr9erVg0QiUfj/4MfHmzZtwubNm+W/y3NyckRMqlr4mbLo6Ojo5LnATWRkJIyNjUVIRKRa+MmsCDVr1gyXLl1CRkYGqlSpgtOnT8PU1BRXrlyRz2NCBfPbb7/hyJEjWLt2LXR0dFCzZk0EBQWhZ8+eaN26tdjxVArfl19OEARUr15dPil5+fLl8ebNGzg6OnKS8kKYNm0aunXrhkePHuHQoUM4fPgwHj58iC5dunBOpwJq1aoVFi5ciCdPnmD16tWQyWRo06aNfH94eDisra3FC6hC7OzscPny5Xz3X7x4EdWrV/+GiVSXRCJRKPqpqalBU1NTxESqzczMTL7anpWVFa5evQrgw5x4LFR/2sOHDxETE4OHDx/Kt38//vhzTEyM2FFVCj9TFp3u3bvjl19+wfv37wF8+P9nbGws5syZg169eomcjqj4kwj8TUjF0KtXr2BkZJTnvgsXLvAbXvqmCvotI9+XBaOrq4vQ0FDUqFFDoT08PBwNGjTgEOICePjwITp06ICHDx9CTU0Na9aswbhx4+T7e/ToARsbG6xatUrElKrh119/xdKlS3Hu3DnUqVNHYV9YWBjatm2LOXPmYObMmSIlVB1qamqQSqXy4UbJyckoW7Zsrh5tH1fnok8bOXIkKleuDA8PD2zcuBHTp09H8+bNERISgp49e8Lb21vsiERUSKmpqejUqRPu3r2LtLQ0WFhYID4+Hk2bNsWJEycUhrgTUW4sZBWhvLqHAh8q7Nra2tDS0vrGiVRbcnIyDhw4gOjoaMycORPly5fHjRs3YGpqKh+6QAWTk5ODw4cPIyIiAhKJBPb29ujevTs0NDi6mL49U1NT7Ny5E87Ozgrtp06dwuDBg/HixQuRkqmW9+/fIzw8HMbGxrCwsFDYFxYWhkqVKqFChQoipVMd79+/R/v27XH58mV06NABdnZ2kEgkuHfvHvz9/dG0aVOcPXuWPYsKwNfXt0DHDRky5CsnKRlkMhlkMpn8d/Wff/6JwMBAVK1aFWPHjuXnSiWFh4fnufpjt27dREqkmviZsmgFBATgxo0bkMlkcHJyQvv27cWORKQSWMgqQmpqagpL0f5XpUqVMHToUHh4eHC+jc/475K0kZGRsLW1xc8//8wlaZV0584ddO/eHfHx8bCzswMAREVFwdjYGEePHkXt2rVFTqiaBEHAuXPn8PbtWzRr1oxDC5UwefJkHD58GF5eXmjWrBkkEgkCAwMxc+ZM9OrVC6tXrxY7osrKyspCVlYW9PX1xY6iUrKysrBy5Urs3bsXUVFRAIBq1aqhf//+mDZtGrS1tUVOSESFFRMTg++//x63b99WmDfr42d2zpFVcPxM+XUlJyejXLlyYscgUgksZBWhHTt2YO7cuRg6dKh8AuPg4GD4+vrip59+wsuXL+Hl5YWZM2fixx9/FDtusda+fXs4OTlh+fLlMDAwQFhYGGxtbXH58mUMGDCAq3EpoUmTJjAxMYGvr6+82JKUlIShQ4ciISEBV65cETlh8ZecnIwpU6bgxo0baNKkCVasWIFOnTrJ59UxNjaGv79/rmFJlLesrCzMnDkTGzduRHZ2NgBAU1MT48aNw9KlS1k0KCAfHx/5e3LgwIFwd3fHypUrkZ2djbZt22Lv3r3skUWk4pKTkxEUFISEhATIZDKFfYMHDxYplWrp2rUr1NXVsWXLFtja2iIoKAiJiYmYMWMGvLy88N1334kdUWXwM2XRWbZsGaytrdG3b18AQJ8+fXDw4EGYmZnhxIkTqFu3rsgJiYo3FrKKULt27TBmzBj06dNHof3PP//Epk2bcPbsWezcuROLFy/GvXv3REqpGqRSKW7cuIEqVaooFLIeP34MOzs7vHv3TuyIKkNXVxchISGoWbOmQvudO3fQsGFDvH37VqRkqmPkyJH4559/MHjwYBw/fhxqamoQBAGrV6+GmpoaZs2aBX19fRw7dkzsqMVeTk4OAgMDUbt2bejo6CA6OhqCIKBq1arQ09MTO57KWLx4MRYvXoxmzZohNDQUffr0wZEjRzB16lT5nFldunTBhg0bxI5a7CUlJWHXrl0YMmRIrpVHU1JSsGPHjjz3UW6Ghoaf7Jn+EefIKphjx45h4MCBSE9Ph4GBgcJrK5FI+DoWkJGREQICAlCnTh1IpVIEBQXBzs4OAQEBmDFjBkJDQ8WOqDL4mbLo2NraYteuXWjWrBn8/f3Rp08f7Nu3D3/++SdiY2Nx+vRpsSMSFWsczFyErly5go0bN+Zqd3R0lH9D0aJFC8TGxn7raCqHS9IWHTs7O7x48SLXh46EhARUrVpVpFSq5eTJk9izZw9atWqFYcOGoXLlyggICEDjxo0BfPhWjXNsFIy6ujpcXFwQERGB8uXLcxhCIW3fvh3e3t7o378/QkJC0LhxY+zbtw//+9//AAC1atXC2LFjRU6pGtatW4dbt25h0qRJufZJpVJcvHgRqampmDt3rgjpVMu/hwULgoBx48bhl19+gYmJiXihVNiMGTMwfPhwLFmyhIX+L5CTkyMfbm1kZITnz5/Dzs4OVlZWiIyMFDmdauFnyqITFxeHypUrAwCOHz+OPn36wNnZGdbW1vLPl0SUPxayilClSpXg7e2NpUuXKrR7e3vL/0eVmJjIuXQK4OOStH/++ScALkn7JZYsWYLJkydj/vz5aNKkCQDg6tWr+OWXX7Bs2TKFgiF7HOTtxYsXqF69OgCgYsWK0NHRkf+bBgBLS0u8fPlSrHgqp3bt2oiJiYGNjY3YUVRWbGwsWrRoAQBo0KABNDQ0FIqCderUQVxcnFjxVMrBgwexYsWKfPePGTMGP/zwAwtZBfDfSdwnTZqEXr16wdbWVqREqu3Zs2eYPHkyi1hfqFatWrh16xZsbW3RuHFjLF++HFpaWti8eTPfm0riZ8qiY2hoiCdPnqBy5crw8/PDokWLAHz4EoDzthF9HgtZRcjLywu9e/fGyZMn0bBhQ0gkEgQHByMiIgIHDx4EAAQHB8vHQlP+vLy80KlTJ5iYmODt27do1aoV4uLi0LRpUyxevFjseCqlS5cuAD6Mvf84LOHjiOKuXbvKH0skEv7izIdMJoO6urr8sbq6eq4hHlRwixcvxg8//ICFCxeifv36uZaY5offz3v//r3CXGJaWloKq+ppaGjw33MBRUdHo1q1avnur1atGqKjo79hIqIPXFxcEBISwmLLF/rpp5+Qnp4OAFi0aBG6dOmC7777DhUqVMC+fftETqda+Jmy6PTs2RMDBgxAtWrVkJiYiI4dOwIAbt68yd5tRAXAQlYR6tatG6KiorBhwwZERUVBEAR07NgRR44cQXJyMgBg3Lhx4oZUEWXLlkVgYKDCkrT169dHu3btxI6mcgICAlhoKQJbt26VD03Izs7G9u3bYWRkBABIS0sTM5rKcXV1BfDh/5n/fm/yw69ywsPDER8fD+DDa3fv3j28efMGAPDq1Ssxo6kUdXV1PH/+HJaWlnnuf/78OVcaJlF07twZM2fORHh4OGrXrq1QrAbAIe0F5OLiIv/Z1tYW4eHheP36dYHndKP/c+7cObEjlBirVq2CtbU1njx5guXLl8s/Y8bFxWH8+PEipyMq/jjZ+1eUnJyM3bt3Y9u2bbh58yb/OCuAa9eu4fXr1/JvJQDA19cXHh4eyMjIQI8ePbB27VquakbflLW1dYE+7D58+PAbpFF9Fy5c+OT+Vq1afaMkqktNTU1hGfl/+9jOomDBtGnTBo0bN841LcBHs2fPRlBQEP+AK4R/L9ZCyvtUAZX/vpX34MEDREdHo2XLltDV1ZX/f5KIiFQPe2R9BQEBAdi2bRsOHToEKysr9OrVC1u3bhU7lkqYP38+WrduLS9k3b59G6NGjcKQIUNgb2+PX3/9FRYWFpg/f764QVWIjY0Nhg0bhqFDh+bb44A+7dGjR2JHKFFYqPpyLJoWnYkTJ6Jfv36oVKkSxo0bJx9GnJOTg/Xr12PVqlXYs2ePyClVw/Tp0xUeZ2VlYfHixZBKpQrtK1eu/JaxVJZMJhM7QomQmJiIPn364Ny5c5BIJLh//z5sbW0xcuRIlCtX7pNz5FFuycnJ8Pb2RkREBCQSCRwcHDB8+PBc/86pYMLDwxEbG4usrCyFdva4JPo09sgqIk+fPsX27duxbds2pKeno0+fPti4cSPCwsLg4OAgdjyVYW5ujmPHjqFBgwYAgLlz5+LChQsIDAwEAOzfvx8eHh4IDw8XM6ZKWbt2LbZv346wsDC0adMGI0aMwPfff89ebSSqixcvYtOmTYiJicH+/ftRsWJF7Ny5EzY2NvJJzIm+lblz58LT0xMGBgawtbWFRCJBdHQ03rx5g5kzZ+bbW4sUtWnT5rPHSCQSBAQEfIM0RB8MHjwYCQkJ2Lp1K+zt7eW9BE+fPo1p06bh7t27YkdUGSEhIXBxcYGuri4aNWoEQRAQEhKCt2/f4vTp03BychI7osqIiYnB999/j9u3byv0sP7YS5A9Lok+jYWsItCpUycEBgaiS5cuGDhwIFxdXaGurg5NTU0WspSko6OD+/fvy1eEa9GiBVxdXfHTTz8B+NAzpnbt2pyTqBDCwsKwbds2/PHHH8jOzsaAAQMwfPhwfuhQwpo1a/Jsl0gk0NHRQdWqVdGyZUuFieEpt4MHD8LNzQ0DBw7Ezp07ER4eDltbW6xfvx7Hjx/HiRMnxI6oMm7dupVn+8f3pKWlJYvWBRQUFITdu3fjwYMHEAQB1atXx4ABA9CoUSOxo1EpsmbNGowePRo6Ojr5/s75aPLkyd8olWozMzPDqVOnULduXYXhrg8fPkTt2rXlcwvS53333XeoWrUqtmzZAg2NDwN7srOzMXLkSMTExOCff/4ROaHq6Nq1K9TV1bFlyxbY2toiKCgIiYmJmDFjBry8vPDdd9+JHZGoWGMhqwhoaGhg8uTJGDdunMLKRyxkKc/Kygo7d+5Ey5YtkZWVhXLlyuHYsWPySd5v376NVq1a4fXr1yInVV3v37/H+vXrMXv2bLx//x61atXClClTMGzYMM4V8Rk2NjZ4+fIlMjIyYGhoCEEQkJycDD09Pejr6yMhIQG2trY4d+6cvBhLuTk6OmLatGkYPHiwwh8VN2/ehKurq3wCc/q8j3Nl5UdTUxN9+/bFpk2boKOj8w2TUWn29u1b6Orq5rkvLi4O5ubm3ziR6rCxsUFISAgqVKgAGxubfI+TSCSIiYn5hslUl4GBAW7cuIFq1aop/M4JDg6Gq6srEhMTxY6oMnR1dREaGooaNWootIeHh6NBgwbIyMgQKZnqMTIyQkBAAOrUqQOpVIqgoCDY2dkhICAAM2bMQGhoqNgRiYo1LsNTBC5evIi0tDQ0aNAAjRs3xrp16/Dy5UuxY6kkV1dXzJkzBxcvXoS7uzv09PQUvpG4desWqlSpImJC1fX+/Xv8+eef6NatG2bMmIEGDRpg69at6NOnD+bOnYuBAweKHbHYW7JkCRo2bIj79+8jMTERr1+/RlRUFBo3bozffvsNsbGxMDMzw7Rp08SOWqxFRkaiZcuWudrLli0rX+GVCubw4cOoVq0aNm/ejJs3byI0NBSbN2+GnZ0d9uzZA29vbwQEBMh7tVJuy5cvx9u3b+WP//nnH2RmZsofp6WlcQUpJTk6OuLGjRu52g8cOIA6deqIkEh1PHz4EBUqVJD/nN/GIlbBtWzZEjt27JA/lkgkkMlk+PXXXws0HJb+T9myZREbG5ur/cmTJzAwMBAhkerKycmRr1RoZGSE58+fA/jwpX5kZKSY0YhUg0BFJj09XfD29haaN28uaGpqCmpqasLq1auF1NRUsaOpjISEBKFFixaCRCIRDAwMhEOHDinsb9u2rfDjjz+KlE61+Pr6Cu/evROuX78uTJw4UahQoYJgYmIizJgxQ4iIiFA4NigoSNDR0REpqeqwtbUVQkNDc7XfuHFDsLGxEQRBEC5duiSYmZl942SqxdbWVvD39xcEQRD09fWF6OhoQRA+vGft7e3FjKZyGjZsKPj5+eVq9/PzExo2bCgIgiAcPnxYsLW1/dbRVIaamprw4sUL+WMDAwP5e1IQBCE+Pl5QU1MTI5rKmjhxoqCtrS14enoKMplMSEtLE4YMGSLo6ekJa9asETselTJ3794VjI2NBVdXV0FLS0v43//+J9jb2wumpqbCgwcPxI6nUiZNmiRUqlRJ2Lt3rxAbGys8efJE+OOPP4RKlSoJU6ZMETueSmnRooVw+PBhQRAEoX///oKrq6sQGBgoDB48WKhZs6a44YhUAIcWfiWRkZHw9vbGzp07kZycjA4dOuDo0aNix1IZKSkp0NfXzzXX0OvXr6Gvrw8tLS2RkqkOdXV1+RCODh06YMSIEejRowc0NTVzHZueno6JEyfCx8dHhKSqQ09PD//88498MYKPgoOD0apVK2RkZODRo0eoVasW59z4hOXLl8PX1xfbtm1Dhw4dcOLECTx+/BjTpk3DvHnzMHHiRLEjqoz8hnncu3cPjo6OePv2LR49egQHBwcO+ciHmpoa4uPjYWJiAgAKQ48A4MWLF7CwsODEu0ry8/PDsGHDULVqVTx//hxly5bF7t27Od2CEv67CuRH/56XsXv37ihfvvw3TqZ64uPjsWHDBly/fh0ymQxOTk6YMGECh7kqKSsrCzNnzsTGjRuRnZ0N4MMQ9nHjxmHp0qWck1EJp06dQnp6Onr27ImYmBh06dIF9+7dQ4UKFbBv3z60bdtW7IhExRoLWV9ZTk4Ojh07hm3btrGQRd/Uxz/O3r59CysrK7HjlAidO3dGfHw8tm7dCkdHRwBAaGgoRo0aBTMzMxw/fhzHjh3Djz/+iNu3b4uctnibO3cuVq1ahXfv3gEAtLW18cMPP2DhwoUiJ1Mtjo6OqFu3LjZv3iwv8L9//x6jRo1CWFgYQkNDcenSJQwaNAgPHz4UOW3xxELW1yGTyTBp0iRs2LABGhoaOHbsGFxcXMSOpVLatGmDGzduICcnB3Z2dhAEAffv34e6ujpq1KiByMhISCQSBAYGskBI31RGRgaio6MhCAKqVq0KPT09sSOVCK9fv4ahoSHnrCUqABayiEooNTU1vHjxAsbGxmJHKTHi4+Ph5uaGs2fPynu2ZWdno127dti5cydMTU1x7tw5vH//Hs7OziKnLf4yMjIQHh4OmUwGBwcH+VwRVHCXL19Gt27doKamhjp16kAikeDWrVvIycnB8ePH0aRJE+zcuRPx8fGYOXOm2HGLJRayil50dDQGDBggL/xfuHABXl5emDx5MhYvXpxnz2DKbfXq1bh48SJ8fHxQtmxZAEBqaipGjBiBFi1aYNSoURgwYADevn2LU6dOiZy2eEtKSoK3tzciIiIgkUhgb2+PYcOGsTcbie7BgweIjo5Gy5YtoaurC0EQWMgiKgAWsohKKDU1NXTs2PGz3bwPHTr0jRKVHPfu3UNUVBQEQUCNGjVgZ2cndiSVMnz4cPz222+5JoZNT0/HpEmTsG3bNpGSqaY3b95g165dCu/JAQMGcOLdAlJTU8OiRYvkhdTZs2dj5syZMDIyAvBhsvd58+axkKUEAwMDdO7cGRs3bkS5cuUAfCi6flyplKtxFUzFihXh7++fq7fV3bt34ezsjGfPnuHGjRtwdnbGq1evREpZ/F24cAHdu3dH2bJl5VMDXL9+HcnJyTh69ChatWolcsLirWfPngU+lp8pCy4xMRF9+vTBuXPnIJFIcP/+fdja2mLEiBEoV64cVqxYIXZEomKNhSyiEkpNTQ19+vTJdwn0jzgvFn1rH+dv+9gD5qNXr17BzMxMPu8G0bdgbW1doG+/OTSz4Hbu3Ak3N7dc7WlpaZg6dSq8vb1FSKV69PX1cfz4cbRu3Vqh/fz58+jatSvS0tIQExODevXqITU1VZyQKqBWrVpo1qwZNmzYIJ97NScnB+PHj8elS5dw584dkRMWb8OGDSvwsfxMWXCDBw9GQkICtm7dCnt7e3lP4NOnT2PatGm4e/eu2BGJijUWsohKqP8Ol6Evl5OTg+3bt+Ps2bNISEiATCZT2B8QECBSMtWQmpoKQRBgaGiI+/fvKwx7/Tif4Jw5c+RLUFPBREVF4fz583m+J+fNmydSKiL6UgMHDsSVK1ewYsUKNGzYEBKJBEFBQfjhhx/QrFkz7Ny5E3v37oWXlxdCQkLEjlts6erq4ubNm7l6T0dGRqJevXp4+/atSMmoNDMzM8OpU6dQt25dhSHtDx8+RO3atbloENFnaIgdgIi+Do6vL3pTpkzB9u3b0blzZ9SqVYuvsZLKlSsHiUQCiUSC6tWr59ovkUiwYMECEZKpri1btmDcuHEwMjKCmZmZwntSIpGwkEWiCg8PR2xsLLKysuRtEokEXbt2FTGV6ti0aROmTZuGfv36yXuqamhoYMiQIVi1ahUAoEaNGti6dauYMYs9JycnRERE5CpkRUREoF69euKEKiEuXLiA9PR0NG3aFIaGhmLHUSnp6el5TpL/6tUrrv5IVADskUVUQrFHVtEzMjLCjh070KlTJ7GjqKQLFy5AEAS0bdsWBw8eVJhkV0tLC1ZWVrCwsBAxoeqxsrLC+PHjMXv2bLGjqLw1a9bk2S6RSKCjo4OqVauiZcuW8qFJlL+YmBh8//33uH37NiQSCT5+1PxYaOV8Y8p58+YNYmJiIAgCqlSpwoUxlLRv3z7MmjULkyZNQpMmTQAAV69exe+//46lS5fC3t5efmydOnXEilms/frrr3jz5o38yyZBENCxY0ecPn0aAGBiYoKzZ8+iZs2aYsZUKZ07d4aTkxMWLlwIAwMD3Lp1C1ZWVujXrx9kMhkOHDggdkSiYo2FLKIS6sKFC2jevDk0NNjxsqhYWFjg/PnzefYmooJ7/PgxLC0t2aOtCJQtWxY3b96Ur7BHhWdjY4OXL18iIyMDhoaGEAQBycnJ0NPTg76+PhISEmBra4tz586hcuXKYsct1rp27Qp1dXVs2bIFtra2CAoKQmJiImbMmAEvLy989913YkekUkRNTe2T+z8WWyUSCYus+XBycsLs2bPRt29fAMD+/fsxZMgQ+Pv7w97eHoMHD4aenh7+/PNPkZOqjvDwcLRu3Rr169dHQEAAunXrhrt37+L169e4dOkSqlSpInZEomKNhSyiUuDs2bP5zuvEFeIKbsWKFYiJicG6detYhPkCfn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHJ6ghBEjRqBhw4YYO3as2FFU3h9//IHNmzdj69at8j8gHjx4gDFjxmD06NFo3rw5+vXrBzMzM35T/hlGRkYICAhAnTp1IJVKERQUBDs7OwQEBGDGjBlctbCA0tPTsXTp0nx/f8fExIiUTLU8fvy4wMdaWVl9xSSqy9DQEJcvX5b3Xhs2bBiys7Oxc+dOAB96uPXu3RtPnjwRM6bKiY+Px4YNG3D9+nXIZDI4OTlhwoQJMDc3FzsaUbHHrhpEJdyCBQvwyy+/oEGDBjA3N2cB5gsEBgbi3LlzOHnyJGrWrAlNTU2F/Vx2umBmzpyJZcuWAQBu376N6dOnY8aMGQgICMD06dO56pESqlatip9//hlXr15F7dq1c70nJ0+eLFIy1fPTTz/h4MGDCt+CV61aFV5eXujVqxdiYmKwfPly9OrVS8SUqiEnJ0c+/M3IyAjPnz+HnZ0drKysEBkZKXI61TFy5EhcuHABbm5u/P39BVic+nLv379XmLfpypUrmDJlivyxhYUFXr16JUY0lWZmZsa5QYkKiYUsohJu48aN2L59e55LoZNyypUrh++//17sGCrv4cOHcHBwAAAcPHgQXbt2xZIlS3Djxg3OP6akzZs3Q19fHxcuXMCFCxcU9kkkEhaylBAXFyefUPvfsrOzER8fD+DDH2tpaWnfOprKqVWrFm7dugVbW1s0btwYy5cvh5aWFjZv3sxhsEo4efIk/v77bzRv3lzsKCrn6NGjBT62W7duXzFJyVC1alX8888/sLW1RWxsLKKiotCqVSv5/qdPn6JChQoiJlQ97J1O9GVYyCIq4bKystCsWTOxY5QI7ClUNLS0tJCRkQEAOHPmDAYPHgwAKF++PFJTU8WMpnIePnwodoQSo02bNhgzZgy2bt0KR0dHAEBoaCjGjRuHtm3bAvjQg9DGxkbMmCrhp59+Qnp6OgBg0aJF6NKlC7777jtUqFABe/fuFTmd6jA0NFRYFIMKrkePHgqP/73owMfHH3FerM8bN24cJk6ciIsXL+Lq1ato2rSp/AspAAgICJD/f5MKhr3Tib7Mp2c/JCKVN3LkSOzZs0fsGERyLVq0wPTp07Fw4UIEBQWhc+fOAICoqChUqlRJ5HRUWnl7e6N8+fKoX78+tLW1oa2tjQYNGqB8+fLw9vYGAOjr62PFihUiJy3+XFxc0LNnTwCAra0twsPD8erVKyQkJKBdu3Yip1MdCxcuxLx58+SFfyo4mUwm306fPo169erh5MmTSE5ORkpKCk6cOAEnJyf4+fmJHVUljBkzBr/99htev36Nli1b4uDBgwr7nz9/juHDh4uUTjXl1zt9/fr1OHnypMjpiIo/TvZOVMJNmTIFO3bsQJ06dVCnTp1cc+isXLlSpGSqwcnJCWfPnoWhoSEcHR0/OUfJjRs3vmEy1RUbG4vx48fjyZMnmDx5MkaMGAEAmDZtGnJycrBmzRqRExZvH4uAZcqUwfTp0z95LP99K+/evXuIioqCIAioUaMG7OzsxI6kMgr6hywXGSkYR0dHREdHQxAEWFtb5/r9zd85BVOrVi1s3LhRPoTro4sXL2L06NGIiIgQKVnJtXTpUowdOxblypUTO0qxVb58eQQGBsLBwQEtWrTA4MGDMXr0aDx69AgODg4sYBN9BocWEpVwt27dQr169QAAd+7cUdjHiWM/r3v37vIJTrt3787XrAhYWlri+PHjudpXrVolQhrVExoaivfv38t/pqJVo0YN1KhRQ+wYKmn79u2wsrKCo6Mj+D3pl/vv8DgqnOjoaEil0lztUqkUjx49+vaBSoElS5agT58+LGR9wsfe6c2bN0dQUBD27dsHgL3TiQqKPbKIiOibi46Oho+PD6Kjo/Hbb7/BxMQEfn5+qFy5MmrWrCl2PCqFcnJysH37dpw9exYJCQmQyWQK+wMCAkRKpjrGjx+PvXv3wtLSEsOHD8egQYM4x9NXkp2dDQ0Nfh9dEC1btoSmpiZ27doFc3NzAEB8fDzc3NyQlZWVa6EM+nIGBgYICwvj4g6fwN7pRF+Gc2QRERWQra0tEhMTc7UnJyfzw5oSLly4gNq1a+PatWs4dOgQ3rx5A+BD70EPDw+R06mW4cOH57mKXnp6OucrUdKUKVMwZcoU5OTkoFatWqhbt67CRp+3fv16xMXFYfbs2Th27BgqV66MPn364NSpU+yhVUTCw8MxY8YMVKxYUewoKmPbtm1ISEiAlZUVqlatiqpVq8LS0hJxcXHy+e+IvrWPvdPDwsLkRSzgQ+90FrGIPo89sohKoJ49e2L79u0oW7asfMLd/Bw6dOgbpVJ9ampqiI+Ph4mJiUL7ixcvULlyZWRlZYmUTLU0bdoUvXv3xvTp0xW+tQ0ODkaPHj3w7NkzsSOqDHV1dcTFxeV6T7569QpmZmbIzs4WKZnqMTIywo4dO9CpUyexo5QYjx8/xvbt27Fjxw68f/8e4eHh0NfXFzuWynnz5g327t0Lb29vBAcHo0mTJujVqxemTZsmdjSVIQgC/P39ce/ePQiCAAcHB7Rv357TBXwl7JGVt9TUVJQtW1b+86d8PI6I8sY+yUQlkFQqlX84y2teCFLO0aNH5T+fOnVK4TXNycnB2bNnYWNjI0Y0lXT79u08V9I0NjbOs8cb5ZaamgpBECAIAtLS0qCjoyPfl5OTgxMnTuQqbtGnaWlpoWrVqmLHKFEkEgkkEgkEQcg1VJM+LzAwEFu3bsXBgwdhY2OD8PBwXLhwAc2bNxc7msqRSCRwdnaGs7Oz2FGoFDM0NJR/+VSuXLk8C6mCIEAikSAnJ0eEhESqg4UsohLIx8cnz5+pcD5OuCuRSDBkyBCFfZqamrC2tsaKFStESKaaypUrh7i4uFzFv9DQUA6XKaCPH4AlEgmqV6+ea79EIsGCBQtESKa6ZsyYgd9++w3r1q1jL40vkJmZiUOHDmHbtm0IDAxEly5dsG7dOri6ukJNjTNaFMTy5cuxbds2vHnzBv3790dgYCDq1q0LTU1NGBoaih1PJSgzNGvy5MlfMQnR/wkICJDPG3ju3DmR0xCpNg4tJCIqIBsbGwQHB8PIyEjsKCpt1qxZuHLlCvbv34/q1avjxo0bePHiBQYPHozBgwdznqwCuHDhAgRBQNu2bXHw4EGFCbW1tLRgZWUFCwsLEROqnu+//x7nzp1D+fLlUbNmTWhqairs5zDsz/v3ZO/Dhg3DoEGDUKFCBbFjqRwNDQ3Mnj0bv/zyC9TV1eXtmpqaCAsLg4ODg4jpVENBe0lLJBLExMR85TSqb8eOHejbt698FefP6dSpE7y9veWT6xMRFTUWsohKgQMHDuDPP/9EbGxsrnmcbty4IVKqkiE5OZnLSyvp/fv3GDp0KPbu3QtBEKChoYGcnBwMGDAA27dvV/jDjT7t8ePHsLS0ZA+iIjBs2LBP7mfv1s9TU1ODpaUlHB0dP/meZFHw05YsWYLt27fj3bt36N+/P9zc3FCrVi0Wsr7Qy5cvoaamxuJqIeQ3HyMV3v379/HXX3/h0aNHkEgksLW1Rffu3TmvGFEBsZBFVMKtWbMGc+fOxZAhQ7BlyxYMGzYM0dHRCA4OxoQJE7B48WKxI6qMZcuWwdraGn379gUA9O7dGwcPHoS5uTlOnDjBlc2UFB0djdDQUMhkMjg6OqJatWpiR1I5fn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHIZE39TQoUMLVFRlUbBgLly4gG3btuHgwYOoUqUK7t69yzmylJScnIy5c+di3759SEpKAvBhnqJ+/fph8eLFnEe0gPJb7IYKx9PTE/PmzYNMJoOJiQkEQcDLly+hrq6OJUuW4IcffhA7IlGxx0IWUQlXo0YNeHh4oH///gqryMybNw+vX7/GunXrxI6oMmxtbbFr1y40a9YM/v7+6NOnD/bt2yfv7Xb69GmxI1IpU7t2bSxbtgydOnXC7du30aBBA8yYMQMBAQGwt7dnwYCoBEhLS8Pu3bvh4+OD69evo1GjRvjf//6H6dOnix2tWHv9+jWaNm2KZ8+eYeDAgbC3t4cgCIiIiMCePXtQuXJlXL58mQX/AlBTU8OLFy9gbGwsdhSVd+7cObRv3x4///wzpkyZIn//vX79GqtXr8aSJUsQEBCAli1bipyUqHhjIYuohNPT00NERASsrKxgYmICf39/1K1bF/fv30eTJk24SpwSdHV1ERUVhcqVK2PKlCl49+4dNm3ahKioKDRu3Fj+bS/lpswfXCtXrvyKSUoWfX193LlzB9bW1pg/fz7u3LmDAwcO4MaNG+jUqRPi4+PFjlisOTk54ezZszA0NPzscDgOw6bi4Pbt2/D29saePXuQkJAgdpxiberUqTh79izOnDkDU1NThX3x8fFwdnZGu3btsGrVKpESqg41NTV07Njxs3Nkcdjw5/Xt2xflypXDpk2b8tw/evRopKWl4Y8//vjGyYhUC1ctJCrhzMzMkJiYCCsrK1hZWeHq1auoW7cuHj58CNaxlWNoaIgnT56gcuXK8PPzw6JFiwB8WCqZyyR/WmhoaIGO41xPytHS0kJGRgYA4MyZMxg8eDAAoHz58khNTRUzmkro3r27/A+z7t278/1Hxda7d++go6OD2rVrY/Xq1fj111/FjlTsHTlyBJs2bcpVxAI+fDZavnw5xo4dy0JWARkYGEBXV1fsGCovKCgIO3fuzHe/m5ub/Hc5EeWPhSyiEq5t27Y4duwYnJycMGLECEybNg0HDhxASEgIevbsKXY8ldKzZ08MGDAA1apVQ2JiIjp27AgAuHnzJqpWrSpyuuKNy0x/HS1atMD06dPRvHlzBAUFYd++fQCAqKgoVKpUSeR0xd+/V8icP3++eEGI8iCTybB48WJs3LgRL168QFRUlHxqAGtrawwfPlzsiMVaXFwcatasme/+WrVqsdeqEtasWcM5sorAixcvYG1tne9+Gxsbvi+JCkBN7ABE9HVt3rwZc+fOBQCMHTsW27dvh729PRYsWIANGzaInE61rFq1ChMnToSDgwP8/f2hr68P4MOH5fHjx4ucTjU9ffoUz549EzuGylq3bh00NDRw4MABbNiwARUrVgQAnDx5Eq6uriKnUy22trZ5DrVOTk7mKlIkikWLFmH79u1Yvnw5tLS05O21atXCli1bREymGoyMjPDo0aN89z98+JArGBYQe6sWnXfv3in8e/4vTU3NXCuME1FunCOLqAS7du0ajh49ivfv36N9+/ZwdnYWOxIRZDIZFi1ahBUrVuDNmzcAPgxZmDFjBubOnQs1NX7HQt9efqtyvXjxApUrV+YfFvTNVa1aFZs2bUK7du0UFmu5d+8emjZtynkZP2PEiBF48OAB/P39cxUOMjMz4eLigipVqsDb21ukhKqDqxYWHTU1NSxatEj+Zeh/paWlYd68eZyygugzOLSQqIQ6fPgwevfuDR0dHWhoaGDFihVYsWIFpk6dKnY0lbZz505s2rQJMTExuHLlCqysrLB69WrY2Nige/fuYsdTCXPnzoW3tzeWLl2K5s2bQxAEXLp0CfPnz8e7d++wePFisSOqpLdv3+L9+/cKbWXLlhUpjeo4evSo/OdTp05BKpXKH+fk5ODs2bOwsbERIxqVcs+ePctz2LpMJsv1b51yW7BgARo0aIBq1aphwoQJqFGjBgAgPDwc69evR2Zm5ifnKqL/s2TJEly7dg1du3aVt+3YsQMeHh5IT09Hjx49sHbt2s9OBk+ApaXlZ3tUWlpafqM0RCpMIKISqUGDBsKIESOE9+/fC4IgCAsXLhQqVKggcirVtn79esHIyEhYtGiRoKurK0RHRwuCIAg+Pj5C69atRU6nOszNzYW//vorV/uRI0cECwsLERKprjdv3ggTJkwQjI2NBTU1tVwbfZ5EIhEkEomgpqYm//njpqWlJVSvXl04duyY2DGpFKpfv76wc+dOQRAEQV9fX/47Z/78+UKLFi3EjKYyYmJiBFdXV4V/32pqaoKLi4tw//59seOpDBcXF2Hp0qXyx7du3RI0NDSEkSNHCitWrBDMzMwEDw8P8QISUanD8RtEJVRkZCRmzZoFDY0PHS9nzpyJ5ORkvHr1SuRkqmvt2rXYsmUL5s6dC3V1dXl7gwYNcPv2bRGTqZbXr1/Lvxn/txo1auD169ciJFJds2bNQkBAANavXw9tbW1s3boVCxYsgIWFBXbs2CF2PJUgk8kgk8lgaWmJhIQE+WOZTIbMzExERkaiS5cuYsekUsjDwwMTJ07EsmXLIJPJcOjQIYwaNQpLlizBvHnzxI6nEmxsbHDy5Em8evUKV69exdWrV/Hy5Uv4+flxkRYlhIWFoV27dvLHe/fuRePGjbFlyxZMnz4da9aswZ9//iliQtWzY8cOZGZm5mrPysri72+iAmAhi6iEevPmDcqVKyd/rK2tDV1dXaSmpooXSsU9fPgQjo6Oudq1tbWRnp4uQiLVVLduXaxbty5X+7p161C3bl0REqmuY8eOYf369fjf//4HDQ0NfPfdd/jpp5+wZMkS7N69W+x4KuXhw4cwMjJSaEtOThYnDBGArl27Yt++fThx4gQkEgnmzZuHiIgIHDt2DB06dBA7nkoxNDREo0aN0KhRI5QvX17sOConKSkJpqam8scXLlxQWFCkYcOGePLkiRjRVNawYcOQkpKSqz0tLQ3Dhg0TIRGRauEcWUQl2H/ne5HJZDh79izu3Lkjb+vWrZsY0VSSjY0Nbt68CSsrK4X2kydPwt7eXqRUqmf58uXo3Lkzzpw5g6ZNm0IikeDy5ct48uQJTpw4IXY8lfL69Wv5/E1ly5aV92hr0aIFxo0bJ2Y0lbNs2TJYW1ujb9++AIDevXvj4MGDMDc3x4kTJ1hkJVG4uLjAxcVF7BhUypmamuLhw4fyhS9u3LiBBQsWyPenpaVBU1NTxISqRxCEPFeDfPr0qcJndyLKGwtZRCXYkCFDcrWNGTNG/rNEIuGqKEqYOXMmJkyYgHfv3kEQBAQFBeGPP/7AkiVLuOqRElq1aoWoqCj8/vvvuHfvHgRBQM+ePTF+/HhYWFiIHU+l2Nra4tGjR7CysoKDgwP+/PNPNGrUCMeOHVPokUmft2nTJuzatQsA4O/vjzNnzsDPzw9//vknZs6cidOnT4uckEqbJ0+eQCKRoFKlSgCAoKAg7NmzBw4ODhg9erTI6ag0cXV1xZw5c7Bs2TIcOXIEenp6+O677+T7b926hSpVqoiYUHU4OjpCIpFAIpGgXbt28ilAgA8LjDx8+FChtxsR5Y2FLKISSiaTiR2hxBk2bBiys7Mxa9YsZGRkYMCAAahYsSLWrl2r8IGOPs/CwoKrE36BmJgYWFtbY9iwYQgLC0OrVq3g7u6Ozp07Y+3atcjOzsbKlSvFjqlS4uLiULlyZQDA8ePH0adPHzg7O8Pa2hqNGzcWOR2VRgMGDMDo0aPh5uaG+Ph4tG/fHrVq1cKuXbsQHx/PebLom1m0aBF69uyJVq1aQV9fH76+vtDS0pLv37ZtG5ydnUVMqDp69OgBALh58yZcXFygr68v36elpQVra2v06tVLpHREqkMiCIIgdggi+nr++ecfNGvWTOEbH+DDtz6XLl1Cy5YtRUqm2l69egWZTIacnBwsWbIEW7duxdu3b8WOpTKSk5MRFBQkn1z73wYPHixSKtWhrq6OuLg4mJiYAAD69u2LNWvWIDMzEyEhIahSpQqHwinJwsICBw4cQLNmzWBnZ4dFixahd+/eiIyMRMOGDTm/IH1zhoaGuHr1Kuzs7LBmzRrs27cPly5dwunTpzF27FjExMSIHZFKmZSUFOjr6ysseAN8GOaur6+vUNyi/OXk5GDnzp1wcXGBubm52HGIVBJ7ZBGVcG3atFH4g/ej5ORktGnThkMLCyA5ORkTJkzA6dOnoampiTlz5mDixIlYsGABvLy84ODggG3btokdU2UcO3YMAwcORHp6OgwMDBTmiJBIJCxkFcB/v4M6ceIEPD09YWtrC0tLS5FSqbaePXtiwIABqFatGhITE9GxY0cAH7415+pmJIb3799DW1sbAHDmzBn5nJY1atRAXFycmNGolMpv7iZOoK8cdXV1jB07FhEREWJHIVJZXLWQqITLbzLJxMRElClTRoREqufHH3/EP//8gyFDhqB8+fKYNm0aunTpgosXL+LEiRMIDg5G//79xY6pMmbMmIHhw4cjLS0NycnJSEpKkm8fJysn+tZWrVqFiRMnwsHBAf7+/vLhHnFxcRg/frzI6ag0qlmzJjZu3IiLFy/C399fPm/O8+fPUaFCBZHTEdGXqF27NntVEn0BDi0kKqF69uwJAPjrr7/g6uoq/1YX+NCl+datW7Czs4Ofn59YEVWGlZUVvL290b59e8TExKBq1aqYPHkyVq9eLXY0lVSmTBncvn0btra2YkdRWerq6oiPj4exsTEAwMDAALdu3ZKvYEhEqu/8+fP4/vvvkZqaiiFDhsh7/v7444+4d+8eDh06JHJCIiqs06dPY/bs2Vi4cCHq16+f68vlsmXLipSMSDVwaCFRCfWx+7cgCDAwMICurq58n5aWFpo0aYJRo0aJFU+lPH/+HA4ODgA+rBKno6ODkSNHipxKdbm4uCAkJISFrC8gCAKGDh0qL1C/e/cOY8eOzfVBmH/oKmfnzp3YtGkTYmJicOXKFVhZWWH16tWwsbFB9+7dxY5HpUzr1q3x6tUrpKamwtDQUN4+evRo6OnpiZiMiL7Uxx6W3bp1Uxg58XEkBaf+IPo0FrKISigfHx8AgLW1NX744QcOI/wCMpkMmpqa8sfq6up8PZV09OhR+c+dO3fGzJkzER4ejtq1ayu8tgDk88BQ/oYMGaLweNCgQSIlKTk2bNiAefPmYerUqVi8eLH8j4hy5cph9erVLGSRKNTV1RWKWMCH3+tEpNrOnTsndgQilcahhUQl3Nu3byEIgvzb28ePH+Pw4cNwcHDgUskFpKamho4dO8p7vxw7dgxt27Zl7xclqKkVbEpGfgtJYnFwcMCSJUvQo0cPGBgYICwsDLa2trhz5468ZwzR1+bk5ISzZ8/C0NAQjo6Oec5x+dGNGze+YTIiIqLigz2yiEq47t27o2fPnhg7diySk5PRqFEjaGlp4dWrV1i5ciXGjRsndsRij71fvpxMJhM7AtEnPXz4EI6OjrnatbW1kZ6eLkIiKo26d+8u/9KkR48e4oYhoq8uIyMDsbGxyMrKUmivU6eOSImIVAMLWUQl3I0bN7Bq1SoAwIEDB2BmZobQ0FAcPHgQ8+bNYyGrAD4O06QvExAQgIkTJ+Lq1au5JjFNSUlBs2bNsHHjRnz33XciJaTSzMbGBjdv3oSVlZVC+8mTJ2Fvby9SKiptPDw88vyZiEqWly9fYtiwYTh58mSe+9k7nejTCjbWg4hUVkZGBgwMDAB8WCGlZ8+eUFNTQ5MmTfD48WOR01Fpsnr1aowaNSrPlXikUinGjBmDlStXipCMCJg5cyYmTJiAffv2QRAEBAUFYfHixXB3d8esWbPEjkelUHBwMK5du5ar/dq1awgJCREhEREVlalTpyIpKQlXr16Frq4u/Pz84Ovri2rVqinMK0pEeWMhi6iEq1q1Ko4cOYInT57g1KlT8nmxEhISuLQvfVNhYWHyVXry4uzsjOvXr3/DRET/Z9iwYfDw8MCsWbOQkZGBAQMGYOPGjVi7di17CZIoJkyYgCdPnuRqf/bsGSZMmCBCIiIqKgEBAVi1ahUaNmwINTU1WFlZYdCgQVi+fDk8PT3FjkdU7LGQRVTCzZs3Dz/88AOsra3RqFEjNG3aFMCH3ll5zQdD9LW8ePEi1wqF/6ahoYGXL19+w0REikaNGoXHjx8jISEB8fHxCAoKQmhoKKpWrSp2NCqFwsPD4eTklKvd0dER4eHhIiQioqKSnp4OExMTAED58uXln39q167NhRyICoCFLKIS7n//+x9iY2MREhKCU6dOydvbtWsnnzuL6FuoWLEibt++ne/+W7duwdzc/BsmIgKSk5MxcOBAGBsbw8LCAmvWrEH58uXx+++/o2rVqrh69Sq2bdsmdkwqhbS1tfHixYtc7XFxcdDQ4DS3RKrMzs4OkZGRAIB69eph06ZNePbsGTZu3MjPQkQFIBEEQRA7BBF9fQ8ePEB0dDRatmwJXV1dCILwyWW9iYrapEmTcP78eQQHB0NHR0dh39u3b9GoUSO0adMGa9asESkhlUbjx4/HsWPH0LdvX/j5+SEiIgIuLi549+4dPDw80KpVK7EjUinVr18/xMfH46+//oJUKgXwofDao0cPmJiY4M8//xQ5IREV1u7du/H+/XsMHToUoaGhcHFxQWJiIrS0tLB9+3b07dtX7IhExRoLWUQlXGJiIvr06YNz585BIpHg/v37sLW1xYgRI1CuXDmsWLFC7IhUSrx48QJOTk5QV1fHxIkTYWdnB4lEgoiICPz+++/IycnBjRs3YGpqKnZUKkWsrKzg7e2N9u3bIyYmBlWrVsXkyZOxevVqsaNRKff06VO0atUKiYmJ8qkAbt68CVNTU/j7+6Ny5coiJySiopKRkYF79+7B0tISRkZGYschKvZYyCIq4QYPHoyEhARs3boV9vb2CAsLg62tLU6fPo1p06bh7t27YkekUuTx48cYN24cTp06hY+/fiQSCVxcXLB+/XpYW1uLG5BKHU1NTTx+/BgWFhYAAD09PQQFBaFWrVoiJyP6MI/O7t27ERYWBl1dXdSpUwf9+/f/5HyDRKQ6srKy8PDhQ1SpUoVDhomUwH8tRCXc6dOncerUKVSqVEmhvVq1anj8+LFIqai0srKywokTJ5CUlIQHDx5AEARUq1YNhoaGYkejUkomkykUBdTV1VGmTBkRExEB79+/h52dHY4fP47Ro0eLHYeIilhGRgYmTZoEX19fAEBUVBRsbW0xefJkWFhYYM6cOSInJCreWMgiKuHS09Ohp6eXq/3Vq1fQ1tYWIRERYGhoiIYNG4odgwiCIGDo0KHy/x++e/cOY8eOzVXMOnTokBjxqJTS1NREZmYm57IkKqHc3d0RFhaG8+fPw9XVVd7evn17eHh4sJBF9BlctZCohGvZsiV27NghfyyRSCCTyfDrr7+iTZs2IiYjIhLfkCFDYGJiAqlUCqlUikGDBsHCwkL++ONG9K1NmjQJy5YtQ3Z2tthRiKiIHTlyBOvWrUOLFi0UCtYODg6Ijo4WMRmRamCPLKIS7tdff0Xr1q0REhKCrKwszJo1C3fv3sXr169x6dIlseMREYnKx8dH7AhEebp27RrOnj2L06dPo3bt2uwlSFSCvHz5EiYmJrna09PT2ROTqABYyCIq4RwcHHDr1i1s2LAB6urqSE9PR8+ePTFhwgSYm5uLHY+IiIjyUK5cOfTq1UvsGET0FTRs2BB///03Jk2aBADy4tWWLVvQtGlTMaMRqQSuWkhERERERET0jVy+fBmurq4YOHAgtm/fjjFjxuDu3bu4cuUKLly4gPr164sdkahYYyGLqBRITk5GUFAQEhISIJPJFPYNHjxYpFRERET0KdnZ2Th//jyio6MxYMAAGBgY4Pnz5yhbtiz09fXFjkdEX+D27dvw8vLC9evXIZPJ4OTkhNmzZ6N27dpiRyMq9ljIIirhjh07hoEDByI9PR0GBgYK4+4lEglev34tYjoiIiLKy+PHj+Hq6orY2FhkZmYiKioKtra2mDp1Kt69e4eNGzeKHZGIlJSamlqg48qWLfuVkxCpNhayiEq46tWro1OnTliyZAn09PTEjkNEREQF0KNHDxgYGMDb2xsVKlRAWFgYbG1tceHCBYwcORL3798XOyIRKUlNTe2Tk7kLggCJRIKcnJxvmIpI9XCyd6IS7tmzZ5g8eTKLWERERCokMDAQly5dgpaWlkK7lZUVnj17JlIqIvoS586dk/8sCAI6deqErVu3omLFiiKmIlI9LGQRlXAuLi4ICQmBra2t2FGIiIiogGQyWZ69Mp4+fQoDAwMREhHRl2rVqpXCY3V1dTRp0oSf04mUxEIWUQl09OhR+c+dO3fGzJkzER4ejtq1a0NTU1Ph2G7dun3reERERPQZHTp0wOrVq7F582YAH+a1fPPmDTw8PNCpUyeR0xEREYmHc2QRlUBqamoFOo5j8ImIiIqn58+fo02bNlBXV8f9+/fRoEED3L9/H0ZGRvjnn39gYmIidkQi+kIGBgby+e+IqOBYyCIiIiIiKobevn2LvXv34vr165DJZHBycsLAgQOhq6srdjQiKgIGBga4desWbGxsxI5CpFJYyCIqoQICAjBx4kRcvXo11xK+KSkpaNasGTZu3IjvvvtOpIRERESUnxcvXsDU1DTPfbdu3UKdOnW+cSIi+lI9e/ZUeHzs2DG0bdsWZcqUUWg/dOjQt4xFpHIKNv6IiFTO6tWrMWrUqFxFLACQSqUYM2YMVq5cKUIyIiIi+pzatWsrzHn5kZeXFxo3bixCIiL6UlKpVGEbNGgQLCwscrUT0aexRxZRCWVlZQU/Pz/Y29vnuf/evXtwdnZGbGzsN05GREREn7NixQr89NNPGDJkCFatWoXXr1/Dzc0Nd+/exZYtW7hYCxERlVrskUVUQr148SLXCoX/pqGhgZcvX37DRERERFRQM2bMwNWrV3Hp0iXUqVMHderUga6uLm7dusUiFhERlWosZBGVUBUrVsTt27fz3X/r1i2Ym5t/w0RERESkDFtbW9SsWROPHj1Camoq+vTpk++8WURERKUFC1lEJVSnTp0wb948vHv3Lte+t2/fwsPDA126dBEhGREREX3Ox55YDx48wK1bt7BhwwZMmjQJffr0QVJSktjxiIiIRMM5sohKqBcvXsDJyQnq6uqYOHEi7OzsIJFIEBERgd9//x05OTm4ceMGv9klIiIqhrS1tTFt2jQsXLhQPlVAdHQ03NzcEBsbi6dPn4qckIiISBwsZBGVYI8fP8a4ceNw6tQpfPynLpFI4OLigvXr18Pa2lrcgERERJSnCxcuoFWrVrnaZTIZFi9ejJ9//lmEVEREROJjIYuoFEhKSsKDBw8gCAKqVasGQ0NDsSMRERFRHjp16oQ//vgDUqkUALB48WJMmDAB5cqVAwAkJibiu+++Q3h4uIgpiYiIxMNCFhERERFRMaGuro64uDiYmJgAAMqWLYubN2/C1tYWwIepAywsLJCTkyNmTCIiItFwsnciIiIiomLiv98x8ztnIiIiRSxkERERERERERGRSmAhi4iIiIiomJBIJJBIJLnaiIiI6AMNsQMQEREREdEHgiBg6NCh0NbWBgC8e/cOY8eORZkyZQAAmZmZYsYjIiISHSd7JyIiIiIqJoYNG1ag43x8fL5yEiIiouKJhSwiIiIiIiIiIlIJnCOLiIiIiIiIiIhUAgtZRERERERERESkEljIIiIiIiIiIiIilcBCFhERERERERERqQQWsoiIiIiIiIiISCWwkEVERERERERERCqBhSwiIiIiIiIiIlIJ/w+Yja6qDn5L+QAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "### visualize in the heatmap\n",
+ "plt.figure(figsize = (16,8))\n",
+ "sns.heatmap(data.isna(),cmap='BrBG')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "88eee4d5-03fa-4bee-bd8e-7233d215499b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Sex | \n",
+ " ChestPainType | \n",
+ " RestingBP | \n",
+ " Cholesterol | \n",
+ " FastingBS | \n",
+ " RestingECG | \n",
+ " MaxHR | \n",
+ " ExerciseAngina | \n",
+ " Oldpeak | \n",
+ " ST_Slope | \n",
+ " HeartDisease | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 40 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 140 | \n",
+ " 289 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 172 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 49 | \n",
+ " F | \n",
+ " NAP | \n",
+ " 160 | \n",
+ " 180 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 156 | \n",
+ " N | \n",
+ " 1.0 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 37 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 130 | \n",
+ " 283 | \n",
+ " 0 | \n",
+ " ST | \n",
+ " 98 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 48 | \n",
+ " F | \n",
+ " ASY | \n",
+ " 138 | \n",
+ " 214 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 108 | \n",
+ " Y | \n",
+ " 1.5 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 54 | \n",
+ " M | \n",
+ " NAP | \n",
+ " 150 | \n",
+ " 195 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 122 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n",
+ "0 40 M ATA 140 289 0 Normal 172 \n",
+ "1 49 F NAP 160 180 0 Normal 156 \n",
+ "2 37 M ATA 130 283 0 ST 98 \n",
+ "3 48 F ASY 138 214 0 Normal 108 \n",
+ "4 54 M NAP 150 195 0 Normal 122 \n",
+ "\n",
+ " ExerciseAngina Oldpeak ST_Slope HeartDisease \n",
+ "0 N 0.0 Up 0 \n",
+ "1 N 1.0 Flat 1 \n",
+ "2 N 0.0 Up 0 \n",
+ "3 Y 1.5 Flat 1 \n",
+ "4 N 0.0 Up 0 "
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "677f1259-f567-4629-8924-a15277bdefed",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e107b348-5817-42d9-bbb6-5c4c5afcffe3",
+ "metadata": {},
+ "source": [
+ "## Data analysis\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "66174ff8-73c5-4a6c-bb61-4cd7beb1f308",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Sex\n",
+ "M 725\n",
+ "F 193\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['Sex'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "0d25c72c-aaf6-482f-b703-21c9ddffcd4f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0FklEQVR4nO3de5DddX3/8deSyxJCspILe9iyYCiptwSFQClRSSAXpCAqDsGCChIUDMauJIRGxjY6dtPAcOmYlhYEwmUwnVGDVhGTqEQjUkO8AVq8pRJK1qAsuwksuzGc3x+W83OTACGGz4nh8Zj5znA+3885+/7yV+Y53/M9DdVqtRoAAAAAgJfYPvUeAAAAAAB4eRAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKGJgvQfYEzzzzDN59NFHM2zYsDQ0NNR7HAAAAAD4k1KtVrNp06a0tLRkn32e+/5HMTLJo48+mtbW1nqPAQAAAAB/0tavX5+DDz74Oc+LkUmGDRuW5Pf/s4YPH17naQAAAADgT0t3d3daW1trne25iJFJ7avZw4cPFyMBAAAAYBe90CMQ/YANAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFDGw3gNQXxMuuaXeIwAAL9LaK95b7xEAAGCXuDMSAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAi6hojX/nKV6ahoWG746KLLkqSVKvVLFiwIC0tLRkyZEgmT56cBx98sN9n9Pb2Zvbs2Rk1alSGDh2a0047LY888kg9LgcAAAAAeB51jZFr1qzJhg0baseKFSuSJGeccUaS5PLLL89VV12VxYsXZ82aNalUKpk2bVo2bdpU+4y2trYsW7YsS5cuzerVq7N58+aceuqp2bp1a12uCQAAAADYsbrGyNGjR6dSqdSOL33pS/nzP//zTJo0KdVqNddcc00uu+yynH766Rk3blxuvvnmPPXUU7n99tuTJF1dXbnhhhty5ZVXZurUqTnyyCNz22235f7778/KlSvreWkAAAAAwDb2mGdG9vX15bbbbst5552XhoaGrFu3Lh0dHZk+fXptT2NjYyZNmpR77rknSbJ27dps2bKl356WlpaMGzeutmdHent7093d3e8AAAAAAF5ae0yMvOOOO/LEE0/k3HPPTZJ0dHQkSZqbm/vta25urp3r6OjI4MGDc8ABBzznnh1ZuHBhmpqaakdra+tuvBIAAAAAYEf2mBh5ww035OSTT05LS0u/9YaGhn6vq9XqdmvbeqE98+fPT1dXV+1Yv379rg8OAAAAAOyUPSJG/upXv8rKlStz/vnn19YqlUqSbHeH48aNG2t3S1YqlfT19aWzs/M59+xIY2Njhg8f3u8AAAAAAF5ae0SMvOmmm3LggQfmlFNOqa2NGTMmlUql9gvbye+fK7lq1apMnDgxSTJhwoQMGjSo354NGzbkgQceqO0BAAAAAPYMA+s9wDPPPJObbrop55xzTgYO/P/jNDQ0pK2tLe3t7Rk7dmzGjh2b9vb27LfffjnrrLOSJE1NTZk5c2bmzJmTkSNHZsSIEZk7d27Gjx+fqVOn1uuSAAAAAIAdqHuMXLlyZR5++OGcd955252bN29eenp6MmvWrHR2dubYY4/N8uXLM2zYsNqeq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEDJywAAAAAAXkBDtVqt1nuIeuvu7k5TU1O6urpeds+PnHDJLfUeAQB4kdZe8d56jwAAAP3sbF/bI54ZCQAAAADs/cRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIi6x8j//d//zbvf/e6MHDky++23X97whjdk7dq1tfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIDnUdcY2dnZmTe+8Y0ZNGhQvvKVr+THP/5xrrzyyrziFa+o7bn88stz1VVXZfHixVmzZk0qlUqmTZuWTZs21fa0tbVl2bJlWbp0aVavXp3Nmzfn1FNPzdatW+twVQAAAADAjgys5x9ftGhRWltbc9NNN9XWXvnKV9b+u1qt5pprrslll12W008/PUly8803p7m5ObfffnsuuOCCdHV15YYbbsitt96aqVOnJkluu+22tLa2ZuXKlTnppJOKXhMAAAAAsGN1vTPyi1/8Yo4++uicccYZOfDAA3PkkUfm+uuvr51ft25dOjo6Mn369NpaY2NjJk2alHvuuSdJsnbt2mzZsqXfnpaWlowbN662Z1u9vb3p7u7udwAAAAAAL626xshf/vKXufbaazN27Nh89atfzYUXXpgPf/jDueWWW5IkHR0dSZLm5uZ+72tubq6d6+joyODBg3PAAQc8555tLVy4ME1NTbWjtbV1d18aAAAAALCNusbIZ555JkcddVTa29tz5JFH5oILLsj73//+XHvttf32NTQ09HtdrVa3W9vW8+2ZP39+urq6asf69ev/uAsBAAAAAF5QXWPkQQcdlNe+9rX91l7zmtfk4YcfTpJUKpUk2e4Ox40bN9bulqxUKunr60tnZ+dz7tlWY2Njhg8f3u8AAAAAAF5adY2Rb3zjG/PQQw/1W/vpT3+aQw89NEkyZsyYVCqVrFixona+r68vq1atysSJE5MkEyZMyKBBg/rt2bBhQx544IHaHgAAAACg/ur6a9of+chHMnHixLS3t2fGjBn57ne/m+uuuy7XXXddkt9/PbutrS3t7e0ZO3Zsxo4dm/b29uy3334566yzkiRNTU2ZOXNm5syZk5EjR2bEiBGZO3duxo8fX/t1bQAAAACg/uoaI4855pgsW7Ys8+fPzyc+8YmMGTMm11xzTc4+++zannnz5qWnpyezZs1KZ2dnjj322CxfvjzDhg2r7bn66qszcODAzJgxIz09PZkyZUqWLFmSAQMG1OOyAAAAAIAdaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RAACgn53ta3V9ZiQAAAAA8PIhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABF1DVGLliwIA0NDf2OSqVSO1+tVrNgwYK0tLRkyJAhmTx5ch588MF+n9Hb25vZs2dn1KhRGTp0aE477bQ88sgjpS8FAAAAAHgBdb8z8nWve102bNhQO+6///7aucsvvzxXXXVVFi9enDVr1qRSqWTatGnZtGlTbU9bW1uWLVuWpUuXZvXq1dm8eXNOPfXUbN26tR6XAwAAAAA8h4F1H2DgwH53Qz6rWq3mmmuuyWWXXZbTTz89SXLzzTenubk5t99+ey644IJ0dXXlhhtuyK233pqpU6cmSW677ba0trZm5cqVOemkk4peCwAAAADw3Op+Z+TPfvaztLS0ZMyYMXnXu96VX/7yl0mSdevWpaOjI9OnT6/tbWxszKRJk3LPPfckSdauXZstW7b029PS0pJx48bV9uxIb29vuru7+x0AAAAAwEurrjHy2GOPzS233JKvfvWruf7669PR0ZGJEyfmt7/9bTo6OpIkzc3N/d7T3NxcO9fR0ZHBgwfngAMOeM49O7Jw4cI0NTXVjtbW1t18ZQAAAADAtuoaI08++eS8853vzPjx4zN16tR8+ctfTvL7r2M/q6Ghod97qtXqdmvbeqE98+fPT1dXV+1Yv379H3EVAAAAAMDOqPvXtP/Q0KFDM378+PzsZz+rPUdy2zscN27cWLtbslKppK+vL52dnc+5Z0caGxszfPjwfgcAAAAA8NLao2Jkb29vfvKTn+Sggw7KmDFjUqlUsmLFitr5vr6+rFq1KhMnTkySTJgwIYMGDeq3Z8OGDXnggQdqewAAAACAPUNdf0177ty5eetb35pDDjkkGzduzCc/+cl0d3fnnHPOSUNDQ9ra2tLe3p6xY8dm7NixaW9vz3777ZezzjorSdLU1JSZM2dmzpw5GTlyZEaMGJG5c+fWvvYNAAAAAOw56hojH3nkkfzN3/xNfvOb32T06NH5q7/6q9x777059NBDkyTz5s1LT09PZs2alc7Ozhx77LFZvnx5hg0bVvuMq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEC9LgsAAAAA2IGGarVarfcQ9dbd3Z2mpqZ0dXW97J4fOeGSW+o9AgDwIq294r31HgEAAPrZ2b62Rz0zEgAAAADYe4mRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBF7TIxcuHBhGhoa0tbWVlurVqtZsGBBWlpaMmTIkEyePDkPPvhgv/f19vZm9uzZGTVqVIYOHZrTTjstjzzySOHpAQAAAIAXskfEyDVr1uS6667LEUcc0W/98ssvz1VXXZXFixdnzZo1qVQqmTZtWjZt2lTb09bWlmXLlmXp0qVZvXp1Nm/enFNPPTVbt24tfRkAAAAAwPOoe4zcvHlzzj777Fx//fU54IADauvVajXXXHNNLrvsspx++ukZN25cbr755jz11FO5/fbbkyRdXV254YYbcuWVV2bq1Kk58sgjc9ttt+X+++/PypUr63VJAAAAAMAO7FKMPPHEE/PEE09st97d3Z0TTzzxRX3WRRddlFNOOSVTp07tt75u3bp0dHRk+vTptbXGxsZMmjQp99xzT5Jk7dq12bJlS789LS0tGTduXG3PjvT29qa7u7vfAQAAAAC8tAbuypvuvvvu9PX1bbf+9NNP51vf+tZOf87SpUvzve99L2vWrNnuXEdHR5Kkubm533pzc3N+9atf1fYMHjy43x2Vz+559v07snDhwnz84x/f6TkBAAAAgD/ei4qRP/rRj2r//eMf/7hf8Nu6dWvuuuuu/Nmf/dlOfdb69evzt3/7t1m+fHn23Xff59zX0NDQ73W1Wt1ubVsvtGf+/Pm5+OKLa6+7u7vT2tq6U3MDAAAAALvmRcXIN7zhDWloaEhDQ8MOv449ZMiQfOpTn9qpz1q7dm02btyYCRMm1Na2bt2ab37zm1m8eHEeeuihJL+/+/Gggw6q7dm4cWPtbslKpZK+vr50dnb2uzty48aNmThx4nP+7cbGxjQ2Nu7UnAAAAADA7vGiYuS6detSrVZz2GGH5bvf/W5Gjx5dOzd48OAceOCBGTBgwE591pQpU3L//ff3W3vf+96XV7/61bn00ktz2GGHpVKpZMWKFTnyyCOTJH19fVm1alUWLVqUJJkwYUIGDRqUFStWZMaMGUmSDRs25IEHHsjll1/+Yi4NAAAAAHiJvagYeeihhyZJnnnmmT/6Dw8bNizjxo3rtzZ06NCMHDmytt7W1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZSZKmpqbMnDkzc+bMyciRIzNixIjMnTs348eP3+4HcQAAAACA+tqlH7BJkp/+9Ke5++67s3Hjxu3i5N///d//0YMlybx589LT05NZs2als7Mzxx57bJYvX55hw4bV9lx99dUZOHBgZsyYkZ6enkyZMiVLlizZ6Ts0AQAAAIAyGqrVavXFvun666/PBz/4wYwaNSqVSqXfj8U0NDTke9/73m4d8qXW3d2dpqamdHV1Zfjw4fUep6gJl9xS7xEAgBdp7RXvrfcIAADQz872tV26M/KTn/xk/vEf/zGXXnrpLg8IAAAAALy87LMrb+rs7MwZZ5yxu2cBAAAAAPZiuxQjzzjjjCxfvnx3zwIAAAAA7MV26Wvahx9+eD72sY/l3nvvzfjx4zNo0KB+5z/84Q/vluEAAAAAgL3HLsXI6667Lvvvv39WrVqVVatW9TvX0NAgRgIAAAAA29mlGLlu3brdPQcAAAAAsJfbpWdGAgAAAAC8WLt0Z+R55533vOdvvPHGXRoGAAAAANh77VKM7Ozs7Pd6y5YteeCBB/LEE0/kxBNP3C2DAQAAAAB7l12KkcuWLdtu7ZlnnsmsWbNy2GGH/dFDAQAAAAB7n932zMh99tknH/nIR3L11Vfvro8EAAAAAPYiu/UHbH7xi1/kd7/73e78SAAAAABgL7FLX9O++OKL+72uVqvZsGFDvvzlL+ecc87ZLYMBAAAAAHuXXYqR3//+9/u93meffTJ69OhceeWVL/hL2wAAAADAy9MuxchvfOMbu3sOAAAAAGAvt0sx8lmPPfZYHnrooTQ0NOQv/uIvMnr06N01FwAAAACwl9mlH7B58sknc9555+Wggw7K8ccfnze/+c1paWnJzJkz89RTT+3uGQEAAACAvcAuxciLL744q1atyn/+53/miSeeyBNPPJEvfOELWbVqVebMmbO7ZwQAAAAA9gK79DXtz33uc/nsZz+byZMn19b++q//OkOGDMmMGTNy7bXX7q75AAAAAIC9xC7dGfnUU0+lubl5u/UDDzzQ17QBAAAAgB3apRh53HHH5R/+4R/y9NNP19Z6enry8Y9/PMcdd9xuGw4AAAAA2Hvs0te0r7nmmpx88sk5+OCD8/rXvz4NDQ35wQ9+kMbGxixfvnx3zwgAAAAA7AV2KUaOHz8+P/vZz3Lbbbflv//7v1OtVvOud70rZ599doYMGbK7ZwQAAAAA9gK7FCMXLlyY5ubmvP/97++3fuONN+axxx7LpZdeuluGAwAAAAD2Hrv0zMh///d/z6tf/ert1l/3utfl3/7t3/7ooQAAAACAvc8uxciOjo4cdNBB262PHj06GzZs+KOHAgAAAAD2PrsUI1tbW/Ptb397u/Vvf/vbaWlp+aOHAgAAAAD2Prv0zMjzzz8/bW1t2bJlS0488cQkyde+9rXMmzcvc+bM2a0DAgAAAAB7h12KkfPmzcvjjz+eWbNmpa+vL0my77775tJLL838+fN364AAAAAAwN5hl2JkQ0NDFi1alI997GP5yU9+kiFDhmTs2LFpbGzc3fMBAAAAAHuJXYqRz9p///1zzDHH7K5ZAAAAAIC92C79gA0AAAAAwIslRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARdY2R1157bY444ogMHz48w4cPz3HHHZevfOUrtfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIAXUNcYefDBB+ef/umfct999+W+++7LiSeemLe97W214Hj55ZfnqquuyuLFi7NmzZpUKpVMmzYtmzZtqn1GW1tbli1blqVLl2b16tXZvHlzTj311GzdurVelwUAAAAA7EBDtVqt1nuIPzRixIhcccUVOe+889LS0pK2trZceumlSX5/F2Rzc3MWLVqUCy64IF1dXRk9enRuvfXWnHnmmUmSRx99NK2trbnzzjtz0kkn7dTf7O7uTlNTU7q6ujJ8+PCX7Nr2RBMuuaXeIwAAL9LaK95b7xEAAKCfne1re8wzI7du3ZqlS5fmySefzHHHHZd169alo6Mj06dPr+1pbGzMpEmTcs899yRJ1q5dmy1btvTb09LSknHjxtX27Ehvb2+6u7v7HQAAAADAS6vuMfL+++/P/vvvn8bGxlx44YVZtmxZXvva16ajoyNJ0tzc3G9/c3Nz7VxHR0cGDx6cAw444Dn37MjChQvT1NRUO1pbW3fzVQEAAAAA26p7jHzVq16VH/zgB7n33nvzwQ9+MOecc05+/OMf1843NDT021+tVrdb29YL7Zk/f366urpqx/r16/+4iwAAAAAAXlDdY+TgwYNz+OGH5+ijj87ChQvz+te/Pv/8z/+cSqWSJNvd4bhx48ba3ZKVSiV9fX3p7Ox8zj070tjYWPsF72cPAAAAAOClVfcYua1qtZre3t6MGTMmlUolK1asqJ3r6+vLqlWrMnHixCTJhAkTMmjQoH57NmzYkAceeKC2BwAAAADYMwys5x//6Ec/mpNPPjmtra3ZtGlTli5dmrvvvjt33XVXGhoa0tbWlvb29owdOzZjx45Ne3t79ttvv5x11llJkqampsycOTNz5szJyJEjM2LEiMydOzfjx4/P1KlT63lpAAAAAMA26hojf/3rX+c973lPNmzYkKamphxxxBG56667Mm3atCTJvHnz0tPTk1mzZqWzszPHHntsli9fnmHDhtU+4+qrr87AgQMzY8aM9PT0ZMqUKVmyZEkGDBhQr8sCAAAAAHagoVqtVus9RL11d3enqakpXV1dL7vnR0645JZ6jwAAvEhrr3hvvUcAAIB+drav7XHPjAQAAAAA9k5iJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEXWPkwoULc8wxx2TYsGE58MAD8/a3vz0PPfRQvz3VajULFixIS0tLhgwZksmTJ+fBBx/st6e3tzezZ8/OqFGjMnTo0Jx22ml55JFHSl4KAAAAAPAC6hojV61alYsuuij33ntvVqxYkd/97neZPn16nnzyydqeyy+/PFdddVUWL16cNWvWpFKpZNq0adm0aVNtT1tbW5YtW5alS5dm9erV2bx5c0499dRs3bq1HpcFAAAAAOxAQ7VardZ7iGc99thjOfDAA7Nq1aocf/zxqVaraWlpSVtbWy699NIkv78Lsrm5OYsWLcoFF1yQrq6ujB49OrfeemvOPPPMJMmjjz6a1tbW3HnnnTnppJNe8O92d3enqakpXV1dGT58+Et6jXuaCZfcUu8RAIAXae0V7633CAAA0M/O9rU96pmRXV1dSZIRI0YkSdatW5eOjo5Mnz69tqexsTGTJk3KPffckyRZu3ZttmzZ0m9PS0tLxo0bV9uzrd7e3nR3d/c7AAAAAICX1h4TI6vVai6++OK86U1vyrhx45IkHR0dSZLm5uZ+e5ubm2vnOjo6Mnjw4BxwwAHPuWdbCxcuTFNTU+1obW3d3ZcDAAAAAGxjj4mRH/rQh/KjH/0on/nMZ7Y719DQ0O91tVrdbm1bz7dn/vz56erqqh3r16/f9cEBAAAAgJ2yR8TI2bNn54tf/GK+8Y1v5OCDD66tVyqVJNnuDseNGzfW7pasVCrp6+tLZ2fnc+7ZVmNjY4YPH97vAAAAAABeWnWNkdVqNR/60Ify+c9/Pl//+tczZsyYfufHjBmTSqWSFStW1Nb6+vqyatWqTJw4MUkyYcKEDBo0qN+eDRs25IEHHqjtAQAAAADqb2A9//hFF12U22+/PV/4whcybNiw2h2QTU1NGTJkSBoaGtLW1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZtb0zZ87MnDlzMnLkyIwYMSJz587N+PHjM3Xq1HpeHgAAAADwB+oaI6+99tokyeTJk/ut33TTTTn33HOTJPPmzUtPT09mzZqVzs7OHHvssVm+fHmGDRtW23/11Vdn4MCBmTFjRnp6ejJlypQsWbIkAwYMKHUpAAAAAMALaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RKOjhT4yv9wgAwIt0yN/fX+8RitvZvrZH/IANAAAAALD3EyMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIuoaI7/5zW/mrW99a1paWtLQ0JA77rij3/lqtZoFCxakpaUlQ4YMyeTJk/Pggw/229Pb25vZs2dn1KhRGTp0aE477bQ88sgjBa8CAAAAANgZdY2RTz75ZF7/+tdn8eLFOzx/+eWX56qrrsrixYuzZs2aVCqVTJs2LZs2bartaWtry7Jly7J06dKsXr06mzdvzqmnnpqtW7eWugwAAAAAYCcMrOcfP/nkk3PyySfv8Fy1Ws0111yTyy67LKeffnqS5Oabb05zc3Nuv/32XHDBBenq6soNN9yQW2+9NVOnTk2S3HbbbWltbc3KlStz0kknFbsWAAAAAOD57bHPjFy3bl06Ojoyffr02lpjY2MmTZqUe+65J0mydu3abNmypd+elpaWjBs3rrZnR3p7e9Pd3d3vAAAAAABeWntsjOzo6EiSNDc391tvbm6unevo6MjgwYNzwAEHPOeeHVm4cGGamppqR2tr626eHgAAAADY1h4bI5/V0NDQ73W1Wt1ubVsvtGf+/Pnp6uqqHevXr98tswIAAAAAz22PjZGVSiVJtrvDcePGjbW7JSuVSvr6+tLZ2fmce3aksbExw4cP73cAAAAAAC+tPTZGjhkzJpVKJStWrKit9fX1ZdWqVZk4cWKSZMKECRk0aFC/PRs2bMgDDzxQ2wMAAAAA7Bnq+mvamzdvzs9//vPa63Xr1uUHP/hBRowYkUMOOSRtbW1pb2/P2LFjM3bs2LS3t2e//fbLWWedlSRpamrKzJkzM2fOnIwcOTIjRozI3LlzM378+NqvawMAAAAAe4a6xsj77rsvJ5xwQu31xRdfnCQ555xzsmTJksybNy89PT2ZNWtWOjs7c+yxx2b58uUZNmxY7T1XX311Bg4cmBkzZqSnpydTpkzJkiVLMmDAgOLXAwAAAAA8t4ZqtVqt9xD11t3dnaampnR1db3snh854ZJb6j0CAPAirb3ivfUegYIe/sT4eo8AALxIh/z9/fUeobid7Wt77DMjAQAAAIC9ixgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFDEXhMj//Vf/zVjxozJvvvumwkTJuRb3/pWvUcCAAAAAP7AXhEj/+M//iNtbW257LLL8v3vfz9vfvObc/LJJ+fhhx+u92gAAAAAwP/ZK2LkVVddlZkzZ+b888/Pa17zmlxzzTVpbW3NtddeW+/RAAAAAID/8ycfI/v6+rJ27dpMnz693/r06dNzzz331GkqAAAAAGBbA+s9wB/rN7/5TbZu3Zrm5uZ+683Nzeno6Njhe3p7e9Pb21t73dXVlSTp7u5+6QbdQ23t7an3CADAi/Ry/DfLy9mmp7fWewQA4EV6Of577dlrrlarz7vvTz5GPquhoaHf62q1ut3asxYuXJiPf/zj2623tra+JLMBAOxOTZ+6sN4jAADwfBY21XuCutm0aVOamp77+v/kY+SoUaMyYMCA7e6C3Lhx43Z3Sz5r/vz5ufjii2uvn3nmmTz++OMZOXLkcwZMgD8l3d3daW1tzfr16zN8+PB6jwMAwDb8ew3Y21Sr1WzatCktLS3Pu+9PPkYOHjw4EyZMyIoVK/KOd7yjtr5ixYq87W1v2+F7Ghsb09jY2G/tFa94xUs5JkBdDB8+3D9uAQD2YP69BuxNnu+OyGf9ycfIJLn44ovznve8J0cffXSOO+64XHfddXn44Ydz4YW+wgQAAAAAe4q9IkaeeeaZ+e1vf5tPfOIT2bBhQ8aNG5c777wzhx56aL1HAwAAAAD+z14RI5Nk1qxZmTVrVr3HANgjNDY25h/+4R+2eyQFAAB7Bv9eA16uGqov9HvbAAAAAAC7wT71HgAAAAAAeHkQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBNgLnHvuuWloaMiFF1643blZs2aloaEh5557bvnBAADo59l/t217/PznP6/3aABFiJEAe4nW1tYsXbo0PT09tbWnn346n/nMZ3LIIYfUcTIAAP7QW97ylmzYsKHfMWbMmHqPBVCEGAmwlzjqqKNyyCGH5POf/3xt7fOf/3xaW1tz5JFH1nEyAAD+UGNjYyqVSr9jwIAB9R4LoAgxEmAv8r73vS833XRT7fWNN96Y8847r44TAQAAwP8nRgLsRd7znvdk9erV+Z//+Z/86le/yre//e28+93vrvdYAAD8gS996UvZf//9a8cZZ5xR75EAihlY7wEA2H1GjRqVU045JTfffHOq1WpOOeWUjBo1qt5jAQDwB0444YRce+21tddDhw6t4zQAZYmRAHuZ8847Lx/60IeSJP/yL/9S52kAANjW0KFDc/jhh9d7DIC6ECMB9jJvectb0tfXlyQ56aST6jwNAAAA/H9iJMBeZsCAAfnJT35S+28AAADYU4iRAHuh4cOH13sEAAAA2E5DtVqt1nsIAAAAAGDvt0+9BwAAAAAAXh7ESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAqJuNGzfmggsuyCGHHJLGxsZUKpWcdNJJ+c53vlPv0QAAeAkMrPcAAAC8fL3zne/Mli1bcvPNN+ewww7Lr3/963zta1/L448/Xu/RAAB4CbgzEgCAunjiiSeyevXqLFq0KCeccEIOPfTQ/OVf/mXmz5+fU045JUnS1dWVD3zgAznwwAMzfPjwnHjiifnhD3+YJHnsscdSqVTS3t5e+8z/+q//yuDBg7N8+fK6XBMAAM9PjAQAoC7233//7L///rnjjjvS29u73flqtZpTTjklHR0dufPOO7N27docddRRmTJlSh5//PGMHj06N954YxYsWJD77rsvmzdvzrvf/e7MmjUr06dPr8MVAQDwQhqq1Wq13kMAAPDy9LnPfS7vf//709PTk6OOOiqTJk3Ku971rhxxxBH5+te/nne84x3ZuHFjGhsba+85/PDDM2/evHzgAx9Iklx00UVZuXJljjnmmPzwhz/MmjVrsu+++9brkgAAeB5iJAAAdfX000/nW9/6Vr7zne/krrvuyne/+918+tOfzmOPPZa/+7u/y5AhQ/rt7+npydy5c7No0aLa63HjxmX9+vW57777csQRR9TjMgAA2AliJAAAe5Tzzz8/K1asyKxZs/KpT30qd99993Z7XvGKV2TUqFFJkgcffDBHH310tmzZkmXLluWtb31r4YkBANhZfk0bAIA9ymtf+9rccccdOeqoo9LR0ZGBAwfmla985Q739vX15eyzz86ZZ56ZV7/61Zk5c2buv//+NDc3lx0aAICd4s5IAADq4re//W3OOOOMnHfeeTniiCMybNiw3HfffZk9e3ZOOeWUfPrTn87xxx+fTZs2ZdGiRXnVq16VRx99NHfeeWfe/va35+ijj84ll1ySz372s/nhD3+Y/fffPyeccEKGDRuWL33pS/W+PAAAdkCMBACgLnp7e7NgwYIsX748v/jFL7Jly5a0trbmjDPOyEc/+tEMGTIkmzZtymWXXZbPfe5zeeyxx1KpVHL88cdn4cKF+cUvfpFp06blG9/4Rt70pjclSR5++OEcccQRWbhwYT74wQ/W+QoBANiWGAkAAAAAFLFPvQcAAAAAAF4exEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAivh/cZcDM0IIT0YAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize = (16,8))\n",
+ "sns.countplot(data = data, x = 'Sex')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7310d0a7-c361-4214-a3e5-708d934cfccb",
+ "metadata": {},
+ "source": [
+ "## According to this dataset, which gender suffered more from heart disease?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "4b019dff-6704-4df9-9fd3-7786dc9d95c1",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Sex\n",
+ "F 143\n",
+ "M 267\n",
+ "Name: HeartDisease, dtype: int64"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "tot = data['HeartDisease'].groupby(data['Sex']).count()\n",
+ "suff = data['HeartDisease'].groupby(data['Sex']).sum()\n",
+ "not_suf = tot-suff\n",
+ "not_suf"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "26ef5d40-ac18-4ef8-b2c0-20f1aa154562",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmg0lEQVR4nO3df1TVdZ7H8ddF5MeK4ISAkAiYWYw4OkLTYGHp1CVsnZxpR1rn+CN1i9FkkDKHcdV07JBbmf0Yf5Xmafoxrjaac2IVthR/1TYSpDuilVKQXSI0Qckg4bt/eLy7dy8a8usLn56Pc+453c/9fr/3fe2gz/P93st1WJZlCQAAwBA+dg8AAADQnogbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF1+4BOltTU5M+//xz9e7dWw6Hw+5xAABAC1iWpTNnzigqKko+Ppc/N/O9i5vPP/9c0dHRdo8BAABaoaKiQv3797/sNt+7uOndu7ekC384wcHBNk8DAABaora2VtHR0e5/xy/nexc3Fy9FBQcHEzcAAHQzLXlLCW8oBgAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBRb42b37t0aN26coqKi5HA4tHXr1u/cp7CwUImJiQoICNDAgQO1evXqjh8UAAB0G7bGTV1dnYYNG6bnnnuuRduXlZVp7NixSklJUXFxsX7/+98rMzNTr7/+egdPCgAAugtbvxU8LS1NaWlpLd5+9erVGjBggFasWCFJio+P14EDB/TEE0/o7rvv7qApAQBAd9Kt3nPzzjvvyOl0eqylpqbqwIED+vbbb5vdp76+XrW1tR43AABgLlvP3FypyspKRUREeKxFRETo/Pnzqq6uVmRkpNc+ubm5Wrx4cWeN6JY496VOf06gOyh6fLLdI7RZ+ZKhdo8AdEkDFh6yewRJ3ezMjSQ5HA6P+5ZlNbt+UU5Ojmpqaty3ioqKDp8RAADYp1uduenXr58qKys91qqqquTr66vQ0NBm9/H395e/v39njAcAALqAbnXmJjk5WQUFBR5r+fn5SkpKUs+ePW2aCgAAdCW2xs3Zs2dVUlKikpISSRc+6l1SUqLy8nJJFy4pTZ78v9fnMzIy9Omnnyo7O1ulpaVav3691q1bp4ceesiO8QEAQBdk62WpAwcOaPTo0e772dnZkqQpU6Zow4YNcrlc7tCRpLi4OOXl5WnOnDn64x//qKioKD3zzDN8DBwAALjZGje33nqr+w3BzdmwYYPX2i233KL333+/A6cCAADdWbd6zw0AAMB3IW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYxfa4WblypeLi4hQQEKDExETt2bPnstu/8sorGjZsmP7hH/5BkZGRuvfee3Xy5MlOmhYAAHR1tsbNxo0blZWVpfnz56u4uFgpKSlKS0tTeXl5s9vv3btXkydP1vTp0/X3v/9dmzZt0t/+9jfNmDGjkycHAABdla1xs3z5ck2fPl0zZsxQfHy8VqxYoejoaK1atarZ7d99913FxsYqMzNTcXFxuvnmm3X//ffrwIEDl3yO+vp61dbWetwAAIC5bIubhoYGFRUVyel0eqw7nU7t37+/2X1Gjhypzz77THl5ebIsS1988YU2b96sO++885LPk5ubq5CQEPctOjq6XV8HAADoWmyLm+rqajU2NioiIsJjPSIiQpWVlc3uM3LkSL3yyitKT0+Xn5+f+vXrpz59+ujZZ5+95PPk5OSopqbGfauoqGjX1wEAALoW299Q7HA4PO5bluW1dtHhw4eVmZmphQsXqqioSNu3b1dZWZkyMjIueXx/f38FBwd73AAAgLl87Xrivn37qkePHl5naaqqqrzO5lyUm5urm266SXPnzpUk/ehHP1KvXr2UkpKipUuXKjIyssPnBgAAXZttZ278/PyUmJiogoICj/WCggKNHDmy2X2+/vpr+fh4jtyjRw9JF874AAAA2HpZKjs7Wy+88ILWr1+v0tJSzZkzR+Xl5e7LTDk5OZo8ebJ7+3Hjxukvf/mLVq1apePHj2vfvn3KzMzUT37yE0VFRdn1MgAAQBdi22UpSUpPT9fJkye1ZMkSuVwuJSQkKC8vTzExMZIkl8vl8Ttvpk6dqjNnzui5557Tgw8+qD59+mjMmDFatmyZXS8BAAB0MQ7re3Y9p7a2ViEhIaqpqenQNxcnzn2pw44NdGdFj0/+7o26uPIlQ+0eAeiSBiw81GHHvpJ/v23/tBQAAEB7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFNvjZuXKlYqLi1NAQIASExO1Z8+ey25fX1+v+fPnKyYmRv7+/rrmmmu0fv36TpoWAAB0db52PvnGjRuVlZWllStX6qabbtKaNWuUlpamw4cPa8CAAc3uM2HCBH3xxRdat26dBg0apKqqKp0/f76TJwcAAF2VrXGzfPlyTZ8+XTNmzJAkrVixQjt27NCqVauUm5vrtf327dtVWFio48eP66qrrpIkxcbGdubIAACgi7PtslRDQ4OKiorkdDo91p1Op/bv39/sPtu2bVNSUpL+7d/+TVdffbUGDx6shx56SOfOnbvk89TX16u2ttbjBgAAzGXbmZvq6mo1NjYqIiLCYz0iIkKVlZXN7nP8+HHt3btXAQEB2rJli6qrqzVz5kydOnXqku+7yc3N1eLFi9t9fgAA0DXZ/oZih8Phcd+yLK+1i5qamuRwOPTKK6/oJz/5icaOHavly5drw4YNlzx7k5OTo5qaGvetoqKi3V8DAADoOmw7c9O3b1/16NHD6yxNVVWV19mciyIjI3X11VcrJCTEvRYfHy/LsvTZZ5/p2muv9drH399f/v7+7Ts8AADosmw7c+Pn56fExEQVFBR4rBcUFGjkyJHN7nPTTTfp888/19mzZ91rH374oXx8fNS/f/8OnRcAAHQPtl6Wys7O1gsvvKD169ertLRUc+bMUXl5uTIyMiRduKQ0efJk9/YTJ05UaGio7r33Xh0+fFi7d+/W3LlzNW3aNAUGBtr1MgAAQBdi60fB09PTdfLkSS1ZskQul0sJCQnKy8tTTEyMJMnlcqm8vNy9fVBQkAoKCjR79mwlJSUpNDRUEyZM0NKlS+16CQAAoIuxNW4kaebMmZo5c2azj23YsMFr7frrr/e6lAUAAHCR7Z+WAgAAaE/EDQAAMEqr4mbMmDE6ffq013ptba3GjBnT1pkAAABarVVxs2vXLjU0NHitf/PNN9/5rd4AAAAd6YreUHzw4EH3fx8+fNjjF/A1NjZq+/btuvrqq9tvOgAAgCt0RXEzfPhwORwOORyOZi8/BQYG6tlnn2234QAAAK7UFcVNWVmZLMvSwIED9d577yksLMz9mJ+fn8LDw9WjR492HxIAAKClrihuLv5yvaampg4ZBgAAoK1a/Uv8PvzwQ+3atUtVVVVesbNw4cI2DwYAANAarYqb559/Xr/5zW/Ut29f9evXTw6Hw/2Yw+EgbgAAgG1aFTdLly7Vo48+qnnz5rX3PAAAAG3Sqt9z89VXX+lXv/pVe88CAADQZq2Km1/96lfKz89v71kAAADarFWXpQYNGqQFCxbo3Xff1dChQ9WzZ0+PxzMzM9tlOAAAgCvVqrhZu3atgoKCVFhYqMLCQo/HHA4HcQMAAGzTqrgpKytr7zkAAADaRavecwMAANBVterMzbRp0y77+Pr161s1DAAAQFu1Km6++uorj/vffvut/vu//1unT59u9gs1AQAAOkur4mbLli1ea01NTZo5c6YGDhzY5qEAAABaq93ec+Pj46M5c+boqaeeaq9DAgAAXLF2fUPxsWPHdP78+fY8JAAAwBVp1WWp7Oxsj/uWZcnlcunNN9/UlClT2mUwAACA1mhV3BQXF3vc9/HxUVhYmJ588snv/CQVAABAR2pV3OzcubO95wAAAGgXrYqbi7788ksdPXpUDodDgwcPVlhYWHvNBQAA0CqtekNxXV2dpk2bpsjISI0aNUopKSmKiorS9OnT9fXXX7f3jAAAAC3WqrjJzs5WYWGh/vrXv+r06dM6ffq03njjDRUWFurBBx9s7xkBAABarFWXpV5//XVt3rxZt956q3tt7NixCgwM1IQJE7Rq1ar2mg8AAOCKtOrMzddff62IiAiv9fDwcC5LAQAAW7UqbpKTk7Vo0SJ988037rVz585p8eLFSk5ObrfhAAAArlSrLkutWLFCaWlp6t+/v4YNGyaHw6GSkhL5+/srPz+/vWcEAABosVbFzdChQ/XRRx/p5Zdf1pEjR2RZlu655x79+te/VmBgYHvPCAAA0GKtipvc3FxFREToX/7lXzzW169fry+//FLz5s1rl+EAAACuVKvec7NmzRpdf/31XutDhgzR6tWr2zwUAABAa7UqbiorKxUZGem1HhYWJpfL1eahAAAAWqtVcRMdHa19+/Z5re/bt09RUVFtHgoAAKC1WvWemxkzZigrK0vffvutxowZI0l666239PDDD/MbigEAgK1aFTcPP/ywTp06pZkzZ6qhoUGSFBAQoHnz5iknJ6ddBwQAALgSrYobh8OhZcuWacGCBSotLVVgYKCuvfZa+fv7t/d8AAAAV6RVcXNRUFCQbrjhhvaaBQAAoM1a9YZiAACAroq4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGsT1uVq5cqbi4OAUEBCgxMVF79uxp0X779u2Tr6+vhg8f3rEDAgCAbsXWuNm4caOysrI0f/58FRcXKyUlRWlpaSovL7/sfjU1NZo8ebJ+9rOfddKkAACgu7A1bpYvX67p06drxowZio+P14oVKxQdHa1Vq1Zddr/7779fEydOVHJycidNCgAAugvb4qahoUFFRUVyOp0e606nU/v377/kfi+++KKOHTumRYsWteh56uvrVVtb63EDAADmsi1uqqur1djYqIiICI/1iIgIVVZWNrvPRx99pN/97nd65ZVX5Ovr26Lnyc3NVUhIiPsWHR3d5tkBAEDXZfsbih0Oh8d9y7K81iSpsbFREydO1OLFizV48OAWHz8nJ0c1NTXuW0VFRZtnBgAAXVfLTn90gL59+6pHjx5eZ2mqqqq8zuZI0pkzZ3TgwAEVFxfrgQcekCQ1NTXJsiz5+voqPz9fY8aM8drP399f/v7+HfMiAABAl2PbmRs/Pz8lJiaqoKDAY72goEAjR4702j44OFiHDh1SSUmJ+5aRkaHrrrtOJSUluvHGGztrdAAA0IXZduZGkrKzszVp0iQlJSUpOTlZa9euVXl5uTIyMiRduKR04sQJvfTSS/Lx8VFCQoLH/uHh4QoICPBaBwAA31+2xk16erpOnjypJUuWyOVyKSEhQXl5eYqJiZEkuVyu7/ydNwAAAP+Xw7Isy+4hOlNtba1CQkJUU1Oj4ODgDnuexLkvddixge6s6PHJdo/QZuVLhto9AtAlDVh4qMOOfSX/ftv+aSkAAID2RNwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwiu1xs3LlSsXFxSkgIECJiYnas2fPJbf9y1/+ottvv11hYWEKDg5WcnKyduzY0YnTAgCArs7WuNm4caOysrI0f/58FRcXKyUlRWlpaSovL292+927d+v2229XXl6eioqKNHr0aI0bN07FxcWdPDkAAOiqHJZlWXY9+Y033qgRI0Zo1apV7rX4+HiNHz9eubm5LTrGkCFDlJ6eroULFzb7eH19verr6933a2trFR0drZqaGgUHB7ftBVxG4tyXOuzYQHdW9Phku0dos/IlQ+0eAeiSBiw81GHHrq2tVUhISIv+/bbtzE1DQ4OKiorkdDo91p1Op/bv39+iYzQ1NenMmTO66qqrLrlNbm6uQkJC3Lfo6Og2zQ0AALo22+KmurpajY2NioiI8FiPiIhQZWVli47x5JNPqq6uThMmTLjkNjk5OaqpqXHfKioq2jQ3AADo2nztHsDhcHjctyzLa605r732mh555BG98cYbCg8Pv+R2/v7+8vf3b/OcAACge7Atbvr27asePXp4naWpqqryOpvz/23cuFHTp0/Xpk2bdNttt3XkmAAAoJux7bKUn5+fEhMTVVBQ4LFeUFCgkSNHXnK/1157TVOnTtWrr76qO++8s6PHBAAA3Yytl6Wys7M1adIkJSUlKTk5WWvXrlV5ebkyMjIkXXi/zIkTJ/TSSxc+efTaa69p8uTJevrpp/XTn/7UfdYnMDBQISEhtr0OAADQddgaN+np6Tp58qSWLFkil8ulhIQE5eXlKSYmRpLkcrk8fufNmjVrdP78ec2aNUuzZs1yr0+ZMkUbNmzo7PEBAEAXZPsbimfOnKmZM2c2+9j/D5Zdu3Z1/EAAAKBbs/3rFwAAANoTcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACj2B43K1euVFxcnAICApSYmKg9e/ZcdvvCwkIlJiYqICBAAwcO1OrVqztpUgAA0B3YGjcbN25UVlaW5s+fr+LiYqWkpCgtLU3l5eXNbl9WVqaxY8cqJSVFxcXF+v3vf6/MzEy9/vrrnTw5AADoqmyNm+XLl2v69OmaMWOG4uPjtWLFCkVHR2vVqlXNbr969WoNGDBAK1asUHx8vGbMmKFp06bpiSee6OTJAQBAV+Vr1xM3NDSoqKhIv/vd7zzWnU6n9u/f3+w+77zzjpxOp8daamqq1q1bp2+//VY9e/b02qe+vl719fXu+zU1NZKk2tratr6Ey2qsP9ehxwe6q47+2esMZ75ptHsEoEvqyJ/vi8e2LOs7t7Utbqqrq9XY2KiIiAiP9YiICFVWVja7T2VlZbPbnz9/XtXV1YqMjPTaJzc3V4sXL/Zaj46ObsP0AFor5NkMu0cA0FFyQzr8Kc6cOaOQkMs/j21xc5HD4fC4b1mW19p3bd/c+kU5OTnKzs52329qatKpU6cUGhp62eeBGWpraxUdHa2KigoFBwfbPQ6AdsTP9/eLZVk6c+aMoqKivnNb2+Kmb9++6tGjh9dZmqqqKq+zMxf169ev2e19fX0VGhra7D7+/v7y9/f3WOvTp0/rB0e3FBwczF9+gKH4+f7++K4zNhfZ9oZiPz8/JSYmqqCgwGO9oKBAI0eObHaf5ORkr+3z8/OVlJTU7PttAADA94+tn5bKzs7WCy+8oPXr16u0tFRz5sxReXm5MjIuXJPPycnR5MmT3dtnZGTo008/VXZ2tkpLS7V+/XqtW7dODz30kF0vAQAAdDG2vucmPT1dJ0+e1JIlS+RyuZSQkKC8vDzFxMRIklwul8fvvImLi1NeXp7mzJmjP/7xj4qKitIzzzyju+++266XgC7O399fixYt8ro0CaD74+cbl+KwWvKZKgAAgG7C9q9fAAAAaE/EDQAAMApxAwAAjELcAAAAoxA36JZ2796tcePGKSoqSg6HQ1u3br3ktvfff78cDodWrFjhtX7NNdcoMDBQYWFhuuuuu3TkyJGOHRzAZeXm5uqGG25Q7969FR4ervHjx+vo0aNe25WWlurnP/+5QkJC1Lt3b/30pz91f7r2k08+kcPhaPa2adOmzn5JsAFxg26prq5Ow4YN03PPPXfZ7bZu3ar/+q//avbXdScmJurFF19UaWmpduzYIcuy5HQ61djIlyICdiksLNSsWbP07rvvqqCgQOfPn5fT6VRdXZ17m2PHjunmm2/W9ddfr127dumDDz7QggULFBAQIOnCdwe6XC6P2+LFi9WrVy+lpaXZ9dLQifgoOLo9h8OhLVu2aPz48R7rJ06c0I033qgdO3bozjvvVFZWlrKysi55nIMHD2rYsGH6+OOPdc0113Ts0ABa5Msvv1R4eLgKCws1atQoSdI999yjnj176k9/+lOLj/PjH/9YI0aM0Lp16zpqVHQhnLmBkZqamjRp0iTNnTtXQ4YM+c7t6+rq9OKLLyouLo5vjAe6kJqaGknSVVddJenCz/abb76pwYMHKzU1VeHh4brxxhsve2m6qKhIJSUlmj59emeMjC6AuIGRli1bJl9fX2VmZl52u5UrVyooKEhBQUHavn27CgoK5Ofn10lTArgcy7KUnZ2tm2++WQkJCZIufFny2bNn9dhjj+mOO+5Qfn6+fvGLX+iXv/ylCgsLmz3OunXrFB8ff8nvLYR5bP36BaAjFBUV6emnn9b7778vh8Nx2W1//etf6/bbb5fL5dITTzyhCRMmaN++fe5r9wDs88ADD+jgwYPau3eve62pqUmSdNddd2nOnDmSpOHDh2v//v1avXq1brnlFo9jnDt3Tq+++qoWLFjQeYPDdpy5gXH27NmjqqoqDRgwQL6+vvL19dWnn36qBx98ULGxsR7bhoSE6Nprr9WoUaO0efNmHTlyRFu2bLFncABus2fP1rZt27Rz507179/fvd63b1/5+vrqhz/8ocf28fHxHt9FeNHmzZv19ddfe3wJM8zHmRsYZ9KkSbrttts81lJTUzVp0iTde++9l93XsizV19d35HgALsOyLM2ePVtbtmzRrl27FBcX5/G4n5+fbrjhBq+Ph3/44YfuL13+v9atW6ef//znCgsL69C50bUQN+iWzp49q48//th9v6ysTCUlJbrqqqs0YMAAhYaGemzfs2dP9evXT9ddd50k6fjx49q4caOcTqfCwsJ04sQJLVu2TIGBgRo7dmynvhYA/2vWrFl69dVX9cYbb6h3796qrKyUdOEsa2BgoCRp7ty5Sk9P16hRozR69Ght375df/3rX7Vr1y6PY3388cfavXu38vLyOvtlwG4W0A3t3LnTkuR1mzJlSrPbx8TEWE899ZT7/okTJ6y0tDQrPDzc6tmzp9W/f39r4sSJ1pEjRzrnBQBoVnM/15KsF1980WO7devWWYMGDbICAgKsYcOGWVu3bvU6Vk5OjtW/f3+rsbGxk6ZHV8HvuQEAAEbhDcUAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AIy1a9cuORwOnT592u5RAHQi4gbAJU2dOlXjx4/3Wu+saHjkkUc0fPhwr/XY2Fg5HA45HA4FBgYqNjZWEyZM0Ntvv+2x3ciRI+VyuRQSEtKhcwLoWogbAF2OZVk6f/78ZbdZsmSJXC6Xjh49qpdeekl9+vTRbbfdpkcffdS9jZ+fn/r16yeHw9HRIwPoQogbAG22f/9+jRo1SoGBgYqOjlZmZqbq6urcj7/88stKSkpS79691a9fP02cOFFVVVXuxy+eCdqxY4eSkpLk7++vP/3pT1q8eLE++OAD91maDRs2uPe5eKwBAwZo1KhRWrt2rRYsWKCFCxfq6NGjHse9eIbp008/1bhx4/SDH/xAvXr10pAhQzy+Mfrw4cMaO3asgoKCFBERoUmTJqm6utr9+Pbt23XzzTerT58+Cg0N1T/+4z/q2LFj7scbGhr0wAMPKDIyUgEBAYqNjVVubq778ZqaGt13330KDw9XcHCwxowZow8++KDd/j8AuIC4AdAmhw4dUmpqqn75y1/q4MGD2rhxo/bu3asHHnjAvU1DQ4P+8Ic/6IMPPtDWrVtVVlamqVOneh3r4YcfVm5urkpLS+V0OvXggw9qyJAhcrlccrlcSk9Pv+wsv/3tb2VZlt54441mH581a5bq6+u1e/duHTp0SMuWLVNQUJAkyeVy6ZZbbtHw4cN14MABbd++XV988YUmTJjg3r+urk7Z2dn629/+prfeeks+Pj76xS9+oaamJknSM888o23btunf//3fdfToUb388suKjY2VdOFs1J133qnKykrl5eWpqKhII0aM0M9+9jOdOnXqSv7IAXwXW7+THECXNmXKFKtHjx5Wr169PG4BAQGWJOurr76yJk2aZN13330e++3Zs8fy8fGxzp071+xx33vvPUuSdebMGcuyLGvnzp2WJGvr1q0e2y1atMgaNmyY1/4xMTHWU0891eyxIyIirN/85jcex/3qq68sy7KsoUOHWo888kiz+y1YsMByOp0eaxUVFZYk6+jRo83uU1VVZUmyDh06ZFmWZc2ePdsaM2aM1dTU5LXtW2+9ZQUHB1vffPONx/o111xjrVmzptnjA2gdztwAuKzRo0erpKTE4/bCCy+4Hy8qKtKGDRsUFBTkvqWmpqqpqUllZWWSpOLiYt11112KiYlR7969deutt0qSysvLPZ4rKSmpzfNalnXJ99hkZmZq6dKluummm7Ro0SIdPHjQ43Xs3LnT43Vcf/31kuS+9HTs2DFNnDhRAwcOVHBwsOLi4jxex9SpU1VSUqLrrrtOmZmZys/P9zj+2bNnFRoa6vEcZWVlHpe2ALSdr90DAOjaevXqpUGDBnmsffbZZ+7/bmpq0v3336/MzEyvfQcMGKC6ujo5nU45nU69/PLLCgsLU3l5uVJTU9XQ0OD1XG1x8uRJffnll+7o+P9mzJih1NRUvfnmm8rPz1dubq6efPJJzZ49W01NTRo3bpyWLVvmtV9kZKQkady4cYqOjtbzzz+vqKgoNTU1KSEhwf06RowYobKyMv3Hf/yH/vM//1MTJkzQbbfdps2bN6upqUmRkZHatWuX1/H79OnTptcNwBNxA6BNRowYob///e9eAXTRoUOHVF1drccee0zR0dGSpAMHDrTo2H5+fmpsbGzxLE8//bR8fHya/fj6RdHR0crIyFBGRoZycnL0/PPPa/bs2RoxYoRef/11xcbGytfX+6/GkydPqrS0VGvWrFFKSookae/evV7bBQcHKz09Xenp6fqnf/on3XHHHTp16pRGjBihyspK+fr6ut+HA6BjcFkKQJvMmzdP77zzjmbNmqWSkhJ99NFH2rZtm2bPni3pwtkbPz8/Pfvsszp+/Li2bdumP/zhDy06dmxsrMrKylRSUqLq6mrV19e7Hztz5owqKytVUVGh3bt367777tPSpUv16KOPXjK0srKytGPHDpWVlen999/X22+/rfj4eEkX3mx86tQp/fM//7Pee+89HT9+XPn5+Zo2bZoaGxv1gx/8QKGhoVq7dq0+/vhjvf3228rOzvY4/lNPPaU///nPOnLkiD788ENt2rRJ/fr1c39MPTk5WePHj9eOHTv0ySefaP/+/frXf/3XFscegJYhbgC0yY9+9CMVFhbqo48+UkpKin784x9rwYIF7ks5YWFh2rBhgzZt2qQf/vCHeuyxx/TEE0+06Nh333237rjjDo0ePVphYWF67bXX3I8tXLhQkZGRGjRokCZNmqSamhq99dZbmjdv3iWP19jYqFmzZik+Pl533HGHrrvuOq1cuVKSFBUVpX379qmxsVGpqalKSEjQb3/7W4WEhMjHx0c+Pj7685//rKKiIiUkJGjOnDl6/PHHPY4fFBSkZcuWKSkpSTfccIM++eQT5eXlycfHRw6HQ3l5eRo1apSmTZumwYMH65577tEnn3yiiIiIK/1jB3AZDsuyLLuHAAAAaC+cuQEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGCU/wGn1/tMFIuz6AAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(data = data, x = not_suf)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "9ba7095a-b22a-4db7-9996-80adf8f096eb",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmmklEQVR4nO3df1RVdb7/8dcB4kAqWIgHKETMLK6YXWEqKEqtMOy6blM3aWz5Y9QpRpOUfhiZP8eGcabMKfNX5TVvTXGrybw3rsJUommtlKCYZMyrFDQdIvwBqAUJ+/uHy/O9Zw4a8mvDp+djrbOW53P23ud9nEU+Z+8NOCzLsgQAAGAIP7sHAAAA6EjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMEmD3AF2tublZX3/9tfr06SOHw2H3OAAAoBUsy1J9fb2ioqLk53f2czM/ubj5+uuvFR0dbfcYAACgDSorK3XxxRefdZufXNz06dNH0qm/nJCQEJunAQAArVFXV6fo6GjPv+Nn85OLm9OXokJCQogbAAB6mNbcUsINxQAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxia9xs375d48aNU1RUlBwOhzZt2vSj+xQWFiohIUFBQUEaNGiQ1qxZ0/mDAgCAHsPWuDl+/LiGDx+ulStXtmr78vJyjR07VikpKSouLtajjz6qzMxMvfHGG508KQAA6Cls/a3gaWlpSktLa/X2a9as0YABA7RixQpJUlxcnPbs2aMnnnhCd9xxRydNCQAAepIedc/NBx98oNTUVK+1MWPGaM+ePfrhhx9a3KehoUF1dXVeDwAAYC5bz9ycq6qqKrlcLq81l8ulkydPqqamRpGRkT775OTkaPHixV01okfCQxu7/D2BnqDoD5PsHqHdKpYMs3sEoFsasKDU7hEk9bAzN5LkcDi8nluW1eL6adnZ2aqtrfU8KisrO31GAABgnx515iYiIkJVVVVea9XV1QoICFBYWFiL+zidTjmdzq4YDwAAdAM96sxNUlKSCgoKvNby8/OVmJio8847z6apAABAd2Jr3Bw7dkwlJSUqKSmRdOpbvUtKSlRRUSHp1CWlSZP+//X5jIwMffnll8rKylJZWZnWr1+vF154QQ8++KAd4wMAgG7I1stSe/bs0ahRozzPs7KyJEmTJ0/Whg0b5Ha7PaEjSbGxscrLy9OcOXP07LPPKioqSk8//TTfBg4AADxsjZuRI0d6bghuyYYNG3zWbrjhBn388cedOBUAAOjJetQ9NwAAAD+GuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU2+Nm1apVio2NVVBQkBISErRjx46zbv/yyy9r+PDhOv/88xUZGalf/vKXOnToUBdNCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7d9//31NmjRJ06ZN02effabXXntNu3fv1vTp07t4cgAA0F3ZGjfLly/XtGnTNH36dMXFxWnFihWKjo7W6tWrW9z+ww8/1MCBA5WZmanY2Fhdd911uvfee7Vnz54zvkdDQ4Pq6uq8HgAAwFy2xU1jY6OKioqUmprqtZ6amqpdu3a1uE9ycrK++uor5eXlybIsffPNN3r99dd16623nvF9cnJyFBoa6nlER0d36OcAAADdi21xU1NTo6amJrlcLq91l8ulqqqqFvdJTk7Wyy+/rPT0dAUGBioiIkJ9+/bVM888c8b3yc7OVm1tredRWVnZoZ8DAAB0L7bfUOxwOLyeW5bls3ba3r17lZmZqQULFqioqEhbtmxReXm5MjIyznh8p9OpkJAQrwcAADBXgF1v3K9fP/n7+/ucpamurvY5m3NaTk6Orr32Wj300EOSpCuuuEK9evVSSkqKli5dqsjIyE6fGwAAdG+2nbkJDAxUQkKCCgoKvNYLCgqUnJzc4j4nTpyQn5/3yP7+/pJOnfEBAACw9bJUVlaWnn/+ea1fv15lZWWaM2eOKioqPJeZsrOzNWnSJM/248aN05///GetXr1aBw8e1M6dO5WZmamrrrpKUVFRdn0MAADQjdh2WUqS0tPTdejQIS1ZskRut1vx8fHKy8tTTEyMJMntdnv9zJspU6aovr5eK1eu1AMPPKC+fftq9OjRWrZsmV0fAQAAdDMO6yd2Paeurk6hoaGqra3t1JuLEx7a2GnHBnqyoj9M+vGNurmKJcPsHgHolgYsKO20Y5/Lv9+2f7cUAABARyJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTb42bVqlWKjY1VUFCQEhIStGPHjrNu39DQoHnz5ikmJkZOp1OXXHKJ1q9f30XTAgCA7i7AzjfPzc3V7NmztWrVKl177bVau3at0tLStHfvXg0YMKDFfcaPH69vvvlGL7zwggYPHqzq6mqdPHmyiycHAADdla1xs3z5ck2bNk3Tp0+XJK1YsUJbt27V6tWrlZOT47P9li1bVFhYqIMHD+rCCy+UJA0cOLArRwYAAN2cbZelGhsbVVRUpNTUVK/11NRU7dq1q8V9Nm/erMTERP3+97/XRRddpCFDhujBBx/Ud999d8b3aWhoUF1dndcDAACYy7YzNzU1NWpqapLL5fJad7lcqqqqanGfgwcP6v3331dQUJDefPNN1dTUaMaMGTp8+PAZ77vJycnR4sWLO3x+AADQPdl+Q7HD4fB6blmWz9ppzc3Ncjgcevnll3XVVVdp7NixWr58uTZs2HDGszfZ2dmqra31PCorKzv8MwAAgO7DtjM3/fr1k7+/v89Zmurqap+zOadFRkbqoosuUmhoqGctLi5OlmXpq6++0qWXXuqzj9PplNPp7NjhAQBAt2XbmZvAwEAlJCSooKDAa72goEDJyckt7nPttdfq66+/1rFjxzxrn3/+ufz8/HTxxRd36rwAAKBnsPWyVFZWlp5//nmtX79eZWVlmjNnjioqKpSRkSHp1CWlSZMmebafMGGCwsLC9Mtf/lJ79+7V9u3b9dBDD2nq1KkKDg6262MAAIBuxNZvBU9PT9ehQ4e0ZMkSud1uxcfHKy8vTzExMZIkt9utiooKz/a9e/dWQUGBZs2apcTERIWFhWn8+PFaunSpXR8BAAB0M7bGjSTNmDFDM2bMaPG1DRs2+KxdfvnlPpeyAAAATrP9u6UAAAA6EnEDAACM0qa4GT16tI4ePeqzXldXp9GjR7d3JgAAgDZrU9xs27ZNjY2NPuvff//9j/5WbwAAgM50TjcUf/rpp54/79271+sH8DU1NWnLli266KKLOm46AACAc3ROcXPllVfK4XDI4XC0ePkpODhYzzzzTIcNBwAAcK7OKW7Ky8tlWZYGDRqkjz76SOHh4Z7XAgMD1b9/f/n7+3f4kAAAAK11TnFz+ofrNTc3d8owAAAA7dXmH+L3+eefa9u2baqurvaJnQULFrR7MAAAgLZoU9w899xz+vWvf61+/fopIiJCDofD85rD4SBuAACAbdoUN0uXLtXjjz+uuXPndvQ8AAAA7dKmn3Nz5MgR3XnnnR09CwAAQLu1KW7uvPNO5efnd/QsAAAA7damy1KDBw/W/Pnz9eGHH2rYsGE677zzvF7PzMzskOEAAADOVZviZt26derdu7cKCwtVWFjo9ZrD4SBuAACAbdoUN+Xl5R09BwAAQIdo0z03AAAA3VWbztxMnTr1rK+vX7++TcMAAAC0V5vi5siRI17Pf/jhB/31r3/V0aNHW/yFmgAAAF2lTXHz5ptv+qw1NzdrxowZGjRoULuHAgAAaKsOu+fGz89Pc+bM0VNPPdVRhwQAADhnHXpD8YEDB3Ty5MmOPCQAAMA5adNlqaysLK/nlmXJ7Xbr7bff1uTJkztkMAAAgLZoU9wUFxd7Pffz81N4eLiefPLJH/1OKgAAgM7Uprh57733OnoOAACADtGmuDnt22+/1b59++RwODRkyBCFh4d31FwAAABt0qYbio8fP66pU6cqMjJS119/vVJSUhQVFaVp06bpxIkTHT0jAABAq7UpbrKyslRYWKj/+q//0tGjR3X06FG99dZbKiws1AMPPNDRMwIAALRamy5LvfHGG3r99dc1cuRIz9rYsWMVHBys8ePHa/Xq1R01HwAAwDlp05mbEydOyOVy+az379+fy1IAAMBWbYqbpKQkLVy4UN9//71n7bvvvtPixYuVlJTUYcMBAACcqzZdllqxYoXS0tJ08cUXa/jw4XI4HCopKZHT6VR+fn5HzwgAANBqbYqbYcOGaf/+/XrppZf0t7/9TZZl6a677tLdd9+t4ODgjp4RAACg1doUNzk5OXK5XPrVr37ltb5+/Xp9++23mjt3bocMBwAAcK7adM/N2rVrdfnll/usDx06VGvWrGn3UAAAAG3VpripqqpSZGSkz3p4eLjcbne7hwIAAGirNsVNdHS0du7c6bO+c+dORUVFtXsoAACAtmrTPTfTp0/X7Nmz9cMPP2j06NGSpHfeeUcPP/wwP6EYAADYqk1x8/DDD+vw4cOaMWOGGhsbJUlBQUGaO3eusrOzO3RAAACAc9GmuHE4HFq2bJnmz5+vsrIyBQcH69JLL5XT6ezo+QAAAM5Jm+LmtN69e+tnP/tZR80CAADQbm26oRgAAKC7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFFsj5tVq1YpNjZWQUFBSkhI0I4dO1q1386dOxUQEKArr7yycwcEAAA9iq1xk5ubq9mzZ2vevHkqLi5WSkqK0tLSVFFRcdb9amtrNWnSJN14441dNCkAAOgpbI2b5cuXa9q0aZo+fbri4uK0YsUKRUdHa/Xq1Wfd795779WECROUlJTURZMCAICewra4aWxsVFFRkVJTU73WU1NTtWvXrjPu9+///u86cOCAFi5c2Kr3aWhoUF1dndcDAACYy7a4qampUVNTk1wul9e6y+VSVVVVi/vs379fjzzyiF5++WUFBAS06n1ycnIUGhrqeURHR7d7dgAA0H3ZfkOxw+Hwem5Zls+aJDU1NWnChAlavHixhgwZ0urjZ2dnq7a21vOorKxs98wAAKD7at3pj07Qr18/+fv7+5ylqa6u9jmbI0n19fXas2ePiouLdd9990mSmpubZVmWAgIClJ+fr9GjR/vs53Q65XQ6O+dDAACAbse2MzeBgYFKSEhQQUGB13pBQYGSk5N9tg8JCVFpaalKSko8j4yMDF122WUqKSnR1Vdf3VWjAwCAbsy2MzeSlJWVpYkTJyoxMVFJSUlat26dKioqlJGRIenUJaW///3v2rhxo/z8/BQfH++1f//+/RUUFOSzDgAAfrpsjZv09HQdOnRIS5YskdvtVnx8vPLy8hQTEyNJcrvdP/ozbwAAAP4vh2VZlt1DdKW6ujqFhoaqtrZWISEhnfY+CQ9t7LRjAz1Z0R8m2T1Cu1UsGWb3CEC3NGBBaacd+1z+/bb9u6UAAAA6EnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKLbHzapVqxQbG6ugoCAlJCRox44dZ9z2z3/+s26++WaFh4crJCRESUlJ2rp1axdOCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7bdv366bb75ZeXl5Kioq0qhRozRu3DgVFxd38eQAAKC7cliWZdn15ldffbVGjBih1atXe9bi4uJ02223KScnp1XHGDp0qNLT07VgwYIWX29oaFBDQ4PneV1dnaKjo1VbW6uQkJD2fYCzSHhoY6cdG+jJiv4wye4R2q1iyTC7RwC6pQELSjvt2HV1dQoNDW3Vv9+2nblpbGxUUVGRUlNTvdZTU1O1a9euVh2jublZ9fX1uvDCC8+4TU5OjkJDQz2P6Ojods0NAAC6N9vipqamRk1NTXK5XF7rLpdLVVVVrTrGk08+qePHj2v8+PFn3CY7O1u1tbWeR2VlZbvmBgAA3VuA3QM4HA6v55Zl+ay15JVXXtGiRYv01ltvqX///mfczul0yul0tntOAADQM9gWN/369ZO/v7/PWZrq6mqfszn/KDc3V9OmTdNrr72mm266qTPHBAAAPYxtl6UCAwOVkJCggoICr/WCggIlJyefcb9XXnlFU6ZM0Z/+9CfdeuutnT0mAADoYWy9LJWVlaWJEycqMTFRSUlJWrdunSoqKpSRkSHp1P0yf//737Vx46nvPHrllVc0adIk/fGPf9Q111zjOesTHBys0NBQ2z4HAADoPmyNm/T0dB06dEhLliyR2+1WfHy88vLyFBMTI0lyu91eP/Nm7dq1OnnypGbOnKmZM2d61idPnqwNGzZ09fgAAKAbsv2G4hkzZmjGjBktvvaPwbJt27bOHwgAAPRotv/6BQAAgI5E3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAotsfNqlWrFBsbq6CgICUkJGjHjh1n3b6wsFAJCQkKCgrSoEGDtGbNmi6aFAAA9AS2xk1ubq5mz56tefPmqbi4WCkpKUpLS1NFRUWL25eXl2vs2LFKSUlRcXGxHn30UWVmZuqNN97o4skBAEB3ZWvcLF++XNOmTdP06dMVFxenFStWKDo6WqtXr25x+zVr1mjAgAFasWKF4uLiNH36dE2dOlVPPPFEF08OAAC6qwC73rixsVFFRUV65JFHvNZTU1O1a9euFvf54IMPlJqa6rU2ZswYvfDCC/rhhx903nnn+ezT0NCghoYGz/Pa2lpJUl1dXXs/wlk1NXzXqccHeqrO/trrCvXfN9k9AtAtdebX9+ljW5b1o9vaFjc1NTVqamqSy+XyWne5XKqqqmpxn6qqqha3P3nypGpqahQZGemzT05OjhYvXuyzHh0d3Y7pAbRV6DMZdo8AoLPkhHb6W9TX1ys09OzvY1vcnOZwOLyeW5bls/Zj27e0flp2draysrI8z5ubm3X48GGFhYWd9X1ghrq6OkVHR6uyslIhISF2jwOgA/H1/dNiWZbq6+sVFRX1o9vaFjf9+vWTv7+/z1ma6upqn7Mzp0VERLS4fUBAgMLCwlrcx+l0yul0eq317du37YOjRwoJCeE/foCh+Pr+6fixMzan2XZDcWBgoBISElRQUOC1XlBQoOTk5Bb3SUpK8tk+Pz9fiYmJLd5vAwAAfnps/W6prKwsPf/881q/fr3Kyso0Z84cVVRUKCPj1DX57OxsTZo0ybN9RkaGvvzyS2VlZamsrEzr16/XCy+8oAcffNCujwAAALoZW++5SU9P16FDh7RkyRK53W7Fx8crLy9PMTExkiS32+31M29iY2OVl5enOXPm6Nlnn1VUVJSefvpp3XHHHXZ9BHRzTqdTCxcu9Lk0CaDn4+sbZ+KwWvM9VQAAAD2E7b9+AQAAoCMRNwAAwCjEDQAAMApxAwAAjELcwAiLFi2Sw+HwekRERHhetyxLixYtUlRUlIKDgzVy5Eh99tlnNk4MoDVycnLkcDg0e/Zsz9qUKVN8vt6vueYar/2qqqo0ceJERUREqFevXhoxYoRef/31Lp4ediFuYIyhQ4fK7XZ7HqWlpZ7Xfv/732v58uVauXKldu/erYiICN18882qr6+3cWIAZ7N7926tW7dOV1xxhc9rt9xyi9fXe15entfrEydO1L59+7R582aVlpbq9ttvV3p6uoqLi7tqfNiIuIExAgICFBER4XmEh4dLOnXWZsWKFZo3b55uv/12xcfH68UXX9SJEyf0pz/9yeapAbTk2LFjuvvuu/Xcc8/pggsu8Hnd6XR6fb1feOGFXq9/8MEHmjVrlq666ioNGjRIjz32mPr27auPP/64qz4CbETcwBj79+9XVFSUYmNjddddd+ngwYOSpPLyclVVVSk1NdWzrdPp1A033KBdu3bZNS6As5g5c6ZuvfVW3XTTTS2+vm3bNvXv319DhgzRr371K1VXV3u9ft111yk3N1eHDx9Wc3OzXn31VTU0NGjkyJFdMD3sZvtvBQc6wtVXX62NGzdqyJAh+uabb7R06VIlJyfrs88+8/yy1X/8hawul0tffvmlHeMCOItXX31VH3/8sXbv3t3i62lpabrzzjsVExOj8vJyzZ8/X6NHj1ZRUZHnpxXn5uYqPT1dYWFhCggI0Pnnn68333xTl1xySVd+FNiEuIER0tLSPH8eNmyYkpKSdMkll+jFF1/03GjocDi89rEsy2cNgL0qKyt1//33Kz8/X0FBQS1uk56e7vlzfHy8EhMTFRMTo7ffflu33367JOmxxx7TkSNH9Je//EX9+vXTpk2bdOedd2rHjh0aNmxYl3wW2Ie4gZF69eqlYcOGaf/+/brtttsknfruicjISM821dXVPmdzANirqKhI1dXVSkhI8Kw1NTVp+/btWrlypRoaGuTv7++1T2RkpGJiYrR//35J0oEDB7Ry5Ur99a9/1dChQyVJw4cP144dO/Tss89qzZo1XfeBYAvuuYGRGhoaVFZWpsjISMXGxioiIkIFBQWe1xsbG1VYWKjk5GQbpwTwj2688UaVlpaqpKTE80hMTNTdd9+tkpISn7CRpEOHDqmystLzf15OnDghSfLz8/4nzt/fX83NzZ3/IWA7ztzACA8++KDGjRunAQMGqLq6WkuXLlVdXZ0mT57s+RkZv/3tb3XppZfq0ksv1W9/+1udf/75mjBhgt2jA/g/+vTpo/j4eK+1Xr16KSwsTPHx8Tp27JgWLVqkO+64Q5GRkfriiy/06KOPql+/fvr5z38uSbr88ss1ePBg3XvvvXriiScUFhamTZs2qaCgQP/93/9tx8dCFyNuYISvvvpKv/jFL1RTU6Pw8HBdc801+vDDDxUTEyNJevjhh/Xdd99pxowZOnLkiK6++mrl5+erT58+Nk8O4Fz4+/urtLRUGzdu1NGjRxUZGalRo0YpNzfX8/V83nnnKS8vT4888ojGjRunY8eOafDgwXrxxRc1duxYmz8BuoLDsizL7iEAAAA6CvfcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAw1rZt2+RwOHT06FG7RwHQhYgbAGc0ZcoUz29V/7+6KhoWLVqkK6+80md94MCBcjgccjgcCg4O1sCBAzV+/Hi9++67XtslJyfL7XYrNDS0U+cE0L0QNwC6HcuydPLkybNus2TJErndbu3bt08bN25U3759ddNNN+nxxx/3bBMYGKiIiAg5HI7OHhlAN0LcAGi3Xbt26frrr1dwcLCio6OVmZmp48ePe15/6aWXlJiYqD59+igiIkITJkxQdXW15/XTZ4K2bt2qxMREOZ1O/cd//IcWL16sTz75xHOWZsOGDZ59Th9rwIABuv7667Vu3TrNnz9fCxYs0L59+7yOe/oM05dffqlx48bpggsuUK9evTR06FDl5eV5jrl3716NHTtWvXv3lsvl0sSJE1VTU+N5fcuWLbruuuvUt29fhYWF6V/+5V904MABz+uNjY267777FBkZqaCgIA0cOFA5OTme12tra3XPPfeof//+CgkJ0ejRo/XJJ5902P8OAE4hbgC0S2lpqcaMGaPbb79dn376qXJzc/X+++/rvvvu82zT2Nio3/zmN/rkk0+0adMmlZeXa8qUKT7Hevjhh5WTk6OysjKlpqbqgQce0NChQ+V2u+V2u5Wenn7WWe6//35ZlqW33nqrxddnzpyphoYGbd++XaWlpVq2bJl69+4tSXK73brhhht05ZVXas+ePdqyZYu++eYbjR8/3rP/8ePHlZWVpd27d+udd96Rn5+ffv7zn6u5uVmS9PTTT2vz5s36z//8T+3bt08vvfSSBg4cKOnU2ahbb71VVVVVysvLU1FRkUaMGKEbb7xRhw8fPpe/cgA/xgKAM5g8ebLl7+9v9erVy+sRFBRkSbKOHDliTZw40brnnnu89tuxY4fl5+dnfffddy0e96OPPrIkWfX19ZZlWdZ7771nSbI2bdrktd3ChQut4cOH++wfExNjPfXUUy0e2+VyWb/+9a+9jnvkyBHLsixr2LBh1qJFi1rcb/78+VZqaqrXWmVlpSXJ2rdvX4v7VFdXW5Ks0tJSy7Isa9asWdbo0aOt5uZmn23feecdKyQkxPr++++91i+55BJr7dq1LR4fQNtw5gbAWY0aNUolJSVej+eff97zelFRkTZs2KDevXt7HmPGjFFzc7PKy8slScXFxfrXf/1XxcTEqE+fPho5cqQkqaKiwuu9EhMT2z2vZVlnvMcmMzNTS5cu1bXXXquFCxfq008/9foc7733ntfnuPzyyyXJc+npwIEDmjBhggYNGqSQkBDFxsZ6fY4pU6aopKREl112mTIzM5Wfn+91/GPHjiksLMzrPcrLy70ubQFovwC7BwDQvfXq1UuDBw/2Wvvqq688f25ubta9996rzMxMn30HDBig48ePKzU1VampqXrppZcUHh6uiooKjRkzRo2NjT7v1R6HDh3St99+64mOfzR9+nSNGTNGb7/9tvLz85WTk6Mnn3xSs2bNUnNzs8aNG6dly5b57BcZGSlJGjdunKKjo/Xcc88pKipKzc3Nio+P93yOESNGqLy8XP/zP/+jv/zlLxo/frxuuukmvf7662publZkZKS2bdvmc/y+ffu263MD8EbcAGiXESNG6LPPPvMJoNNKS0tVU1Oj3/3ud4qOjpYk7dmzp1XHDgwMVFNTU6tn+eMf/yg/P78Wv339tOjoaGVkZCgjI0PZ2dl67rnnNGvWLI0YMUJvvPGGBg4cqIAA3/80Hjp0SGVlZVq7dq1SUlIkSe+//77PdiEhIUpPT1d6err+7d/+TbfccosOHz6sESNGqKqqSgEBAZ77cAB0Di5LAWiXuXPn6oMPPtDMmTNVUlKi/fv3a/PmzZo1a5akU2dvAgMD9cwzz+jgwYPavHmzfvOb37Tq2AMHDlR5eblKSkpUU1OjhoYGz2v19fWqqqpSZWWltm/frnvuuUdLly7V448/fsbQmj17trZu3ary8nJ9/PHHevfddxUXFyfp1M3Ghw8f1i9+8Qt99NFHOnjwoPLz8zV16lQ1NTXpggsuUFhYmNatW6f//d//1bvvvqusrCyv4z/11FN69dVX9be//U2ff/65XnvtNUVERHi+TT0pKUm33Xabtm7dqi+++EK7du3SY4891urYA9A6xA2AdrniiitUWFio/fv3KyUlRf/8z/+s+fPney7lhIeHa8OGDXrttdf0T//0T/rd736nJ554olXHvuOOO3TLLbdo1KhRCg8P1yuvvOJ5bcGCBYqMjNTgwYM1ceJE1dbW6p133tHcuXPPeLympibNnDlTcXFxuuWWW3TZZZdp1apVkqSoqCjt3LlTTU1NGjNmjOLj43X//fcrNDRUfn5+8vPz06uvvqqioiLFx8drzpw5+sMf/uB1/N69e2vZsmVKTEzUz372M33xxRfKy8uTn5+fHA6H8vLydP3112vq1KkaMmSI7rrrLn3xxRdyuVzn+tcO4CwclmVZdg8BAADQUThzAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCj/D84Mk70lBymeAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sns.countplot(data = data, x = suff)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "6f5b5e9c-ffcd-4a3d-b3c1-750c101da277",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\3227672255.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
+ " female_suffered = suff[0]\n",
+ "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\3227672255.py:2: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
+ " male_suffered = suff[1]\n"
+ ]
+ }
+ ],
+ "source": [
+ "female_suffered = suff[0]\n",
+ "male_suffered = suff[1]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "1b51947d-0785-4f5b-bc9f-de56cedbb420",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Female suffered percent 5.446623093681917\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_gend = data['Sex'].count()\n",
+ "print(\"Female suffered percent \", (female_suffered/total_gend)*100)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "id": "c440e9cc-3288-45e7-afbb-a12c88d40018",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Male suffered percent 49.89106753812636\n"
+ ]
+ }
+ ],
+ "source": [
+ "total_gend = data['Sex'].count()\n",
+ "print(\"Male suffered percent \", (male_suffered/total_gend)*100)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7a15fa1e-b7f6-4b8d-bd01-9325972c5e8b",
+ "metadata": {},
+ "source": [
+ "## Analyze the chest pain type"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "id": "877fec62-c514-469f-a0e0-072037f7d0f3",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "ChestPainType\n",
+ "ASY 496\n",
+ "NAP 203\n",
+ "ATA 173\n",
+ "TA 46\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data['ChestPainType'].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "id": "49a43505-823a-4f83-a731-a71b7ccc75b5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6GklEQVR4nO3de7iVdZ3//9eWwxYQtoK6t3vcKY2ojaBN2DhqKclJHLOkxPPkV+xSUZQR069RSZaQmkecbMYLxHQcdCoPkzOK+k1KSUXKPI5ZOV/1GztSkJO0QVi/PxrXry0nRfgs3D4e17WuXPf9udd639S1Wjy911p1lUqlEgAAAACAzWyrWg8AAAAAAHwwiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAU0bnWA2wJVq9end/97nfp2bNn6urqaj0OAAAAALyvVCqVLFmyJM3Nzdlqq3Vf/yhGJvnd736XlpaWWo8BAAAAAO9rL7/8cnbeeed17hcjk/Ts2TPJn/6wevXqVeNpAAAAAOD9ZfHixWlpaal2tnURI5PqR7N79eolRgIAAADARtrQVyD6ARsAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCImsbIiRMnpq6urt2tqampur9SqWTixIlpbm5Ot27dMmjQoDzzzDPtHqOtrS1jx47N9ttvnx49euSII47IK6+8UvpUAAAAAIANqPmVkXvttVfmzZtXvT311FPVfZdeemmuuOKKXHvttZkzZ06ampoydOjQLFmypLpm3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqFqcDAAAAAKxD55oP0Llzu6sh31KpVHLVVVdlwoQJGTlyZJLkxhtvTGNjY2655ZaceuqpWbRoUaZOnZqbbropQ4YMSZLcfPPNaWlpyf3335/hw4cXPRcAAAAAYN1qfmXkCy+8kObm5vTt2zfHHHNMfvvb3yZJXnzxxbS2tmbYsGHVtfX19Tn44IMze/bsJMncuXOzcuXKdmuam5vTv3//6pq1aWtry+LFi9vdAAAAAIDNq6Yxcr/99sv3vve93Hvvvbn++uvT2tqaAw44IK+99lpaW1uTJI2Nje2OaWxsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smPjMAAAAA4O1qGiNHjBiRz33ucxkwYECGDBmSu+++O8mfPo79lrq6unbHVCqVNba93YbWXHDBBVm0aFH19vLLL7+HswAAAAAA3omaf0z7z/Xo0SMDBgzICy+8UP0eybdf4Th//vzq1ZJNTU1ZsWJFFi5cuM41a1NfX59evXq1uwEAAAAAm9cWFSPb2try3HPPZaeddkrfvn3T1NSU++67r7p/xYoVmTVrVg444IAkycCBA9OlS5d2a+bNm5enn366ugYAAAAA2DLU9Ne0zz333Hz605/Ohz70ocyfPz/f/OY3s3jx4nzhC19IXV1dxo0bl0mTJqVfv37p169fJk2alO7du+e4445LkjQ0NGT06NEZP358+vTpk969e+fcc8+tfuwbAAAAANhy1DRGvvLKKzn22GPz6quvZocddsjf/u3f5pFHHskuu+ySJDnvvPOyfPnyjBkzJgsXLsx+++2XmTNnpmfPntXHuPLKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSpVqcFAEAHc+CUA2s9ArCZPDz24VqPAPCBUlepVCq1HqLWFi9enIaGhixatMj3RwIAsAYxEjouMRJg03infW2L+s5IAAAAAKDjEiMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCILSZGTp48OXV1dRk3blx1W6VSycSJE9Pc3Jxu3bpl0KBBeeaZZ9od19bWlrFjx2b77bdPjx49csQRR+SVV14pPD0AAAAAsCFbRIycM2dO/vmf/zl77713u+2XXnpprrjiilx77bWZM2dOmpqaMnTo0CxZsqS6Zty4cbn99tszY8aMPPTQQ1m6dGkOP/zwrFq1qvRpAAAAAADrUfMYuXTp0hx//PG5/vrrs91221W3VyqVXHXVVZkwYUJGjhyZ/v3758Ybb8wbb7yRW265JUmyaNGiTJ06NZdffnmGDBmSv/7rv87NN9+cp556Kvfff3+tTgkAAAAAWIuax8gzzjgjf/d3f5chQ4a02/7iiy+mtbU1w4YNq26rr6/PwQcfnNmzZydJ5s6dm5UrV7Zb09zcnP79+1fXAAAAAABbhs61fPIZM2bk5z//eebMmbPGvtbW1iRJY2Nju+2NjY35v//3/1bXdO3atd0VlW+teev4tWlra0tbW1v1/uLFizf6HAAAAACAd6ZmV0a+/PLLOfvss3PzzTdn6623Xue6urq6dvcrlcoa295uQ2smT56choaG6q2lpeXdDQ8AAAAAvGs1i5Fz587N/PnzM3DgwHTu3DmdO3fOrFmzcs0116Rz587VKyLffoXj/Pnzq/uampqyYsWKLFy4cJ1r1uaCCy7IokWLqreXX355E58dAAAAAPB2NYuRgwcPzlNPPZUnnniiett3331z/PHH54knnsiHP/zhNDU15b777qses2LFisyaNSsHHHBAkmTgwIHp0qVLuzXz5s3L008/XV2zNvX19enVq1e7GwAAAACwedXsOyN79uyZ/v37t9vWo0eP9OnTp7p93LhxmTRpUvr165d+/fpl0qRJ6d69e4477rgkSUNDQ0aPHp3x48enT58+6d27d84999wMGDBgjR/EAQAAAABqq6Y/YLMh5513XpYvX54xY8Zk4cKF2W+//TJz5sz07NmzuubKK69M586dM2rUqCxfvjyDBw/O9OnT06lTpxpODgAAAAC8XV2lUqnUeohaW7x4cRoaGrJo0SIf2QYAYA0HTjmw1iMAm8nDYx+u9QgAHcI77Ws1+85IAAAAAOCDRYwEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIiaxsjrrrsue++9d3r16pVevXpl//33z3/+539W91cqlUycODHNzc3p1q1bBg0alGeeeabdY7S1tWXs2LHZfvvt06NHjxxxxBF55ZVXSp8KAAAAALABNY2RO++8c771rW/l8ccfz+OPP55DDjkkn/nMZ6rB8dJLL80VV1yRa6+9NnPmzElTU1OGDh2aJUuWVB9j3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqVqcFAAAAAKxFXaVSqdR6iD/Xu3fvXHbZZTn55JPT3NyccePG5fzzz0/yp6sgGxsbc8kll+TUU0/NokWLssMOO+Smm27K0UcfnST53e9+l5aWlvzHf/xHhg8f/o6ec/HixWloaMiiRYvSq1evzXZuAAC8Px045cBajwBsJg+PfbjWIwB0CO+0r20x3xm5atWqzJgxI8uWLcv++++fF198Ma2trRk2bFh1TX19fQ4++ODMnj07STJ37tysXLmy3Zrm5ub079+/umZt2trasnjx4nY3AAAAAGDzqnmMfOqpp7LNNtukvr4+p512Wm6//fb81V/9VVpbW5MkjY2N7dY3NjZW97W2tqZr167Zbrvt1rlmbSZPnpyGhobqraWlZROfFQAAAADwdjWPkXvssUeeeOKJPPLIIzn99NPzhS98Ic8++2x1f11dXbv1lUpljW1vt6E1F1xwQRYtWlS9vfzyy+/tJAAAAACADap5jOzatWt222237Lvvvpk8eXL22WefXH311WlqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vr/6C91s3AAAAAGDzqnmMfLtKpZK2trb07ds3TU1Nue+++6r7VqxYkVmzZuWAAw5IkgwcODBdunRpt2bevHl5+umnq2sAAAAAgC1D51o++Ze//OWMGDEiLS0tWbJkSWbMmJEHH3ww99xzT+rq6jJu3LhMmjQp/fr1S79+/TJp0qR07949xx13XJKkoaEho0ePzvjx49OnT5/07t075557bgYMGJAhQ4bU8tQAAAAAgLepaYz8/e9/nxNPPDHz5s1LQ0ND9t5779xzzz0ZOnRokuS8887L8uXLM2bMmCxcuDD77bdfZs6cmZ49e1Yf48orr0znzp0zatSoLF++PIMHD8706dPTqVOnWp0WAAAAALAWdZVKpVLrIWpt8eLFaWhoyKJFi3x/JAAAazhwyoG1HgHYTB4e+3CtRwDoEN5pX9vivjMSAAAAAOiYxEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChio2LkIYccktdff32N7YsXL84hhxzyXmcCAAAAADqgjYqRDz74YFasWLHG9j/+8Y/56U9/+p6HAgAAAAA6ns7vZvGTTz5Z/ednn302ra2t1furVq3KPffck7/4i7/YdNMBAAAAAB3Gu4qRH/3oR1NXV5e6urq1fhy7W7dumTJlyiYbDgAAAADoON5VjHzxxRdTqVTy4Q9/OI899lh22GGH6r6uXbtmxx13TKdOnTb5kAAAAADA+9+7ipG77LJLkmT16tWbZRgAAAAAoON6VzHyz/3qV7/Kgw8+mPnz568RJ7/2ta+958EAAAAAgI5lo2Lk9ddfn9NPPz3bb799mpqaUldXV91XV1cnRgIAAAAAa9ioGPnNb34zF198cc4///xNPQ8AAAAA0EFttTEHLVy4MEcdddSmngUAAAAA6MA2KkYeddRRmTlz5qaeBQAAAADowDbqY9q77bZbvvrVr+aRRx7JgAED0qVLl3b7zzrrrE0yHAAAAADQcdRVKpXKuz2ob9++637Aurr89re/fU9DlbZ48eI0NDRk0aJF6dWrV63HAQBgC3PglANrPQKwmTw89uFajwDQIbzTvrZRV0a++OKLGz0YAAAAAPDBtFHfGQkAAAAA8G5t1JWRJ5988nr3T5s2baOGAQAAAAA6ro2KkQsXLmx3f+XKlXn66afz+uuv55BDDtkkgwEAAAAAHctGxcjbb799jW2rV6/OmDFj8uEPf/g9DwUAAAAAdDyb7Dsjt9pqq/zDP/xDrrzyyk31kAAAAABAB7JJf8DmN7/5Td58881N+ZAAAAAAQAexUR/TPuecc9rdr1QqmTdvXu6+++584Qtf2CSDAQAAAAAdy0bFyF/84hft7m+11VbZYYcdcvnll2/wl7YBAAAAgA+mjYqRP/7xjzf1HAAAAABAB7dRMfItf/jDH/L888+nrq4uu+++e3bYYYdNNRcAAAAA0MFs1A/YLFu2LCeffHJ22mmnHHTQQfnkJz+Z5ubmjB49Om+88camnhEAAAAA6AA2Kkaec845mTVrVv793/89r7/+el5//fXceeedmTVrVsaPH7+pZwQAAAAAOoCN+pj2D37wg3z/+9/PoEGDqtsOO+ywdOvWLaNGjcp11123qeYDAAAAADqIjboy8o033khjY+Ma23fccUcf0wYAAAAA1mqjYuT++++fCy+8MH/84x+r25YvX56vf/3r2X///TfZcAAAAABAx7FRH9O+6qqrMmLEiOy8887ZZ599UldXlyeeeCL19fWZOXPmpp4RAAAAAOgANipGDhgwIC+88EJuvvnm/Nd//VcqlUqOOeaYHH/88enWrdumnhEAAAAA6AA2KkZOnjw5jY2N+eIXv9hu+7Rp0/KHP/wh559//iYZDgAAAADoODbqOyP/6Z/+KXvuueca2/faa69897vffc9DAQAAAAAdz0bFyNbW1uy0005rbN9hhx0yb9689zwUAAAAANDxbFSMbGlpycMPP7zG9ocffjjNzc3veSgAAAAAoOPZqO+MPOWUUzJu3LisXLkyhxxySJLkgQceyHnnnZfx48dv0gEBAAAAgI5ho2LkeeedlwULFmTMmDFZsWJFkmTrrbfO+eefnwsuuGCTDggAAAAAdAwbFSPr6upyySWX5Ktf/Wqee+65dOvWLf369Ut9ff2mng8AAAAA6CA2Kka+ZZtttsnHP/7xTTULAAAAANCBbdQP2AAAAAAAvFtiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAETWNkZMnT87HP/7x9OzZMzvuuGM++9nP5vnnn2+3plKpZOLEiWlubk63bt0yaNCgPPPMM+3WtLW1ZezYsdl+++3To0ePHHHEEXnllVdKngoAAAAAsAGda/nks2bNyhlnnJGPf/zjefPNNzNhwoQMGzYszz77bHr06JEkufTSS3PFFVdk+vTp2X333fPNb34zQ4cOzfPPP5+ePXsmScaNG5d///d/z4wZM9KnT5+MHz8+hx9+eObOnZtOnTrV8hQBPpBeumhArUcANpMPfe2pWo8AAMD7WE1j5D333NPu/g033JAdd9wxc+fOzUEHHZRKpZKrrroqEyZMyMiRI5MkN954YxobG3PLLbfk1FNPzaJFizJ16tTcdNNNGTJkSJLk5ptvTktLS+6///4MHz68+HkBAAAAAGvaor4zctGiRUmS3r17J0lefPHFtLa2ZtiwYdU19fX1OfjggzN79uwkydy5c7Ny5cp2a5qbm9O/f//qmrdra2vL4sWL290AAAAAgM1ri4mRlUol55xzTj7xiU+kf//+SZLW1tYkSWNjY7u1jY2N1X2tra3p2rVrtttuu3WuebvJkyenoaGhemtpadnUpwMAAAAAvM0WEyPPPPPMPPnkk/nXf/3XNfbV1dW1u1+pVNbY9nbrW3PBBRdk0aJF1dvLL7+88YMDAAAAAO/IFhEjx44dm7vuuis//vGPs/POO1e3NzU1JckaVzjOnz+/erVkU1NTVqxYkYULF65zzdvV19enV69e7W4AAAAAwOZV0xhZqVRy5pln5oc//GH+z//5P+nbt2+7/X379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAACg9mr6a9pnnHFGbrnlltx5553p2bNn9QrIhoaGdOvWLXV1dRk3blwmTZqUfv36pV+/fpk0aVK6d++e4447rrp29OjRGT9+fPr06ZPevXvn3HPPzYABA6q/rg0AAAAA1F5NY+R1112XJBk0aFC77TfccENOOumkJMl5552X5cuXZ8yYMVm4cGH222+/zJw5Mz179qyuv/LKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSp1KkAAAAAABtQV6lUKrUeotYWL16choaGLFq0yPdHAmwCL100oNYjAJvJh772VK1HqIkDpxxY6xGAzeThsQ/XegSADuGd9rUt4gdsAAAAAICOT4wEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoonOtByAZ+KXv1XoEYDOZe9nf13oEAAAA2GK4MhIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAooqYx8ic/+Uk+/elPp7m5OXV1dbnjjjva7a9UKpk4cWKam5vTrVu3DBo0KM8880y7NW1tbRk7dmy233779OjRI0cccUReeeWVgmcBAAAAALwTNY2Ry5Ytyz777JNrr712rfsvvfTSXHHFFbn22mszZ86cNDU1ZejQoVmyZEl1zbhx43L77bdnxowZeeihh7J06dIcfvjhWbVqVanTAAAAAADegc61fPIRI0ZkxIgRa91XqVRy1VVXZcKECRk5cmSS5MYbb0xjY2NuueWWnHrqqVm0aFGmTp2am266KUOGDEmS3HzzzWlpacn999+f4cOHFzsXAAAAAGD9ttjvjHzxxRfT2tqaYcOGVbfV19fn4IMPzuzZs5Mkc+fOzcqVK9utaW5uTv/+/atr1qatrS2LFy9udwMAAAAANq8tNka2trYmSRobG9ttb2xsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smnh4AAAAAeLstNka+pa6urt39SqWyxra329CaCy64IIsWLareXn755U0yKwAAAACwbltsjGxqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vT69evdrdAAAAAIDNa4uNkX379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAABgy1DTX9NeunRpfv3rX1fvv/jii3niiSfSu3fvfOhDH8q4ceMyadKk9OvXL/369cukSZPSvXv3HHfccUmShoaGjB49OuPHj0+fPn3Su3fvnHvuuRkwYED117UBAAAAgC1DTWPk448/nk996lPV++ecc06S5Atf+EKmT5+e8847L8uXL8+YMWOycOHC7Lfffpk5c2Z69uxZPebKK69M586dM2rUqCxfvjyDBw/O9OnT06lTp+LnAwAAAACsW01j5KBBg1KpVNa5v66uLhMnTszEiRPXuWbrrbfOlClTMmXKlM0wIQAAAACwqWyx3xkJAAAAAHQsYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBGdaz0AAAAAUNasgw6u9QjAZnLwT2bVeoT1cmUkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEh4mR3/nOd9K3b99svfXWGThwYH7605/WeiQAAAAA4M90iBh56623Zty4cZkwYUJ+8Ytf5JOf/GRGjBiRl156qdajAQAAAAD/o0PEyCuuuCKjR4/OKaecko985CO56qqr0tLSkuuuu67WowEAAAAA/+N9HyNXrFiRuXPnZtiwYe22Dxs2LLNnz67RVAAAAADA23Wu9QDv1auvvppVq1alsbGx3fbGxsa0trau9Zi2tra0tbVV7y9atChJsnjx4s036Hqsaltek+cFNr9ava7U2pI/rqr1CMBm8kF9XXtz+Zu1HgHYTD6or2vL3vS6Bh1VrV7X3nreSqWy3nXv+xj5lrq6unb3K5XKGtveMnny5Hz9619fY3tLS8tmmQ344GqYclqtRwDYtCY31HoCgE2q4Xyva0AH01Db17UlS5akYT0zvO9j5Pbbb59OnTqtcRXk/Pnz17ha8i0XXHBBzjnnnOr91atXZ8GCBenTp886AyZsCosXL05LS0tefvnl9OrVq9bjALxnXteAjsbrGtDReF2jlEqlkiVLlqS5uXm96973MbJr164ZOHBg7rvvvhx55JHV7ffdd18+85nPrPWY+vr61NfXt9u27bbbbs4xoZ1evXr5PwGgQ/G6BnQ0XteAjsbrGiWs74rIt7zvY2SSnHPOOTnxxBOz7777Zv/9988///M/56WXXsppp/l4JAAAAABsKTpEjDz66KPz2muv5aKLLsq8efPSv3///Md//Ed22WWXWo8GAAAAAPyPDhEjk2TMmDEZM2ZMrceA9aqvr8+FF164xtcEALxfeV0DOhqva0BH43WNLU1dZUO/tw0AAAAAsAlsVesBAAAAAIAPBjESAAAAAChCjAQAAAAAihAjAQAAAIAixEjYRGbPnp1OnTrl0EMPTZKcdNJJqaurW+/tLbfccks6deqU0047rVbjAyT5/1+7vvWtb7Xbfscdd7R73XrLHnvska5du+b//b//t8a+QYMGVV/v6uvrs/vuu2fSpElZtWrVZpsfYH3e/n7tz/3gBz/Ifvvtl4aGhvTs2TN77bVXxo8fnyT5xje+kZ122ikLFixod8wvf/nLdO3aNXfeeWeR+QHWZkN/7zzppJOqa4cNG5ZOnTrlkUceqd3AfOCJkbCJTJs2LWPHjs1DDz2Ul156KVdffXXmzZtXvSXJDTfcsMa2t44977zzMmPGjLzxxhu1OgWAJMnWW2+dSy65JAsXLlzvuoceeih//OMfc9RRR2X69OlrXfPFL34x8+bNy/PPP5+zzjorX/nKV/Ltb397M0wNsGFvf7/2lvvvvz/HHHNMPv/5z+exxx7L3Llzc/HFF2fFihVJkgsuuCAtLS0544wzqsesXLkyJ510Uo477rh85jOfKX4uAG/5879jXnXVVenVq1e7bVdffXWS5KWXXsrPfvaznHnmmZk6dWqNp+aDTIyETWDZsmW57bbbcvrpp+fwww/P9OnT09DQkKampuotSbbddts1tv33f/93Zs+enf/9v/939txzz3z/+9+v5akAZMiQIWlqasrkyZPXu27q1Kk57rjjcuKJJ2batGmpVCprrOnevXuampqy66675swzz8zgwYNzxx13bKbJAdZtbe/X3vKjH/0on/jEJ/KlL30pe+yxR3bfffd89rOfzZQpU5IknTt3zve+973ceeed1fdqF198cRYsWJBrrrmmFqcDUPXnf8dsaGhIXV3dGtuSP10cc/jhh+f000/PrbfemmXLltV4cj6oxEjYBG699dbsscce2WOPPXLCCSfkhhtuWOtfytdm2rRp+bu/+7s0NDTkhBNO8G+ogJrr1KlTJk2alClTpuSVV15Z65olS5bk3/7t33LCCSdk6NChWbZsWR588MENPna3bt2ycuXKTTwxwIat7/1aU1NTnnnmmTz99NPrPH7PPffMpEmTcvrpp+fee+/N5MmTc8MNN6RXr16lTgFgo1Uqldxwww054YQTsueee2b33XfPbbfdVuux+IASI2ETmDp1ak444YQkyaGHHpqlS5fmgQce2OBxq1evzvTp06vHHnPMMfnZz36WX//615t1XoANOfLII/PRj340F1544Vr3z5gxI/369ctee+2VTp065Zhjjlnvv0xZvXp17rnnntx7770ZPHjw5hobYJ3W935t7Nix+fjHP54BAwZk1113zTHHHJNp06alra2t3WOcffbZ6d+/fw477LCcfvrpOeSQQ4qfB8DGuP/++/PGG29k+PDhSeJCGGpKjIT36Pnnn89jjz2WY445JsmfPsZz9NFHZ9q0aRs8dubMmVm2bFlGjBiRJNl+++0zbNiwd3QswOZ2ySWX5MYbb8yzzz67xr4//0t98qc3tD/84Q/z+uuvt1v3ne98J9tss0223nrrHHHEETnhhBPWGTgBNpcNvV/r0aNH7r777vz617/OV77ylWyzzTYZP358/uZv/qbd93nX1dVlwoQJWb16db7yla/U5FwANsbUqVNz9NFHp3PnzkmSY489No8++mief/75Gk/GB1HnWg8A73dTp07Nm2++mb/4i7+obqtUKunSpUsWLlyY7bbbbp3HTps2LQsWLEj37t2r21avXp1f/OIX+cY3vpFOnTpt1tkB1ueggw7K8OHD8+Uvf7ndrzA+++yzefTRRzNnzpycf/751e2rVq3Kv/7rv+b000+vbjv++OMzYcKE1NfXp7m52esaUBPv9P3aX/7lX+Yv//Ivc8opp2TChAnZfffdc+utt+Z//a//VT3urb/Iv/WfAFu6BQsW5I477sjKlStz3XXXVbevWrUq06ZNyyWXXFLD6fgg8v+g8B68+eab+d73vpfLL788w4YNa7fvc5/7XP7lX/4lZ5555lqPfe2113LnnXdmxowZ2WuvvarbV69enU9+8pP5z//8zxx++OGbdX6ADfnWt76Vj370o9l9992r26ZOnZqDDjoo//iP/9hu7U033ZSpU6e2i5ENDQ3Zbbfdis0L8HYb+35t1113Tffu3f3AA/C+9y//8i/Zeeed1/gRwQceeCCTJ0/OxRdf7F+wUJT/tcF78KMf/SgLFy7M6NGjq79Q9pbPf/7zmTp16jpj5E033ZQ+ffrkqKOOylZbtf/GhMMPPzxTp04VI4GaGzBgQI4//vjqL8quXLkyN910Uy666KL079+/3dpTTjkll156aX75y19mn332qcW4AGt4J+/XXn311bzxxhs57LDDsssuu+T111/PNddck5UrV2bo0KE1mhxg05g6dWo+//nPr/HebZdddsn555+fu+++O5/5zGdqNB0fRL4zEt6DqVOnZsiQIWu8sU3+9G/an3jiifz85z9f67HTpk3LkUceuUaIfOvYH/3oR/n973+/yWcGeLe+8Y1vVH9x9q677sprr72WI488co11/fr1y4ABA3wZOrBFeSfv13r27Jnf/va3+fu///vsueeeGTFiRFpbWzNz5szsscceNZgaYNOYO3dufvnLX+Zzn/vcGvt69uyZYcOGee9GcXWVt/52AQAAAACwGbkyEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAkiR1dXW54447aj3Gu3bSSSfls5/9bK3HAADgHRAjAQA+IFpbWzN27Nh8+MMfTn19fVpaWvLpT386DzzwQJHnX1c0rKurq9569uyZfffdNz/84Q/f8eNeffXVmT59+jta++CDD7Z7vrXd3uljAQDw7nWu9QAAAGx+//3f/50DDzww2267bS699NLsvffeWblyZe69996cccYZ+a//+q+aznfDDTfk0EMPzeuvv57LLrssRx11VB566KHsv//+Gzy2oaHhHT/PAQcckHnz5lXvn3322Vm8eHFuuOGGjXo8AADeHVdGAgB8AIwZMyZ1dXV57LHH8vnPfz6777579tprr5xzzjl55JFHquteffXVHHnkkenevXv69euXu+66q93jPPvssznssMOyzTbbpLGxMSeeeGJeffXV6v7vf//7GTBgQLp165Y+ffpkyJAhWbZsWSZOnJgbb7wxd955Z/UKxAcffLB63Lbbbpumpqbsueee+e53v5utt946d911V1atWpXRo0enb9++6datW/bYY49cffXV7WZ6+xWXgwYNyllnnZXzzjsvvXv3TlNTUyZOnJgk6dq1a5qamqq3bt26pb6+Pk1NTfnjH/+Y5ubmPPPMM+0ef8qUKdlll11SqVSqV1befffd2WeffbL11ltnv/32y1NPPdXumNmzZ+eggw5Kt27d0tLSkrPOOivLli3bmP/qAAA6FDESAKCDW7BgQe65556cccYZ6dGjxxr7t9122+o/f/3rX8+oUaPy5JNP5rDDDsvxxx+fBQsWJEnmzZuXgw8+OB/96Efz+OOP55577snvf//7jBo1qrr/2GOPzcknn5znnnsuDz74YEaOHJlKpZJzzz03o0aNyqGHHpp58+Zl3rx5OeCAA9Y6b5cuXdK5c+esXLkyq1evzs4775zbbrstzz77bL72ta/ly1/+cm677bb1nvONN96YHj165NFHH82ll16aiy66KPfdd996j9l1110zZMiQdldJJn+6avOkk05KXV1ddduXvvSlfPvb386cOXOy44475ogjjsjKlSuTJE899VSGDx+ekSNH5sknn8ytt96ahx56KGeeeeZ6nx8A4IPAx7QBADq4X//616lUKtlzzz03uPakk07KsccemySZNGlSpkyZksceeyyHHnporrvuunzsYx/LpEmTquunTZuWlpaW/OpXv8rSpUvz5ptvZuTIkdlll12SJAMGDKiu7datW9ra2tLU1LTO529ra8tll12WxYsXZ/DgwenSpUu+/vWvV/f37ds3s2fPzm233VaNoGuz995758ILL0yS9OvXL9dee20eeOCBDB06dL3nf8opp+S0007LFVdckfr6+vzyl7/ME088scZ3WF544YXVx7rxxhuz88475/bbb8+oUaNy2WWX5bjjjsu4ceOqz3/NNdfk4IMPznXXXZett956vTMAAHRkrowEAOjgKpVKkrS7sm9d9t577+o/9+jRIz179sz8+fOTJHPnzs2Pf/zjbLPNNtXbW4HzN7/5TfbZZ58MHjw4AwYMyFFHHZXrr78+CxcufEczHnvssdlmm23SvXv3XHHFFfn2t7+dESNGJEm++93vZt99980OO+yQbbbZJtdff31eeumld3weSbLTTjtVz2N9PvvZz6Zz5865/fbbk/wptn7qU5/Krrvu2m7dn3+XZe/evbPHHnvkueeeS/KnP6fp06e3+3MaPnx4Vq9enRdffHGDMwAAdGSujAQA6OD69euXurq6PPfcc2v9Nes/16VLl3b36+rqsnr16iTJ6tWr8+lPfzqXXHLJGsfttNNO6dSpU+67777Mnj07M2fOzJQpUzJhwoQ8+uij6du373qf98orr8yQIUPSq1ev7LjjjtXtt912W/7hH/4hl19+efbff//07Nkzl112WR599NGNPo/16dq1a0488cTccMMNGTlyZG655ZZcddVVGzzuredI/vTndOqpp+ass85aY82HPvShd/RYAAAdlRgJANDB9e7dO8OHD88//uM/5qyzzlrjeyNff/31dt8buS4f+9jH8oMf/CC77rprOnde+9vIurq6HHjggTnwwAPzta99Lbvssktuv/32nHPOOenatWtWrVq11uOampqy2267rbH9pz/9aQ444ICMGTOmuu03v/nNBmd9L0455ZT0798/3/nOd7Jy5cqMHDlyjTWPPPJINSwuXLgwv/rVr6pXiX7sYx/LM888s9bzAQD4oPMxbQCAD4DvfOc7WbVqVf7mb/4mP/jBD/LCCy/kueeeyzXXXNPuI8frc8YZZ2TBggU59thj89hjj+W3v/1tZs6cmZNPPjmrVq3Ko48+mkmTJuXxxx/PSy+9lB/+8If5wx/+kI985CNJ/vQDMU8++WSef/75vPrqq9UffFmf3XbbLY8//njuvffe/OpXv8pXv/rVzJkz5z39WWzIRz7ykfzt3/5tzj///Bx77LHp1q3bGmsuuuiiPPDAA3n66adz0kknZfvtt69edXr++efnZz/7Wc4444w88cQTeeGFF3LXXXdl7Nixm3VuAID3AzESAOADoG/fvvn5z3+eT33qUxk/fnz69++foUOH5oEHHsh11133jh6jubk5Dz/8cFatWpXhw4enf//+Ofvss9PQ0JCtttoqvXr1yk9+8pMcdthh2X333fOVr3wll19+efW7H7/4xS9mjz32qH7/48MPP7zB5zzttNMycuTIHH300dlvv/3y2muvtbtKcnMZPXp0VqxYkZNPPnmt+7/1rW/l7LPPzsCBAzNv3rzcdddd6dq1a5I/fV/lrFmz8sILL+STn/xk/vqv/zpf/epXs9NOO232uQEAtnR1lbe+0RwAAEiSXHzxxZkxY0aeeuqpdtsffPDBfOpTn8rChQvf0UfbAQBoz5WRAADwP5YuXZo5c+ZkypQpa/0BGgAA3hsxEgAA/seZZ56ZT3ziEzn44IPX+RFtAAA2no9pAwAAAABFuDISAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKOL/A2Ow4tgsg6g5AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize = (16,8))\n",
+ "sns.countplot(data=data, x= 'ChestPainType')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "id": "d3a464a2-e2ac-49a0-9cfe-13d4bb180afe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "count_me = data['HeartDisease'].groupby(data['ChestPainType']).count()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "89559fe8-36e9-47be-8b3b-b9001e2f6a2e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sum_me = data['HeartDisease'].groupby(data['ChestPainType']).sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "b46f0a50-7b75-4fe0-ae83-f8ad5c16d5cc",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "ChestPainType\n",
+ "ASY 392\n",
+ "ATA 24\n",
+ "NAP 72\n",
+ "TA 20\n",
+ "Name: HeartDisease, dtype: int64"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sum_me"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "e05b646e-1ce1-45c3-9d68-b9170ca01547",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "no_risk = count_me-sum_me"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "a59db56a-b94f-40d2-8189-8e0412176a9b",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "392 of people who have ASY got heart disease and 104 of people who have ASY doesn't get heart disease.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\2156176294.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n",
+ " print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "ba4f0a8f-de32-43b5-8794-5aa477bdb2ba",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Age | \n",
+ " Sex | \n",
+ " ChestPainType | \n",
+ " RestingBP | \n",
+ " Cholesterol | \n",
+ " FastingBS | \n",
+ " RestingECG | \n",
+ " MaxHR | \n",
+ " ExerciseAngina | \n",
+ " Oldpeak | \n",
+ " ST_Slope | \n",
+ " HeartDisease | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 40 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 140 | \n",
+ " 289 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 172 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 49 | \n",
+ " F | \n",
+ " NAP | \n",
+ " 160 | \n",
+ " 180 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 156 | \n",
+ " N | \n",
+ " 1.0 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 37 | \n",
+ " M | \n",
+ " ATA | \n",
+ " 130 | \n",
+ " 283 | \n",
+ " 0 | \n",
+ " ST | \n",
+ " 98 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 48 | \n",
+ " F | \n",
+ " ASY | \n",
+ " 138 | \n",
+ " 214 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 108 | \n",
+ " Y | \n",
+ " 1.5 | \n",
+ " Flat | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 54 | \n",
+ " M | \n",
+ " NAP | \n",
+ " 150 | \n",
+ " 195 | \n",
+ " 0 | \n",
+ " Normal | \n",
+ " 122 | \n",
+ " N | \n",
+ " 0.0 | \n",
+ " Up | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n",
+ "0 40 M ATA 140 289 0 Normal 172 \n",
+ "1 49 F NAP 160 180 0 Normal 156 \n",
+ "2 37 M ATA 130 283 0 ST 98 \n",
+ "3 48 F ASY 138 214 0 Normal 108 \n",
+ "4 54 M NAP 150 195 0 Normal 122 \n",
+ "\n",
+ " ExerciseAngina Oldpeak ST_Slope HeartDisease \n",
+ "0 N 0.0 Up 0 \n",
+ "1 N 1.0 Flat 1 \n",
+ "2 N 0.0 Up 0 \n",
+ "3 Y 1.5 Flat 1 \n",
+ "4 N 0.0 Up 0 "
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6d053d6e-60d0-4976-b713-2df3f6034a81",
+ "metadata": {},
+ "source": [
+ "## Relation between RestingECG and the HeartDisease\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "beb409a5-332e-4b66-80ed-b16cf13a61bd",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "RestingECG\n",
+ "Normal 552\n",
+ "LVH 188\n",
+ "ST 178\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data[\"RestingECG\"].value_counts()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "5be6b2df-af7e-4ee9-9d8e-1d98a90915a9",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([552., 0., 0., 0., 0., 178., 0., 0., 0., 188.]),\n",
+ " array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. ]),\n",
+ " )"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAKTCAYAAABhHyR8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArHUlEQVR4nO3df5BV9Xn48eeWhZUfuyu/src7rpFEzAxZjAZTIraC4VeZIiaaYopjpVJHR2WyI1QHHRVrZlexglVGZ0yNS2UsbWqxTmuM2Oi2DM0M0pCITVs7pRVGttR03QXd7FK83z863m8v+Jgsu2QBX6+Z88c957l3P4dxZ++8PfeeQqlUKgUAAAAAwIf4paFeAAAAAABw4hIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABAqmqoF3As3n///XjrrbeipqYmCoXCUC8HAAAAAE4qpVIpDhw4EA0NDfFLv/TR1xielAHxrbfeisbGxqFeBgAAAACc1Pbs2RNnnHHGR86clAGxpqYmIv73BGtra4d4NQAAAABwcunu7o7GxsZyZ/soJ2VA/OBjy7W1tQIiAAAAAByjn+frAd1EBQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSVUO9AHKFewpDvQQGoHR3aaiXAAAAADBgrkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAXL16dRQKhYqtWCyWj5dKpVi9enU0NDTEyJEjY9asWfH6669XvEZvb28sX748JkyYEKNHj45FixbF3r17B+dsAAAAAIBB1e8rED/72c/Gvn37yttrr71WPrZmzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPjw4ZwQAAAAADJqqfj+hqqriqsMPlEqleOihh+KOO+6Iyy+/PCIiNmzYEPX19fH000/H9ddfH11dXfHEE0/EU089FXPmzImIiI0bN0ZjY2O89NJLMX/+/AGeDgAAAAAwmPp9BeIbb7wRDQ0NMWnSpPja174W//Zv/xYREbt3746Ojo6YN29eeba6ujpmzpwZ27Zti4iIHTt2xKFDhypmGhoaoqmpqTzzYXp7e6O7u7tiAwAAAACOv34FxOnTp8cf//Efx3e/+9345je/GR0dHTFjxoz4yU9+Eh0dHRERUV9fX/Gc+vr68rGOjo4YMWJEjB07Np35MK2trVFXV1feGhsb+7NsAAAAAOAY9SsgLliwIK644oqYOnVqzJkzJ/76r/86Iv73o8ofKBQKFc8plUpH7TvSz5pZtWpVdHV1lbc9e/b0Z9kAAAAAwDHq90eY/6/Ro0fH1KlT44033ih/L+KRVxLu37+/fFVisViMvr6+6OzsTGc+THV1ddTW1lZsAAAAAMDxN6CA2NvbGz/+8Y/jl3/5l2PSpElRLBZjy5Yt5eN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn7dhXnlypVx6aWXxplnnhn79++Pb3zjG9Hd3R3XXHNNFAqFaG5ujpaWlpg8eXJMnjw5WlpaYtSoUbFkyZKIiKirq4tly5bFihUrYvz48TFu3LhYuXJl+SPRAAAAAMCJpV8Bce/evfFbv/Vb8fbbb8fEiRPji1/8Ynz/+9+PT37ykxERceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqyq+xbt26qKqqisWLF0dPT0/Mnj072traYtiwYYN7ZgAAAADAgBVKpVJpqBfRX93d3VFXVxddXV2n9PchFu756JvPcGIr3X3S/WoBAAAAHxP96WsD+g5EAAAAAODUJiACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACA1IACYmtraxQKhWhubi7vK5VKsXr16mhoaIiRI0fGrFmz4vXXX694Xm9vbyxfvjwmTJgQo0ePjkWLFsXevXsHshQAAAAA4Dg45oC4ffv2ePzxx+Pcc8+t2L9mzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPnzsZwIAAAAADLpjCogHDx6Mq666Kr75zW/G2LFjy/tLpVI89NBDcccdd8Tll18eTU1NsWHDhnjvvffi6aefjoiIrq6ueOKJJ+LBBx+MOXPmxPnnnx8bN26M1157LV566aXBOSsAAAAAYFAcU0C86aab4jd+4zdizpw5Fft3794dHR0dMW/evPK+6urqmDlzZmzbti0iInbs2BGHDh2qmGloaIimpqbyzJF6e3uju7u7YgMAAAAAjr+q/j5h06ZN8Q//8A+xffv2o451dHRERER9fX3F/vr6+viP//iP8syIESMqrlz8YOaD5x+ptbU17rnnnv4uFQAAAAAYoH5dgbhnz574+te/Hhs3bozTTjstnSsUChWPS6XSUfuO9FEzq1atiq6urvK2Z8+e/iwbAAAAADhG/QqIO3bsiP3798e0adOiqqoqqqqqor29PR5++OGoqqoqX3l45JWE+/fvLx8rFovR19cXnZ2d6cyRqquro7a2tmIDAAAAAI6/fgXE2bNnx2uvvRY7d+4sbxdccEFcddVVsXPnzvjUpz4VxWIxtmzZUn5OX19ftLe3x4wZMyIiYtq0aTF8+PCKmX379sWuXbvKMwAAAADAiaFf34FYU1MTTU1NFftGjx4d48ePL+9vbm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTr1qJuyAAAAAABDq983UflZbr311ujp6Ykbb7wxOjs7Y/r06fHiiy9GTU1NeWbdunVRVVUVixcvjp6enpg9e3a0tbXFsGHDBns5AAAAAMAAFEqlUmmoF9Ff3d3dUVdXF11dXaf09yEW7vnoG89wYivdfdL9agEAAAAfE/3pa/36DkQAAAAA4ONFQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASPUrID722GNx7rnnRm1tbdTW1saFF14Y3/nOd8rHS6VSrF69OhoaGmLkyJExa9aseP311yteo7e3N5YvXx4TJkyI0aNHx6JFi2Lv3r2DczYAAAAAwKDqV0A844wz4r777otXX301Xn311fjSl74Ul112WTkSrlmzJtauXRvr16+P7du3R7FYjLlz58aBAwfKr9Hc3BybN2+OTZs2xdatW+PgwYOxcOHCOHz48OCeGQAAAAAwYIVSqVQayAuMGzcuHnjggbj22mujoaEhmpub47bbbouI/73asL6+Pu6///64/vrro6urKyZOnBhPPfVUXHnllRER8dZbb0VjY2M8//zzMX/+/A/9Gb29vdHb21t+3N3dHY2NjdHV1RW1tbUDWf4JrXBPYaiXwACU7h7QrxYAAADAcdPd3R11dXU/V1875u9APHz4cGzatCnefffduPDCC2P37t3R0dER8+bNK89UV1fHzJkzY9u2bRERsWPHjjh06FDFTENDQzQ1NZVnPkxra2vU1dWVt8bGxmNdNgAAAADQD/0OiK+99lqMGTMmqqur44YbbojNmzfHlClToqOjIyIi6uvrK+br6+vLxzo6OmLEiBExduzYdObDrFq1Krq6usrbnj17+rtsAAAAAOAYVPX3CZ/5zGdi586d8c4778QzzzwT11xzTbS3t5ePFwqVH7stlUpH7TvSz5qprq6O6urq/i4VAAAAABigfl+BOGLEiDj77LPjggsuiNbW1vjc5z4Xf/iHfxjFYjEi4qgrCffv31++KrFYLEZfX190dnamMwAAAADAieOYvwPxA6VSKXp7e2PSpElRLBZjy5Yt5WN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn59hPn222+PBQsWRGNjYxw4cCA2bdoUr7zySrzwwgtRKBSiubk5WlpaYvLkyTF58uRoaWmJUaNGxZIlSyIioq6uLpYtWxYrVqyI8ePHx7hx42LlypUxderUmDNnznE5QQAAAADg2PUrIP7nf/5nXH311bFv376oq6uLc889N1544YWYO3duRETceuut0dPTEzfeeGN0dnbG9OnT48UXX4yamprya6xbty6qqqpi8eLF0dPTE7Nnz462trYYNmzY4J4ZAAAAADBghVKpVBrqRfRXd3d31NXVRVdXV9TW1g71co6bwj0fffMZTmylu0+6Xy0AAADgY6I/fW3A34EIAAAAAJy6BEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAbG1tjS984QtRU1MTn/jEJ+LLX/5y/PM//3PFTKlUitWrV0dDQ0OMHDkyZs2aFa+//nrFTG9vbyxfvjwmTJgQo0ePjkWLFsXevXsHfjYAAAAAwKDqV0Bsb2+Pm266Kb7//e/Hli1b4n/+539i3rx58e6775Zn1qxZE2vXro3169fH9u3bo1gsxty5c+PAgQPlmebm5ti8eXNs2rQptm7dGgcPHoyFCxfG4cOHB+/MAAAAAIABK5RKpdKxPvm//uu/4hOf+ES0t7fHxRdfHKVSKRoaGqK5uTluu+22iPjfqw3r6+vj/vvvj+uvvz66urpi4sSJ8dRTT8WVV14ZERFvvfVWNDY2xvPPPx/z58//mT+3u7s76urqoqurK2pra491+Se8wj2FoV4CA1C6+5h/tQAAAACOq/70tQF9B2JXV1dERIwbNy4iInbv3h0dHR0xb9688kx1dXXMnDkztm3bFhERO3bsiEOHDlXMNDQ0RFNTU3nmSL29vdHd3V2xAQAAAADH3zEHxFKpFLfcckv86q/+ajQ1NUVEREdHR0RE1NfXV8zW19eXj3V0dMSIESNi7Nix6cyRWltbo66urrw1NjYe67IBAAAAgH445oB48803x49+9KP4kz/5k6OOFQqVH70tlUpH7TvSR82sWrUqurq6ytuePXuOddkAAAAAQD8cU0Bcvnx5PPfcc/Hyyy/HGWecUd5fLBYjIo66knD//v3lqxKLxWL09fVFZ2dnOnOk6urqqK2trdgAAAAAgOOvXwGxVCrFzTffHH/xF38R3/ve92LSpEkVxydNmhTFYjG2bNlS3tfX1xft7e0xY8aMiIiYNm1aDB8+vGJm3759sWvXrvIMAAAAAHBiqOrP8E033RRPP/10/OVf/mXU1NSUrzSsq6uLkSNHRqFQiObm5mhpaYnJkyfH5MmTo6WlJUaNGhVLliwpzy5btixWrFgR48ePj3HjxsXKlStj6tSpMWfOnME/QwAAAADgmPUrID722GMRETFr1qyK/U8++WQsXbo0IiJuvfXW6OnpiRtvvDE6Oztj+vTp8eKLL0ZNTU15ft26dVFVVRWLFy+Onp6emD17drS1tcWwYcMGdjYAAAAAwKAqlEql0lAvor+6u7ujrq4uurq6TunvQyzc89E3nuHEVrr7pPvVAgAAAD4m+tPXjvkuzAAAAADAqU9ABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApKqGegEAAAAAp6LCPYWhXgIDVLq7NNRLOCG4AhEAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQKpqqBcAAMCpqXBPYaiXwACV7i4N9RIAgBOAKxABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAECq3wHxb//2b+PSSy+NhoaGKBQK8eyzz1YcL5VKsXr16mhoaIiRI0fGrFmz4vXXX6+Y6e3tjeXLl8eECRNi9OjRsWjRoti7d++ATgQAAAAAGHz9DojvvvtufO5zn4v169d/6PE1a9bE2rVrY/369bF9+/YoFosxd+7cOHDgQHmmubk5Nm/eHJs2bYqtW7fGwYMHY+HChXH48OFjPxMAAAAAYNBV9fcJCxYsiAULFnzosVKpFA899FDccccdcfnll0dExIYNG6K+vj6efvrpuP7666OrqyueeOKJeOqpp2LOnDkREbFx48ZobGyMl156KebPnz+A0wEAAAAABtOgfgfi7t27o6OjI+bNm1feV11dHTNnzoxt27ZFRMSOHTvi0KFDFTMNDQ3R1NRUnjlSb29vdHd3V2wAAAAAwPE3qAGxo6MjIiLq6+sr9tfX15ePdXR0xIgRI2Ls2LHpzJFaW1ujrq6uvDU2Ng7msgEAAACAxHG5C3OhUKh4XCqVjtp3pI+aWbVqVXR1dZW3PXv2DNpaAQAAAIDcoAbEYrEYEXHUlYT79+8vX5VYLBajr68vOjs705kjVVdXR21tbcUGAAAAABx/gxoQJ02aFMViMbZs2VLe19fXF+3t7TFjxoyIiJg2bVoMHz68Ymbfvn2xa9eu8gwAAAAAcGLo912YDx48GP/6r/9afrx79+7YuXNnjBs3Ls4888xobm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTq1fFdmAAAAAODE0O+A+Oqrr8Yll1xSfnzLLbdERMQ111wTbW1tceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqys9Zt25dVFVVxeLFi6Onpydmz54dbW1tMWzYsEE4JQAAAABgsBRKpVJpqBfRX93d3VFXVxddXV2n9PchFu756BvPcGIr3X3S/WoBwKDyXubk5/0MwMD4W3jyO5X/Fvanrx2XuzADAAAAAKcGAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAIDWkAfHRRx+NSZMmxWmnnRbTpk2Lv/u7vxvK5QAAAAAARxiygPinf/qn0dzcHHfccUf84Ac/iF/7tV+LBQsWxJtvvjlUSwIAAAAAjlA1VD947dq1sWzZsvjd3/3diIh46KGH4rvf/W489thj0draWjHb29sbvb295cddXV0REdHd3f2LW/BQ+OlQL4CBOOX/+wSAn8V7mZOe9zMAA+Rv4UnvVP5b+MG5lUqlnzlbKP08U4Osr68vRo0aFd/+9rfjK1/5Snn/17/+9di5c2e0t7dXzK9evTruueeeX/QyAQAAAOCUtmfPnjjjjDM+cmZIrkB8++234/Dhw1FfX1+xv76+Pjo6Oo6aX7VqVdxyyy3lx++//37893//d4wfPz4KhcJxX+9Q6O7ujsbGxtizZ0/U1tYO9XIAAPrFexkA4GR3qr+fKZVKceDAgWhoaPiZs0P2EeaIOCr+lUqlDw2C1dXVUV1dXbHv9NNPP55LO2HU1taekv+RAgAfD97LAAAnu1P5/UxdXd3PNTckN1GZMGFCDBs27KirDffv33/UVYkAAAAAwNAZkoA4YsSImDZtWmzZsqVi/5YtW2LGjBlDsSQAAAAA4EMM2UeYb7nllrj66qvjggsuiAsvvDAef/zxePPNN+OGG24YqiWdUKqrq+Puu+8+6qPbAAAnA+9lAICTnfcz/9+Q3IX5A48++misWbMm9u3bF01NTbFu3bq4+OKLh2o5AAAAAMARhjQgAgAAAAAntiH5DkQAAAAA4OQgIAIAAAAAKQERAAAAAEgJiB8zr7zyShQKhXjnnXeGeikAAAAAnAQExAFYunRpFAqFuO+++yr2P/vss1EoFIZoVQAAv1j79++P66+/Ps4888yorq6OYrEY8+fPj9bW1igUCh+5tbW1DfXyAYCPkaVLl8aXv/zl8uMHH3ww6urq4r333jtq9qc//WmcfvrpsXbt2oiIOOuss+Khhx46am716tVx3nnnHacVnxgExAE67bTT4v7774/Ozs5Be82+vr5Bey0AgOPtiiuuiB/+8IexYcOG+Jd/+Zd47rnnYtasWTFlypTYt29feVu8eHH8+q//esW+K6+8cqiXDwB8jP32b/929PT0xDPPPHPUsWeeeSbee++9uPrqq4dgZScWAXGA5syZE8ViMVpbW9OZZ555Jj772c9GdXV1nHXWWfHggw9WHD/rrLPiG9/4RixdujTq6uriuuuui7a2tjj99NPjr/7qr+Izn/lMjBo1Kr761a/Gu+++Gxs2bIizzjorxo4dG8uXL4/Dhw+XX2vjxo1xwQUXRE1NTRSLxViyZEns37//uJ0/APDx9s4778TWrVvj/vvvj0suuSQ++clPxq/8yq/EqlWr4rLLLotisVjeRo4cWb5C8f/uAwAYKhMnToxLL700vvWtbx117Fvf+lYsWrQoJk6cOAQrO7EIiAM0bNiwaGlpiUceeST27t171PEdO3bE4sWL42tf+1q89tprsXr16rjzzjuP+rjOAw88EE1NTbFjx4648847IyLivffei4cffjg2bdoUL7zwQrzyyitx+eWXx/PPPx/PP/98PPXUU/H444/Hn//5n5dfp6+vL+6999744Q9/GM8++2zs3r07li5dejz/CQCAj7ExY8bEmDFj4tlnn43e3t6hXg4AQL8tW7Ys2tvbY/fu3eV9//7v/x4vv/xyLFu2bAhXduIQEAfBV77ylTjvvPPi7rvvPurY2rVrY/bs2XHnnXfGOeecE0uXLo2bb745HnjggYq5L33pS7Fy5co4++yz4+yzz46IiEOHDsVjjz0W559/flx88cXx1a9+NbZu3RpPPPFETJkyJRYuXBiXXHJJvPzyy+XXufbaa2PBggXxqU99Kr74xS/Gww8/HN/5znfi4MGDx/cfAQD4WKqqqoq2trbYsGFDnH766XHRRRfF7bffHj/60Y+GemkAAD+X+fPnR0NDQ8XFXk8++WQ0NDTEvHnzKmZvu+228v9A/WBraWn5Ba/4F09AHCT3339/bNiwIf7xH/+xYv+Pf/zjuOiiiyr2XXTRRfHGG29UfPT4ggsuOOo1R40aFZ/+9KfLj+vr6+Oss86KMWPGVOz7vx9R/sEPfhCXXXZZfPKTn4yampqYNWtWRES8+eabAzo/AIDMFVdcEW+99VY899xzMX/+/HjllVfi85//vBukAAAnhWHDhsU111wTbW1t8f7770epVIoNGzbE0qVLY9iwYRWzv/d7vxc7d+6s2G644YYhWvkvjoA4SC6++OKYP39+3H777RX7S6XSUXdkLpVKRz1/9OjRR+0bPnx4xeNCofCh+95///2IiHj33Xdj3rx5MWbMmNi4cWNs3749Nm/eHBFuzAIAHF+nnXZazJ07N+66667Ytm1bLF269EM/nQEAcCK69tprY8+ePfG9730v/uZv/ibefPPN+J3f+Z2j5iZMmFD+9OgH27hx44Zgxb9YVUO9gFPJfffdF+edd16cc8455X1TpkyJrVu3Vsxt27YtzjnnnKMq9kD90z/9U7z99ttx3333RWNjY0REvPrqq4P6MwAAfh5TpkyJZ599dqiXAQDwc/n0pz8dM2fOjCeffDJKpVLMmjWr4lOhH3cC4iCaOnVqXHXVVfHII4+U961YsSK+8IUvxL333htXXnll/P3f/32sX78+Hn300UH/+WeeeWaMGDEiHnnkkbjhhhti165dce+99w76zwEA+MBPfvKT+M3f/M249tpr49xzz42ampp49dVXY82aNXHZZZcN9fIAAI7S1dUVO3furNg3bty4WLZsWVx33XUREfFHf/RHQ7CyE5ePMA+ye++9t+Ijyp///Ofjz/7sz2LTpk3R1NQUd911V/z+7//+cbkz8sSJE6OtrS2+/e1vx5QpU+K+++6LP/iDPxj0nwMA8IExY8bE9OnTY926dXHxxRdHU1NT3HnnnXHdddfF+vXrh3p5AABHeeWVV+L888+v2O6666644oororq6Oqqrq+Pyyy8f6mWeUAqlD/tCPgAAAACAcAUiAAAAAPARBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAAKn/B5J4TZRgS2OaAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "