diff --git "a/notebooks/heart disease prediction.ipynb" "b/notebooks/heart disease prediction.ipynb" new file mode 100644--- /dev/null +++ "b/notebooks/heart disease prediction.ipynb" @@ -0,0 +1,2036 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1f41db61-4f75-4696-84a8-2a906dca3e3e", + "metadata": {}, + "source": [ + "# Heart Failure analysis and detection using Machine Learning techniques\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "b7897612-92c7-41bc-99ed-0f19a23d16ae", + "metadata": {}, + "outputs": [], + "source": [ + "# import the libraries\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import classification_report\n", + "from sklearn.preprocessing import LabelEncoder\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.metrics import ConfusionMatrixDisplay, accuracy_score, classification_report, confusion_matrix, RocCurveDisplay\n", + "from sklearn import metrics\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.ensemble import RandomForestClassifier" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d59970e5-184f-4b1e-a269-71223a49dba9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", + "
" + ], + "text/plain": [ + " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", + "0 40 M ATA 140 289 0 Normal 172 \n", + "1 49 F NAP 160 180 0 Normal 156 \n", + "2 37 M ATA 130 283 0 ST 98 \n", + "3 48 F ASY 138 214 0 Normal 108 \n", + "4 54 M NAP 150 195 0 Normal 122 \n", + "\n", + " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", + "0 N 0.0 Up 0 \n", + "1 N 1.0 Flat 1 \n", + "2 N 0.0 Up 0 \n", + "3 Y 1.5 Flat 1 \n", + "4 N 0.0 Up 0 " + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## Read the data\n", + "data = pd.read_csv(\"heart.csv\")\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "992daf53-ba71-44ee-93f9-bf9f74af90fc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 918 entries, 0 to 917\n", + "Data columns (total 12 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Age 918 non-null int64 \n", + " 1 Sex 918 non-null object \n", + " 2 ChestPainType 918 non-null object \n", + " 3 RestingBP 918 non-null int64 \n", + " 4 Cholesterol 918 non-null int64 \n", + " 5 FastingBS 918 non-null int64 \n", + " 6 RestingECG 918 non-null object \n", + " 7 MaxHR 918 non-null int64 \n", + " 8 ExerciseAngina 918 non-null object \n", + " 9 Oldpeak 918 non-null float64\n", + " 10 ST_Slope 918 non-null object \n", + " 11 HeartDisease 918 non-null int64 \n", + "dtypes: float64(1), int64(6), object(5)\n", + "memory usage: 86.2+ KB\n" + ] + } + ], + "source": [ + "# Basic information about the dataset\n", + "data.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "df134866-a405-434d-8603-4cefd3181e4e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(918, 12)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.shape" + ] + }, + { + "cell_type": "markdown", + "id": "effd23f1-8bc0-42a8-9dc4-1f1c9f4c3b6f", + "metadata": {}, + "source": [ + "There are 918 rows and 12 columns\r\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f9b33bee-56a3-4448-ab53-9132732929c9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "11016" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.size" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "ce154df8-9364-4988-b840-a8cd3d493c21", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age 0\n", + "Sex 0\n", + "ChestPainType 0\n", + "RestingBP 0\n", + "Cholesterol 0\n", + "FastingBS 0\n", + "RestingECG 0\n", + "MaxHR 0\n", + "ExerciseAngina 0\n", + "Oldpeak 0\n", + "ST_Slope 0\n", + "HeartDisease 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.isna().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5c13c288-af55-498c-a5bb-edf9d289b569", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLIAAAL2CAYAAABVBb+5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3e0lEQVR4nOzdeVjV1fr//9cGZCMIW2XmqEhqTjhrjhmmoeRxaHDKyPyYR0+OkKY0fLROSnqorGNampqeMv00YJxSFFNJc0hRSsvUHDINJIdAoLYC+/dHP/e3HaBu2JwN8nxc17quWO/1Xute7v66r3utt8FisVgEAAAAAAAAVHIuzg4AAAAAAAAAuBkksgAAAAAAAFAlkMgCAAAAAABAlUAiCwAAAAAAAFUCiSwAAAAAAABUCSSyAAAAAAAAUCWQyAIAAAAAAECVQCILAAAAAAAAVQKJLAAAAAAAAFQJJLIAAAAAAABQJTg1kbVo0SKFhYXJw8NDHTp00Pbt250ZDgAAAAAAACoxpyWy1q5dq6lTp+rpp5/WgQMHdOeddyoqKkqnT592VkgAAAAAAABVkj3FQhkZGXrooYfUtGlTubi4aOrUqSWO+/DDD9WiRQsZjUa1aNFCiYmJ5VrXEZyWyHr55Zc1ZswYPfbYY2revLkWLFig+vXra/Hixc4KCQAAAAAAoMqxt1jIbDbL399fTz/9tNq0aVPimF27dmnYsGGKjo7WV199pejoaA0dOlR79uwp87qOYLBYLJYKm70UV65ckaenp95//33dd9991v4pU6YoPT1dqamp/+2QAAAAAAAAqqTOnTurffv2NsVBzZs31+DBgxUfH3/ddyMiItS2bVstWLDApn/YsGHKycnRhg0brH39+vVTnTp19N5775V73bJySkXW+fPnVVhYqMDAQJv+wMBAZWZmFhtvNpuVk5Nj08xm838rXAAAAAAAgP8ae/IgV65cUVpamiIjI236IyMjtXPnzjLHsGvXrmJz9u3b1zpnRa17I24VNvNNMBgMNn9bLJZifZIUHx+v5557zqYv7qmn9PTTT1dofAAAAAAAVHdenp7ODsEpDHe2c9ras3oPKpYHmTVrlmbPnl1srL3FQjcrMzPzunNW1Lo34pRElp+fn1xdXYttLCsrq9g/gCTFxcUpNjbWpq+gsLBCYwQAAAAAAHCGkvIgRqPxuu/cbLGQPW5mzopY93qccrTQ3d1dHTp0UEpKik1/SkqKunXrVmy80WiUj4+PTbvRDwgAAAAAAFAV2ZMHsbdY6GYFBQVdd86KWvdGnPbVwtjYWL311ltavny5Dh8+rJiYGJ0+fVrjx493VkgAAAAAAAC/c3FxXrODvcVCN6tr167F5ty0aZN1zopa90acdkfWsGHDdOHCBT3//PPKyMhQeHi41q9fr9DQUGeFBAAAAAAAUOXExsYqOjpaHTt2VNeuXbVkyRKbYqG4uDidPXtWq1atsr6Tnp4uScrNzdXPP/+s9PR0ubu7q0WLFpKkKVOmqGfPnpo3b54GDRqkjz/+WJs3b9aOHTtuet2KYLBYLJYKm70C5eXnOzsEAAAAAABuedX2sveITk5b27Jtr93vLFq0SPPnz7cWC73yyivq2bOnJOnRRx/VqVOntG3bNuv4ku6xCg0N1alTp6x/f/DBB3rmmWd04sQJNWrUSHPmzNH9999/0+tWBBJZAAAAAACgVCSy/vvKksiqLpx2tBAAAAAAAKDScqm4L++h7Jx22TsAAAAAAABgD4cnsuLj49WpUyd5e3srICBAgwcP1pEjR2zGfPTRR+rbt6/8/PxkMBisF4wBAAAAAAAApXF4Iis1NVUTJkzQ7t27lZKSooKCAkVGRiovL886Ji8vT927d9eLL77o6OUBAAAAAADKz8XFeQ2lcvgdWcnJyTZ/r1ixQgEBAUpLS7PeWh8dHS1JNjfhAwAAAAAAANdT4Ze9Z2dnS5Lq1q1b0UsBAAAAAAA4hoHKqMqoQn8Vi8Wi2NhY9ejRQ+Hh4RW5FAAAAAAAAG5xFVqRNXHiRH399dfasWNHueYxm80ym802fQWFhTIajeWaFwAAAAAAAFVHhVVkTZo0SUlJSdq6davq1atXrrni4+NlMplsWkJCgoMiBQAAAAAA+BMue6+UHF6RZbFYNGnSJCUmJmrbtm0KCwsr95xxcXGKjY216SsoLCz3vAAAAAAAAKg6HJ7ImjBhglavXq2PP/5Y3t7eyszMlCSZTCbVrFlTknTx4kWdPn1aP/30kyTpyJEjkqSgoCAFBQUVm9NoNBY7RpiXn+/o0AEAAAAAAH5HZVSlZLBYLBaHTmgwlNi/YsUKPfroo5Kkt99+W6NHjy42ZtasWZo9e/ZNrUMiCwAAAACAiufl6ensEJzCENXTaWtbNnzutLUrO4cnsv5bSGQBAAAAAFDxqm0i6967nLa2ZX2q09au7KiTAwAAAAAAQJVAIgsAAAAAAABVgsMvewcAAAAAAKjyuOy9UqrwXyU+Pl4Gg0FTp06VJF29elUzZsxQq1at5OXlpZCQED3yyCPWLxgCAAAAAAAAJanQRNbevXu1ZMkStW7d2tqXn5+v/fv369lnn9X+/fv10Ucf6ejRoxo4cGBFhgIAAAAAAHDzDC7OayhVhR0tzM3N1ciRI7V06VK98MIL1n6TyaSUlBSbsf/61790xx136PTp02rQoEFFhQQAAAAAAIAqrMLSfBMmTFD//v3Vp0+fG47Nzs6WwWBQ7dq1KyocAAAAAAAAVHEVUpG1Zs0a7d+/X3v37r3h2N9++00zZ87UQw89JB8fn4oIBwAAAAAAwD5c9l4pOTyR9eOPP2rKlCnatGmTPDw8rjv26tWrGj58uIqKirRo0aJSx5nNZpnNZpu+gsJCGY1Gh8QMAAAAAACAys/h6cW0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa6/Jzc1NhYWFkn5PYg0dOlQnT55USkrKdaux4uPjZTKZbFpCQoKjQwcAAAAAAPidi4vzGkplsFgsFkdOePnyZf3www82faNHj1azZs00Y8YMhYeHW5NYx44d09atW+Xv73/dOanIAgAAAADAObw8PZ0dglMY7uvrtLUtiRudtnZl5/Cjhd7e3goPD7fp8/Lykq+vr8LDw1VQUKAHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d/dicxqNxmJJq7z8fEeHDgAAAAAAIEkyGAzODgElqJDL3q/nzJkzSkpKkiS1bdvW5tnWrVsVERHx3w4JAAAAAAAAVcB/JZG1bds26383bNhQDj7NCAAAAAAAgGrgv16RBQAAAAAAUOlx6XqlxK8CAAAAAACAKoGKLAAAAAAAgD+jIqtSqpBf5ezZs3r44Yfl6+srT09PtW3bVmlpadbns2fPVrNmzeTl5aU6deqoT58+2rNnT0WEAgAAAAAAgFuEwxNZly5dUvfu3VWjRg1t2LBB3377rV566SXVrl3bOub222/XwoULdfDgQe3YsUMNGzZUZGSkfv75Z0eHAwAAAAAAgFuEweLgTwjOnDlTX3zxhbZv337T7+Tk5MhkMmnz5s3q3bv3Tb2Tl59f1hABAAAAAMBN8vL0dHYITuEybKDT1i5am+S0tSs7h1dkJSUlqWPHjhoyZIgCAgLUrl07LV26tNTxV65c0ZIlS2QymdSmTRtHhwMAAAAAAIBbhMMTWSdOnNDixYvVpEkTbdy4UePHj9fkyZO1atUqm3GffPKJatWqJQ8PD73yyitKSUmRn5+fo8MBAAAAAACwn4uL8xpK5fCjhe7u7urYsaN27txp7Zs8ebL27t2rXbt2Wfvy8vKUkZGh8+fPa+nSpdqyZYv27NmjgICAYnOazWaZzWabvoLCQhmNRkeGDgAAAAAA/qTaHi0cMdhpaxe9t85pa1d2Dk/zBQcHq0WLFjZ9zZs31+nTp236vLy81LhxY3Xp0kXLli2Tm5ubli1bVuKc8fHxMplMNi0hIcHRoQMAAAAAAPzOxeC8hlK5OXrC7t2768iRIzZ9R48eVWho6HXfs1gsxaquromLi1NsbKxNX0FhYfkCBQAAAAAAQJXi8ERWTEyMunXrprlz52ro0KH68ssvtWTJEi1ZskTS70cK58yZo4EDByo4OFgXLlzQokWLdObMGQ0ZMqTEOY1GY7FjhHy1EAAAAAAAoHpxeCKrU6dOSkxMVFxcnJ5//nmFhYVpwYIFGjlypCTJ1dVV3333nVauXKnz58/L19dXnTp10vbt29WyZUtHhwMAAAAAAGA/A5euV0YOv+z9v4WKLAAAAAAAKl61vez94QectnbROx86be3KzuEVWQAAAAAAAFWeCxVZlRG/CgAAAAAAAKoEElkAAAAAAACoEhyeyCooKNAzzzyjsLAw1axZU7fddpuef/55FRUVlTh+3LhxMhgMWrBggaNDAQAAAAAAKBsXF+c1lMrhd2TNmzdPb7zxhlauXKmWLVtq3759Gj16tEwmk6ZMmWIzdt26ddqzZ49CQkIcHQYAAAAAAABuMQ5PZO3atUuDBg1S//79JUkNGzbUe++9p3379tmMO3v2rCZOnKiNGzdaxwIAAAAAAFQKBiqjKiOH/yo9evTQZ599pqNHj0qSvvrqK+3YsUP33nuvdUxRUZGio6M1ffp0tWzZ0tEhAAAAAAAA4Bbk8IqsGTNmKDs7W82aNZOrq6sKCws1Z84cjRgxwjpm3rx5cnNz0+TJkx29PAAAAAAAQPm5GJwdAUrg8ETW2rVr9c4772j16tVq2bKl0tPTNXXqVIWEhGjUqFFKS0vTq6++qv3798tguLn/Kcxms8xms01fQWGhjEajo8MHAAAAAABAJeXwo4XTp0/XzJkzNXz4cLVq1UrR0dGKiYlRfHy8JGn79u3KyspSgwYN5ObmJjc3N/3www964okn1LBhwxLnjI+Pl8lksmkJCQmODh0AAAAAAACVmMMrsvLz8+Xyp09Furq6qqioSJIUHR2tPn362Dzv27evoqOjNXr06BLnjIuLU2xsrE1fQWGhA6MGAAAAAAD4Axcue6+MHJ7IGjBggObMmaMGDRqoZcuWOnDggF5++WX9z//8jyTJ19dXvr6+Nu/UqFFDQUFBatq0aYlzGo3GYscI8/LzHR06AAAAAAAAKjGHJ7L+9a9/6dlnn9Xjjz+urKwshYSEaNy4cfrf//1fRy8FAAAAAABQMQxUZFVGBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4hcvfHnHa2kVLVjlt7cqO9CIAAAAAAACqBIcfLQQAAAAAAKjqDFz2XinxqwAAAAAAAKBKsDuR9fnnn2vAgAEKCQmRwWDQunXrbJ5bLBbNnj1bISEhqlmzpiIiIvTNN9/YjImIiJDBYLBpw4cPL9dGAAAAAAAAHMXFxcVpDaWz+18nLy9Pbdq00cKFC0t8Pn/+fL388stauHCh9u7dq6CgIN1zzz26fPmyzbixY8cqIyPD2t58882y7QAAAAAAAADVgt13ZEVFRSkqKqrEZxaLRQsWLNDTTz+t+++/X5K0cuVKBQYGavXq1Ro3bpx1rKenp4KCgsoYNgAAAAAAAKobh9arnTx5UpmZmYqMjLT2GY1G3XXXXdq5c6fN2HfffVd+fn5q2bKlpk2bVqxiCwAAAAAAwFk4Wlg5OfSrhZmZmZKkwMBAm/7AwED98MMP1r9HjhypsLAwBQUF6dChQ4qLi9NXX32llJQUR4YDAAAAAACAW4hDE1nXGAwGm78tFotN39ixY63/HR4eriZNmqhjx47av3+/2rdvX2w+s9kss9ls01dQWCij0ejgyAEAAAAAAERlVCXl0F/l2p1X1yqzrsnKyipWpfVH7du3V40aNXTs2LESn8fHx8tkMtm0hIQExwUOAAAAAACASs+hFVnXjgumpKSoXbt2kqQrV64oNTVV8+bNK/W9b775RlevXlVwcHCJz+Pi4hQbG2vTV1BY6LjAAQAAAAAA/oCKrMrJ7l8lNzdX6enpSk9Pl/T7Be/p6ek6ffq0DAaDpk6dqrlz5yoxMVGHDh3So48+Kk9PTz300EOSpOPHj+v555/Xvn37dOrUKa1fv15DhgxRu3bt1L179xLXNBqN8vHxsWkcKwQAAAAAAPjdokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPI+IiJDBYCjW+vfvbx0ze/bsYs+vndarKHZXZO3bt0+9evWy/n2tUmrUqFF6++239eSTT+rXX3/V448/rkuXLqlz587atGmTvL29JUnu7u767LPP9Oqrryo3N1f169dX//79NWvWLLm6ujpoWwAAAAAAANXD2rVrNXXqVC1atEjdu3fXm2++qaioKH377bdq0KBBsfEnT57Uvffeq7Fjx+qdd97RF198occff1z+/v564IEHJEkfffSRrly5Yn3nwoULatOmjYYMGWIzV8uWLbV582br3xWd2zFYLBZLha5QQfLy850dAgAAAAAAtzwvT09nh+AU3rGPO23tyy8vsmt8586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXrhLXWLBggf73f/9XGRkZ8vLykvR7Rda6deusp/b+GzjwCQAAAAAAUImYzWbl5OTYNLPZXOLYK1euKC0tTZGRkTb9kZGR2rlzZ4nv7Nq1q9j4vn37at++fbp69WqJ7yxbtkzDhw+3JrGuOXbsmEJCQhQWFqbhw4frxIkTN7vNMiGRBQAAAAAA8CcuBoPTWnx8vEwmk00rqbJKks6fP6/CwkIFBgba9AcGBiozM7PEdzIzM0scX1BQoPPnzxcb/+WXX+rQoUN67LHHbPo7d+6sVatWaePGjVq6dKkyMzPVrVs3XbhwwZ5/ars49KuFAAAAAAAAKJ+4uDjrneTX3OijdwaDweZvi8VSrO9G40vql36vxgoPD9cdd9xh0x8VFWX971atWqlr165q1KiRVq5cWSx+RyGRBQAAAAAAUIkYjcYbJq6u8fPzk6ura7Hqq6ysrGJVV9cEBQWVON7NzU2+vr42/fn5+VqzZo2ef/75G8bi5eWlVq1a6dixYzcVe1nYfbTw888/14ABAxQSEiKDwaB169ZZn129elUzZsxQq1at5OXlpZCQED3yyCP66aefis2za9cu3X333fLy8lLt2rUVERGhX3/9tVybAQAAAAAAcAQXFxenNXu4u7urQ4cOSklJselPSUlRt27dSnyna9euxcZv2rRJHTt2VI0aNWz6/+///k9ms1kPP/zwDWMxm806fPiwgoOD7dqDPexOZOXl5alNmzZauHBhsWf5+fnav3+/nn32We3fv18fffSRjh49qoEDB9qM27Vrl/r166fIyEh9+eWX2rt3ryZOnGj3jwUAAAAAAFDdxcbG6q233tLy5ct1+PBhxcTE6PTp0xo/fryk348qPvLII9bx48eP1w8//KDY2FgdPnxYy5cv17JlyzRt2rRicy9btkyDBw8uVqklSdOmTVNqaqpOnjypPXv26MEHH1ROTo5GjRpVYXu1+2hhVFSUzRnIPzKZTMUyev/61790xx136PTp02rQoIEkKSYmRpMnT9bMmTOt45o0aWJvKAAAAAAAABWiKhXbDBs2TBcuXNDzzz+vjIwMhYeHa/369QoNDZUkZWRk6PTp09bxYWFhWr9+vWJiYvT6668rJCREr732mh544AGbeY8ePaodO3Zo06ZNJa575swZjRgxQufPn5e/v7+6dOmi3bt3W9etCAbLtdu8yvKywaDExEQNHjy41DGbN29WZGSkfvnlF/n4+FjPaL722mt67733dPz4cTVr1kxz5sxRjx49bnrtvPz8soYNAAAAAABukpenp7NDcArfGVOctvaFea86be3KrkIve//tt980c+ZMPfTQQ/Lx8ZEknThxQpI0e/ZsJSQkqG3btlq1apV69+6tQ4cOlViZZTabZTabbfoKCgtv+uIzAAAAAAAAe1SliqzqpMJ+latXr2r48OEqKirSokWLrP1FRUWSpHHjxmn06NFq166dXnnlFTVt2lTLly8vca74+HiZTCablpCQUFGhAwAAAAAAoBKqkIqsq1evaujQoTp58qS2bNlircaSZL25vkWLFjbvNG/e3Oa85h/FxcUpNjbWpq+gsNDBUQMAAAAAAKAyc3gi61oS69ixY9q6dWuxW+0bNmyokJAQHTlyxKb/6NGjpV4ibzQaix0j5I4sAAAAAABQUThaWDnZncjKzc3V999/b/375MmTSk9PV926dRUSEqIHH3xQ+/fv1yeffKLCwkJlZmZKkurWrSt3d3cZDAZNnz5ds2bNUps2bdS2bVutXLlS3333nT744APH7QwAAAAAAAC3FLsTWfv27VOvXr2sf1878jdq1CjNnj1bSUlJkqS2bdvavLd161ZFRERIkqZOnarffvtNMTExunjxotq0aaOUlBQ1atSojNsAAAAAAABwHCqyKieDxWKxODuIsuBoIQAAAAAAFc/L09PZIThF8LPTnbZ2xj/+6bS1KzvSiwAAAAAAAKgSKuSrhQAAAAAAAFUZRwsrJ34VAAAAAAAAVAl2J7I+//xzDRgwQCEhITIYDFq3bl2pY8eNGyeDwaAFCxZY+06dOiWDwVBie//998uyBwAAAAAAAIdydXFxWkPp7P7XycvLU5s2bbRw4cLrjlu3bp327NmjkJAQm/769esrIyPDpj333HPy8vJSVFSUveEAAAAAAACgmrD7jqyoqKgbJpzOnj2riRMnauPGjerfv7/NM1dXVwUFBdn0JSYmatiwYapVq5a94QAAAAAAADgcd2RVTg7/VYqKihQdHa3p06erZcuWNxyflpam9PR0jRkzxtGhAAAAAAAA4Bbi8K8Wzps3T25ubpo8efJNjV+2bJmaN2+ubt26lTrGbDbLbDbb9BUUFspoNJYrVgAAAAAAAFQdDq3ISktL06uvvqq3335bBoPhhuN//fVXrV69+obVWPHx8TKZTDYtISHBUWEDAAAAAADYcHFxcVpD6Rz6r7N9+3ZlZWWpQYMGcnNzk5ubm3744Qc98cQTatiwYbHxH3zwgfLz8/XII49cd964uDhlZ2fbtGnTpjkydAAAAAAAAFRyDj1aGB0drT59+tj09e3bV9HR0Ro9enSx8cuWLdPAgQPl7+9/3XmNRmOxY4R5+fnlDxgAAAAAAKAEVEZVTnYnsnJzc/X9999b/z558qTS09NVt25dNWjQQL6+vjbja9SooaCgIDVt2tSm//vvv9fnn3+u9evXlzF0AAAAAAAAVCd2J7L27dunXr16Wf+OjY2VJI0aNUpvv/32Tc+zfPly/eUvf1FkZKS9IQAAAAAAAKAaMlgsFouzgygLjhYCAAAAAFDxvDw9nR2CU9w+7zmnrX10xiynrV3ZceATAAAAAAAAVYJDL3sHAAAAAAC4FXDZe+XErwIAAAAAAIAqwe5E1ueff64BAwYoJCREBoNB69atKzbm8OHDGjhwoEwmk7y9vdWlSxedPn3a+jwzM1PR0dEKCgqSl5eX2rdvrw8++KBcGwEAAAAAAHAUF4PBaQ2lszuRlZeXpzZt2mjhwoUlPj9+/Lh69OihZs2aadu2bfrqq6/07LPPysPDwzomOjpaR44cUVJSkg4ePKj7779fw4YN04EDB8q+EwAAAAAAANzSyvXVQoPBoMTERA0ePNjaN3z4cNWoUUP//ve/S32vVq1aWrx4saKjo619vr6+mj9/vsaMGXNTa/PVQgAAAAAAKl51/Wphi4QXnLb2t9OecdralZ1D78gqKirSp59+qttvv119+/ZVQECAOnfuXOz4YY8ePbR27VpdvHhRRUVFWrNmjcxmsyIiIhwZDgAAAAAAQJm4uLg4raF0Dv3XycrKUm5url588UX169dPmzZt0n333af7779fqamp1nFr165VQUGBfH19ZTQaNW7cOCUmJqpRo0Ylzms2m5WTk2PTzGazI0MHAAAAAABAJefwiixJGjRokGJiYtS2bVvNnDlTf/3rX/XGG29Yxz3zzDO6dOmSNm/erH379ik2NlZDhgzRwYMHS5w3Pj5eJpPJpiUkJDgydAAAAAAAACsqsionN0dO5ufnJzc3N7Vo0cKmv3nz5tqxY4ek3y+DX7hwoQ4dOqSWLVtKktq0aaPt27fr9ddft0l4XRMXF6fY2FibvoLCQkeGDgAAAAAAgErOoYksd3d3derUSUeOHLHpP3r0qEJDQyVJ+f//Je1/zjC6urpaK7r+zGg0ymg02vRx2TsAAAAAAED1YnciKzc3V99//73175MnTyo9PV1169ZVgwYNNH36dA0bNkw9e/ZUr169lJycrP/85z/atm2bJKlZs2Zq3Lixxo0bp4SEBPn6+mrdunVKSUnRJ5984rCNAQAAAAAAlBVH/Cong8VisdjzwrZt29SrV69i/aNGjdLbb78tSVq+fLni4+N15swZNW3aVM8995wGDRpkHXvs2DHNnDlTO3bsUG5urho3bqxp06YpOjr6puOgIgsAAAAAgIrn5enp7BCcou1r8522dvrkJ522dmVndyKrsiCRBQAAAABAxauuiaz2C533kbn9E6c5be3Kjjo5AAAAAAAAVAkOvewdAAAAAADgVsAdWZUTvwoAAAAAAACqBLsTWZ9//rkGDBigkJAQGQwGrVu3zuZ5bm6uJk6cqHr16qlmzZpq3ry5Fi9ebDPm+PHjuu++++Tv7y8fHx8NHTpU586dK9dGAAAAAAAAcGuzO5GVl5enNm3aaOHChSU+j4mJUXJyst555x0dPnxYMTExmjRpkj7++GPr+5GRkTIYDNqyZYu++OILXblyRQMGDFBRUVH5dgMAAAAAAOAALi4uTmsond13ZEVFRSkqKqrU57t27dKoUaMUEREhSfrb3/6mN998U/v27dOgQYP0xRdf6NSpUzpw4IB8fHwkSStWrFDdunW1ZcsW9enTp2w7AQAAAAAAwC3N4Wm+Hj16KCkpSWfPnpXFYtHWrVt19OhR9e3bV5JkNptlMBhkNBqt73h4eMjFxUU7duxwdDgAAAAAAAB2c3VxcVpD6Rz+r/Paa6+pRYsWqlevntzd3dWvXz8tWrRIPXr0kCR16dJFXl5emjFjhvLz85WXl6fp06erqKhIGRkZJc5pNpuVk5Nj08xms6NDBwAAAAAAQCVWIYms3bt3KykpSWlpaXrppZf0+OOPa/PmzZIkf39/vf/++/rPf/6jWrVqyWQyKTs7W+3bt5erq2uJc8bHx8tkMtm0hIQER4cOAAAAAACASszuO7Ku59dff9VTTz2lxMRE9e/fX5LUunVrpaenKyEhwXr/VWRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkqcNy4uTrGxsTZ9BYWFjgwdAAAAAADAiiN+lZNDE1lXr17V1atXi92w7+rqWuIXCf38/CRJW7ZsUVZWlgYOHFjivEaj0eZOLUnKy893UNQAAAAAAACoCuxOZOXm5ur777+3/n3y5Emlp6erbt26atCgge666y5Nnz5dNWvWVGhoqFJTU7Vq1Sq9/PLL1ndWrFih5s2by9/fX7t27dKUKVMUExOjpk2bOmZXAAAAAAAA5UBFVuVkdyJr37596tWrl/Xva0f+Ro0apbfffltr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjre8cOXJEcXFxunjxoho2bKinn35aMTExDtgOAAAAAAAAblUGi8VicXYQZcHRQgAAAAAAKp6Xp6ezQ3CKu99+w2lrb3l0/I0HVVPUyQEAAAAAAKBKIJEFAAAAAACAKsGhXy0EAAAAAAC4Fbi6UvtTGdn1q8THx6tTp07y9vZWQECABg8erCNHjtiM+eijj9S3b1/5+fnJYDAoPT292Dxms1mTJk2Sn5+fvLy8NHDgQJ05c6ZcGwEAAAAAAMCtza5EVmpqqiZMmKDdu3crJSVFBQUFioyMVF5ennVMXl6eunfvrhdffLHUeaZOnarExEStWbNGO3bsUG5urv7617+qsLCw7DsBAAAAAABwEFcXF6c1lK5cXy38+eefFRAQoNTUVPXs2dPm2alTpxQWFqYDBw6obdu21v7s7Gz5+/vr3//+t4YNGyZJ+umnn1S/fn2tX79effv2vam1+WohAAAAAAAVr7p+tbDfu285be3kkY85be3KrlxpvuzsbElS3bp1b/qdtLQ0Xb16VZGRkda+kJAQhYeHa+fOneUJBwAAAAAAALewMl/2brFYFBsbqx49eig8PPym38vMzJS7u7vq1Klj0x8YGKjMzMwS3zGbzTKbzTZ9BYWFMhqN9gcOAAAAAABwAxzxq5zK/KtMnDhRX3/9td577z2HBGKxWGQwGEp8Fh8fL5PJZNMSEhIcsi4AAAAAAACqhjJVZE2aNElJSUn6/PPPVa9ePbveDQoK0pUrV3Tp0iWbqqysrCx169atxHfi4uIUGxtr01fAxfAAAAAAAKCCUJFVOdn1q1gsFk2cOFEfffSRtmzZorCwMLsX7NChg2rUqKGUlBRrX0ZGhg4dOlRqIstoNMrHx8emcawQAAAAAACgerGrImvChAlavXq1Pv74Y3l7e1vvtDKZTKpZs6Yk6eLFizp9+rR++uknSdKRI0ck/V6JFRQUJJPJpDFjxuiJJ56Qr6+v6tatq2nTpqlVq1bq06ePI/cGAAAAAACAW4hdiazFixdLkiIiImz6V6xYoUcffVSSlJSUpNGjR1ufDR8+XJI0a9YszZ49W5L0yiuvyM3NTUOHDtWvv/6q3r176+2335arq2sZtwEAAAAAAOA4LhwtrJQMFovF4uwgyiIvP9/ZIQAAAAAAcMvz8vR0dghOMfj9VU5be92QR5y2dmVXpsveAQAAAAAAbmVc9l458asAAAAAAACgSqAiCwAAAAAA4E+oyKqc7PpV4uPj1alTJ3l7eysgIECDBw+2fpXwmtmzZ6tZs2by8vJSnTp11KdPH+3Zs8dmzJIlSxQRESEfHx8ZDAb98ssv5d4IAAAAAABAdbVo0SKFhYXJw8NDHTp00Pbt2687PjU1VR06dJCHh4duu+02vfHGGzbP3377bRkMhmLtt99+K9e65WVXIis1NVUTJkzQ7t27lZKSooKCAkVGRiovL8865vbbb9fChQt18OBB7dixQw0bNlRkZKR+/vln65j8/Hz169dPTz31lON2AgAAAAAAUA2tXbtWU6dO1dNPP60DBw7ozjvvVFRUlE6fPl3i+JMnT+ree+/VnXfeqQMHDuipp57S5MmT9eGHH9qM8/HxUUZGhk3z8PAo87qOUK6vFv78888KCAhQamqqevbsWeKYnJwcmUwmbd68Wb1797Z5tm3bNvXq1UuXLl1S7dq17VqbrxYCAAAAAFDxqutXC0d8vMZpa783aLhd4zt37qz27dtr8eLF1r7mzZtr8ODBio+PLzZ+xowZSkpK0uHDh61948eP11dffaVdu3ZJ+r0ia+rUqdc9RWfvuo5QrgOf2dnZkqS6deuW+PzKlStasmSJTCaT2rRpU56lAAAAAAAAqgWz2aycnBybZjabSxx75coVpaWlKTIy0qY/MjJSO3fuLPGdXbt2FRvft29f7du3T1evXrX25ebmKjQ0VPXq1dNf//pXHThwoFzrOkKZE1kWi0WxsbHq0aOHwsPDbZ598sknqlWrljw8PPTKK68oJSVFfn5+ZQ7Snh8QAAAAAACgvFxdDU5r8fHxMplMNq20Cqfz58+rsLBQgYGBNv2BgYHKzMws8Z3MzMwSxxcUFOj8+fOSpGbNmuntt99WUlKS3nvvPXl4eKh79+46duxYmdd1hDInsiZOnKivv/5a7733XrFnvXr1Unp6unbu3Kl+/fpp6NChysrKKnOQJf2ACQkJZZ4PAAAAAACgsoqLi1N2drZNi4uLu+47BoPB5m+LxVKs70bj/9jfpUsXPfzww2rTpo3uvPNO/d///Z9uv/12/etf/yrXuuXlVpaXJk2apKSkJH3++eeqV69esedeXl5q3LixGjdurC5duqhJkyZatmzZDf/RSxMXF6fY2FibvoLCwjLNBQAAAAAAUJkZjUYZjcabGuvn5ydXV9diVVBZWVnFqqWuCQoKKnG8m5ubfH19S3zHxcVFnTp1slZklWVdR7CrIstisWjixIn66KOPtGXLFoWFhd30e+U5Cmg0GuXj42PTbvYHBQAAAAAAsJeri4vTmj3c3d3VoUMHpaSk2PSnpKSoW7duJb7TtWvXYuM3bdqkjh07qkaNGiW+Y7FYlJ6eruDg4DKv6wh2VWRNmDBBq1ev1scffyxvb29r1s1kMqlmzZrKy8vTnDlzNHDgQAUHB+vChQtatGiRzpw5oyFDhljnyczMVGZmpr7//ntJ0sGDB+Xt7a0GDRqUenE8AAAAAAAAiouNjVV0dLQ6duyorl27asmSJTp9+rTGjx8v6feTbmfPntWqVask/f6FwoULFyo2NlZjx47Vrl27tGzZMpvro5577jnrKbucnBy99tprSk9P1+uvv37T61YEuxJZ1z6nGBERYdO/YsUKPfroo3J1ddV3332nlStX6vz58/L19VWnTp20fft2tWzZ0jr+jTfe0HPPPWf9u2fPnjbzAAAAAAAAOJO9lVHONGzYMF24cEHPP/+8MjIyFB4ervXr1ys0NFSSlJGRodOnT1vHh4WFaf369YqJidHrr7+ukJAQvfbaa3rggQesY3755Rf97W9/U2Zmpkwmk9q1a6fPP/9cd9xxx02vWxEMlmu3eVUxefn5zg4BAAAAAIBbnpenp7NDcIr/Sf7QaWsv7/fAjQdVU2W67B0AAAAAAOBWVpUqsqoTfhUAAAAAAABUCSSyAAAAAAAAUCXYlciKj49Xp06d5O3trYCAAA0ePFhHjhyxGfPoo4/KYDDYtC5dulifX7x4UZMmTVLTpk3l6empBg0aaPLkycrOznbMjgAAAAAAAMrJ1cXFaQ2ls+tfJzU1VRMmTNDu3buVkpKigoICRUZGKi8vz2Zcv379lJGRYW3r16+3Pvvpp5/0008/KSEhQQcPHtTbb7+t5ORkjRkzxjE7AgAAAAAAwC3Jrsvek5OTbf5esWKFAgIClJaWpp49e1r7jUajgoKCSpwjPDxcH374/27+b9SokebMmaOHH35YBQUFcnPj/nkAAAAAAOBcVEZVTuX6Va4dB6xbt65N/7Zt2xQQEKDbb79dY8eOVVZW1g3n8fHxIYkFAAAAAACAUpU5kWWxWBQbG6sePXooPDzc2h8VFaV3331XW7Zs0UsvvaS9e/fq7rvvltlsLnGeCxcu6B//+IfGjRtX1lAAAAAAAABQDZS5BGrixIn6+uuvtWPHDpv+YcOGWf87PDxcHTt2VGhoqD799FPdf//9NmNzcnLUv39/tWjRQrNmzSp1LbPZXCwRVlBYKKPRWNbwAQAAAAAASsXRwsqpTL/KpEmTlJSUpK1bt6pevXrXHRscHKzQ0FAdO3bMpv/y5cvq16+fatWqpcTERNWoUaPUOeLj42UymWxaQkJCWUIHAAAAAABAFWVXRZbFYtGkSZOUmJiobdu2KSws7IbvXLhwQT/++KOCg4OtfTk5Oerbt6+MRqOSkpLk4eFx3Tni4uIUGxtr01dQWGhP6AAAAAAAADeNiqzKya5E1oQJE7R69Wp9/PHH8vb2VmZmpiTJZDKpZs2ays3N1ezZs/XAAw8oODhYp06d0lNPPSU/Pz/dd999kn6vxIqMjFR+fr7eeecd5eTkKCcnR5Lk7+8vV1fXYusajcZixwjz8vPLtGEAAAAAAABUTXYlshYvXixJioiIsOlfsWKFHn30Ubm6uurgwYNatWqVfvnlFwUHB6tXr15au3atvL29JUlpaWnas2ePJKlx48Y285w8eVINGzYs41YAAAAAAAAcg4qsysnuo4XXU7NmTW3cuPG6YyIiIm44DwAAAAAAAPBnpBcBAAAAAABQJdhVkQUAAAAAAFAduLpS+1MZ8asAAAAAAACgSrArkRUfH69OnTrJ29tbAQEBGjx4sI4cOWIzxmAwlNj++c9/WseMGzdOjRo1Us2aNeXv769Bgwbpu+++c8yOAAAAAAAAysnVxcVpDaWz618nNTVVEyZM0O7du5WSkqKCggJFRkYqLy/POiYjI8OmLV++XAaDQQ888IB1TIcOHbRixQodPnxYGzdulMViUWRkpAoLCx23MwAAAAAAANxSDJZyfELw559/VkBAgFJTU9WzZ88SxwwePFiXL1/WZ599Vuo8X3/9tdq0aaPvv/9ejRo1uqm18/LzyxQzAAAAAAC4eV6ens4OwSme2lN6HqOize3c22lrV3bluuw9OztbklS3bt0Sn587d06ffvqpVq5cWeoceXl5WrFihcLCwlS/fv3yhAMAAAAAAOAQHPGrnMr8q1gsFsXGxqpHjx4KDw8vcczKlSvl7e2t+++/v9izRYsWqVatWqpVq5aSk5OVkpIid3f3soYDAAAAAACAW1yZK7ImTpyor7/+Wjt27Ch1zPLlyzVy5Eh5eHgUezZy5Ejdc889ysjIUEJCgoYOHaovvviixLFms1lms9mmr6CwUEajsazhAwAAAAAAlIqKrMqpTL/KpEmTlJSUpK1bt6pevXoljtm+fbuOHDmixx57rMTnJpNJTZo0Uc+ePfXBBx/ou+++U2JiYolj4+PjZTKZbFpCQkJZQgcAAAAAAEAVZVdFlsVi0aRJk5SYmKht27YpLCys1LHLli1Thw4d1KZNm5ue+89VV9fExcUpNjbWpq+ALxwCAAAAAIAK4kJFVqVkVyJrwoQJWr16tT7++GN5e3srMzNT0u/VVTVr1rSOy8nJ0fvvv6+XXnqp2BwnTpzQ2rVrFRkZKX9/f509e1bz5s1TzZo1de+995a4rtFoLHaMkK8WAgAAAAAAVC92pRcXL16s7OxsRUREKDg42NrWrl1rM27NmjWyWCwaMWJEsTk8PDy0fft23XvvvWrcuLGGDh0qLy8v7dy5UwEBAeXbDQAAAAAAAG5ZBovFYnF2EGVBRRYAAAAAABXPy9PT2SE4xZz00j9uV9GebtvDaWtXdhz4BAAAAAAAQJVg1x1ZAAAAAAAA1YGrgdqfyohfBQAAAAAAAFWCXYms+Ph4derUSd7e3goICNDgwYN15MgRmzHnzp3To48+qpCQEHl6eqpfv346duxYifNZLBZFRUXJYDBo3bp1Zd4EAAAAAAAAbn12JbJSU1M1YcIE7d69WykpKSooKFBkZKTy8vIk/Z6YGjx4sE6cOKGPP/5YBw4cUGhoqPr06WMd80cLFiyQwWBwzE4AAAAAAAAcxNVgcFpD6ey6Iys5Odnm7xUrViggIEBpaWnq2bOnjh07pt27d+vQoUNq2bKlJGnRokUKCAjQe++9p8cee8z67ldffaWXX35Ze/fuVXBwsAO2AgAAAAAAgFtZue7Iys7OliTVrVtXkmQ2myVJHh4e1jGurq5yd3fXjh3/77OV+fn5GjFihBYuXKigoKDyhAAAAAAAAOBwVGRVTmVOZFksFsXGxqpHjx4KDw+XJDVr1kyhoaGKi4vTpUuXdOXKFb344ovKzMxURkaG9d2YmBh169ZNgwYNKv8OAAAAAAAAUC3YdbTwjyZOnKivv/7aptKqRo0a+vDDDzVmzBjVrVtXrq6u6tOnj6KioqxjkpKStGXLFh04cOCm1zKbzdZqr2sKCgtlNBrLGj4AAAAAAECpXAzlOsSGClKmX2XSpElKSkrS1q1bVa9ePZtnHTp0UHp6un755RdlZGQoOTlZFy5cUFhYmCRpy5YtOn78uGrXri03Nze5uf2eS3vggQcUERFR4nrx8fEymUw2LSEhoSyhAwAAAAAAoIoyWCwWy80OtlgsmjRpkhITE7Vt2zY1adLkhu8cO3ZMzZo104YNGxQZGanMzEydP3/eZkyrVq306quvasCAAdaE1x9RkQUAAAAAgHN4eXo6OwSnWHDoS6etPTX8DqetXdnZdbRwwoQJWr16tT7++GN5e3srMzNTkmQymVSzZk1J0vvvvy9/f381aNBABw8e1JQpUzR48GBFRkZKkoKCgkq84L1BgwYlJrEkyWg0Fkta5eXn2xM6AAAAAADATePS9crJrkTW4sWLJanYEcAVK1bo0UcflSRlZGQoNjZW586dU3BwsB555BE9++yzDgkWAAAAAAAA1ZddRwsrEyqyAAAAAACoeNX1aOGiw2lOW/vx5h2ctnZlxxX8AAAAAAAAqBJIZAEAAAAAAKBKsOuOLAAAAAAAgOqAy94rJ7sqshYvXqzWrVvLx8dHPj4+6tq1qzZs2GB9/tFHH6lv377y8/OTwWBQenp6sTkiIiJkMBhs2vDhw8u9EQAAAAAAANza7KrIqlevnl588UU1btxYkrRy5UoNGjRIBw4cUMuWLZWXl6fu3btryJAhGjt2bKnzjB07Vs8//7z175o1a5YxfAAAAAAAAMdzoSKrUrIrkTVgwACbv+fMmaPFixdr9+7datmypaKjoyVJp06duu48np6eCgoKsi9SAAAAAAAAVGtlvuy9sLBQa9asUV5enrp27WrXu++++678/PzUsmVLTZs2TZcvXy5rGAAAAAAAAA7nanBxWkPp7L7s/eDBg+ratat+++031apVS4mJiWrRosVNvz9y5EiFhYUpKChIhw4dUlxcnL766iulpKTYGwoAAAAAAACqEbsTWU2bNlV6erp++eUXffjhhxo1apRSU1NvOpn1x7uzwsPD1aRJE3Xs2FH79+9X+/btS3zHbDbLbDbb9BUUFspoNNobPgAAAAAAAKoou+vV3N3d1bhxY3Xs2FHx8fFq06aNXn311TIH0L59e9WoUUPHjh0rdUx8fLxMJpNNS0hIKPOaAAAAAAAA1+NqMDitoXR2V2T9mcViKVYtZY9vvvlGV69eVXBwcKlj4uLiFBsba9NXUFhY5jUBAAAAAABQ9diVyHrqqacUFRWl+vXr6/Lly1qzZo22bdum5ORkSdLFixd1+vRp/fTTT5KkI0eOSJKCgoIUFBSk48eP691339W9994rPz8/ffvtt3riiSfUrl07de/evdR1jUZjsWOEefn5dm0UAAAAAADgZnHpeuVkVyLr3Llzio6OVkZGhkwmk1q3bq3k5GTdc889kqSkpCSNHj3aOn748OGSpFmzZmn27Nlyd3fXZ599pldffVW5ubmqX7+++vfvr1mzZsnV1dWB2wIAAAAAAMCtxmCxWCzODqIsqMgCAAAAAKDieXl6OjsEp3jn+0NOW/vhxuFOW7uyK/cdWQAAAAAAALcaLl2vnDjwCQAAAAAAgCqBiiwAAAAAAIA/caEiq1KyqyJr8eLFat26tXx8fOTj46OuXbtqw4YN1uezZ89Ws2bN5OXlpTp16qhPnz7as2dPsXl27dqlu+++W15eXqpdu7YiIiL066+/ln83AAAAAAAAuGXZlciqV6+eXnzxRe3bt0/79u3T3XffrUGDBumbb76RJN1+++1auHChDh48qB07dqhhw4aKjIzUzz//bJ1j165d6tevnyIjI/Xll19q7969mjhxolxcOOUIAAAAAACA0pX7q4V169bVP//5T40ZM6bYs5ycHJlMJm3evFm9e/eWJHXp0kX33HOP/vGPf5RnWb5aCAAAAADAf0F1/WrhB6e+c9raDzZs5rS1K7syl0EVFhZqzZo1ysvLU9euXYs9v3LlipYsWSKTyaQ2bdpIkrKysrRnzx4FBASoW7duCgwM1F133aUdO3aUfQcAAAAAAACoFuy+7P3gwYPq2rWrfvvtN9WqVUuJiYlq0aKF9fknn3yi4cOHKz8/X8HBwUpJSZGfn58k6cSJE5J+v0srISFBbdu21apVq9S7d28dOnRITZo0cdC2AAAAAAAAys6Vy94rJbsrspo2bar09HTt3r1bf//73zVq1Ch9++231ue9evVSenq6du7cqX79+mno0KHKysqSJBUVFUmSxo0bp9GjR6tdu3Z65ZVX1LRpUy1fvrzUNc1ms3Jycmya2Wy2N3QAAAAAAABUYXYnstzd3dW4cWN17NhR8fHxatOmjV599VXrcy8vLzVu3FhdunTRsmXL5ObmpmXLlkmSgoODJcmmgkuSmjdvrtOnT5e6Znx8vEwmk01LSEiwN3QAAAAAAICb4mpwcVpD6cr9r2OxWK5bHfXH5w0bNlRISIiOHDliM+bo0aMKDQ0tdY64uDhlZ2fbtGnTppU3dAAAAAAAgFvCokWLFBYWJg8PD3Xo0EHbt2+/7vjU1FR16NBBHh4euu222/TGG2/YPF+6dKnuvPNO1alTR3Xq1FGfPn305Zdf2oyZPXu2DAaDTQsKCnL43v7IrjuynnrqKUVFRal+/fq6fPmy1qxZo23btik5OVl5eXmaM2eOBg4cqODgYF24cEGLFi3SmTNnNGTIEEmSwWDQ9OnTNWvWLLVp00Zt27bVypUr9d133+mDDz4odV2j0Sij0WjTx1cLAQAAAAAApLVr12rq1KlatGiRunfvrjfffFNRUVH69ttv1aBBg2LjT548qXvvvVdjx47VO++8oy+++EKPP/64/P399cADD0iStm3bphEjRqhbt27y8PDQ/PnzFRkZqW+++UZ/+ctfrHO1bNlSmzdvtv7t6upaoXu1K5F17tw5RUdHKyMjQyaTSa1bt1ZycrLuuece/fbbb/ruu++0cuVKnT9/Xr6+vurUqZO2b9+uli1bWueYOnWqfvvtN8XExOjixYtq06aNUlJS1KhRI4dvDgAAAAAAoCyq0mXvL7/8ssaMGaPHHntMkrRgwQJt3LhRixcvVnx8fLHxb7zxhho0aKAFCxZI+v3Kp3379ikhIcGayHr33Xdt3lm6dKk++OADffbZZ3rkkUes/W5ubhVehfVHdiWyrt11VRIPDw999NFHNzXPzJkzNXPmTHuWBgAAAAAAqBbMZnOxa5xKOq0mSVeuXFFaWlqxPEtkZKR27txZ4vy7du1SZGSkTV/fvn21bNkyXb16VTVq1Cj2Tn5+vq5evaq6deva9B87dkwhISEyGo3q3Lmz5s6dq9tuu+2m9lkW3CAGAAAAAADwJy4GF6e1kj56V1JllSSdP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz58v8Z2ZM2fqL3/5i/r06WPt69y5s1atWqWNGzdq6dKlyszMVLdu3XThwgV7/qntYldFFgAAAAAAACpWXFycYmNjbfpKqsb6I8OfjkJaLJZifTcaX1K/JM2fP1/vvfeetm3bJg8PD2t/VFSU9b9btWqlrl27qlGjRlq5cmWx+B2FRBYAAAAAAEAlUtoxwpL4+fnJ1dW1WPVVVlZWsaqra4KCgkoc7+bmJl9fX5v+hIQEzZ07V5s3b1br1q2vG4uXl5datWqlY8eO3VTsZcHRQgAAAAAAgD9xNRic1uzh7u6uDh06KCUlxaY/JSVF3bp1K/Gdrl27Fhu/adMmdezY0eZ+rH/+85/6xz/+oeTkZHXs2PGGsZjNZh0+fFjBwcF27cEediWyFi9erNatW8vHx0c+Pj7q2rWrNmzYYH3+6KOPymAw2LQuXbpYn586darY82vt/fffd9yuAAAAAAAAqonY2Fi99dZbWr58uQ4fPqyYmBidPn1a48ePl/T7UcU/fmlw/Pjx+uGHHxQbG6vDhw9r+fLlWrZsmaZNm2YdM3/+fD3zzDNavny5GjZsqMzMTGVmZio3N9c6Ztq0aUpNTdXJkye1Z88ePfjgg8rJydGoUaMqbK92HS2sV6+eXnzxRTVu3FiStHLlSg0aNEgHDhxQy5YtJUn9+vXTihUrrO+4u7tb/7t+/frKyMiwmXPJkiWaP3++zblKAAAAAAAAZ7K3MsqZhg0bpgsXLuj5559XRkaGwsPDtX79eoWGhkqSMjIydPr0aev4sLAwrV+/XjExMXr99dcVEhKi1157TQ888IB1zKJFi3TlyhU9+OCDNmvNmjVLs2fPliSdOXNGI0aM0Pnz5+Xv768uXbpo9+7d1nUrgsFy7TavMqpbt67++c9/asyYMXr00Uf1yy+/aN26dTf9frt27dS+fXstW7bMrnXz8vPtjBQAAAAAANjLy9PT2SE4xWc/nXLa2r1DGjpt7cquzJe9FxYW6v3331deXp66du1q7d+2bZsCAgJUu3Zt3XXXXZozZ44CAgJKnCMtLU3p6el6/fXXyxoGAAAAAACAw7m6cK14ZWR3IuvgwYPq2rWrfvvtN9WqVUuJiYlq0aKFpN8/uzhkyBCFhobq5MmTevbZZ3X33XcrLS2txNv2ly1bpubNm5d6+dg1ZrNZZrPZpq+gsPCmb/AHAAAAAABA1Wd3erFp06ZKT0/X7t279fe//12jRo3St99+K+n3M5n9+/dXeHi4BgwYoA0bNujo0aP69NNPi83z66+/avXq1RozZswN14yPj5fJZLJpCQkJ9oYOAAAAAACAKqzcd2T16dNHjRo10ptvvlni8yZNmuixxx7TjBkzbPr//e9/a8yYMTp79qz8/f2vuwYVWQAAAAAAOEd1vSPr83M/Om3tnoH1nbZ2ZVfmO7KusVgsxZJM11y4cEE//vijgoODiz1btmyZBg4ceMMkliQZjcZiSSsuewcAAAAAAKhe7EpkPfXUU4qKilL9+vV1+fJlrVmzRtu2bVNycrJyc3M1e/ZsPfDAAwoODtapU6f01FNPyc/PT/fdd5/NPN9//70+//xzrV+/3qGbAQAAAAAAcARXA5e9V0Z2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999yjX3/9VQcPHtSqVav0yy+/KDg4WL169dLatWvl7e1tM8/y5cv1l7/8RZGRkQ7dDAAAAAAAAG5d5b4jy1k4WggAAAAAQMWrrndkfZF11mlrdw/4i9PWruzKfUcWAAAAAADArcbVYHB2CCgBBz4BAAAAAABQJVCRBQAAAAAA8CcuoiKrMrKrImvx4sVq3bq1fHx85OPjo65du2rDhg3W5waDocT2z3/+0zomMzNT0dHRCgoKkpeXl9q3b68PPvjAcTsCAAAAAADALcmuiqx69erpxRdfVOPGjSVJK1eu1KBBg3TgwAG1bNlSGRkZNuM3bNigMWPG6IEHHrD2RUdHKzs7W0lJSfLz89Pq1as1bNgw7du3T+3atXPAlgAAAAAAAMrHhYKsSqncXy2sW7eu/vnPf2rMmDHFng0ePFiXL1/WZ599Zu2rVauWFi9erOjoaGufr6+v5s+fX+IcpeGrhQAAAAAAVLzq+tXCfeczbjyognT0C3ba2pVdmS97Lyws1Jo1a5SXl6euXbsWe37u3Dl9+umnxZJTPXr00Nq1a3Xx4kUVFRVpzZo1MpvNioiIKGsoAAAAAAAAqAbsvuz94MGD6tq1q3777TfVqlVLiYmJatGiRbFxK1eulLe3t+6//36b/rVr12rYsGHy9fWVm5ubPD09lZiYqEaNGpW6ptlsltlstukrKCyU0Wi0N3wAAAAAAIAbMnDZe6Vkd0VW06ZNlZ6ert27d+vvf/+7Ro0apW+//bbYuOXLl2vkyJHy8PCw6X/mmWd06dIlbd68Wfv27VNsbKyGDBmigwcPlrpmfHy8TCaTTUtISLA3dAAAAAAAAFRh5b4jq0+fPmrUqJHefPNNa9/27dvVs2dPpaenq02bNtb+48ePq3Hjxjp06JBatmxpM0fjxo31xhtvlLgGFVkAAAAAADhHdb0j68CFc05bu51voNPWruzsPlr4ZxaLpViSadmyZerQoYNNEkuS8v//C9pdXGwLwVxdXVVUVFTqGkajsVjSisveAQAAAAAAqhe7EllPPfWUoqKiVL9+fV2+fFlr1qzRtm3blJycbB2Tk5Oj999/Xy+99FKx95s1a6bGjRtr3LhxSkhIkK+vr9atW6eUlBR98skn5d8NAAAAAAAAbll2JbLOnTun6OhoZWRkyGQyqXXr1kpOTtY999xjHbNmzRpZLBaNGDGi2Ps1atTQ+vXrNXPmTA0YMEC5ublq3LixVq5cqXvvvbf8uwEAAAAAAHAAuy8Vx39Fue/IchaOFgIAAAAAUPGq6x1ZXznxjqw23JFVqnLfkQUAAAAAAHCrcTEYnB0CSkClHAAAAAAAAKoEKrIAAAAAAAD+hMqfysmu32Xx4sVq3bq1fHx85OPjo65du2rDhg3W5+fOndOjjz6qkJAQeXp6ql+/fjp27JjNHMePH9d9990nf39/+fj4aOjQoTp3znnnTgEAAAAAAFA12JXIqlevnl588UXt27dP+/bt0913361Bgwbpm2++kcVi0eDBg3XixAl9/PHHOnDggEJDQ9WnTx/l5eVJkvLy8hQZGSmDwaAtW7boiy++0JUrVzRgwAAVFRVVyAYBAAAAAABwayj3Vwvr1q2rf/7zn7rzzjvVtGlTHTp0SC1btpQkFRYWKiAgQPPmzdNjjz2mTZs2KSoqSpcuXZKPj48k6dKlS6pbt65SUlLUp0+fm16XrxYCAAAAAFDxqutXC7+9+LPT1m5R199pa1d2ZT7yWVhYqDVr1igvL09du3aV2WyWJHl4eFjHuLq6yt3dXTt27JAkmc1mGQwGGY1G6xgPDw+5uLhYxwAAAAAAAAAlsTuRdfDgQdWqVUtGo1Hjx49XYmKiWrRooWbNmik0NFRxcXG6dOmSrly5ohdffFGZmZnKyMiQJHXp0kVeXl6aMWOG8vPzlZeXp+nTp6uoqMg6piRms1k5OTk27VriDAAAAAAAwNFcDAanNZTO7kRW06ZNlZ6ert27d+vvf/+7Ro0apW+//VY1atTQhx9+qKNHj6pu3bry9PTUtm3bFBUVJVdXV0mSv7+/3n//ff3nP/9RrVq1ZDKZlJ2drfbt21vHlCQ+Pl4mk8mmJSQklH3XAAAAAAAAqHLKfUdWnz591KhRI7355pvWvuzsbF25ckX+/v7q3LmzOnbsqNdff93mvfPnz8vNzU21a9dWUFCQnnjiCU2fPr3ENcxmc7EKrILCQpsjigAAAAAAwPGq6x1Z310677S1m9Xxc9ralZ1beSewWCzFkkwmk0mSdOzYMe3bt0//+Mc/ir3n5/f7j7JlyxZlZWVp4MCBpa5hNBqLJa247B0AAAAAAFSUMl8qjgplVyLrqaeeUlRUlOrXr6/Lly9rzZo12rZtm5KTkyVJ77//vvz9/dWgQQMdPHhQU6ZM0eDBgxUZGWmdY8WKFWrevLn8/f21a9cuTZkyRTExMWratKljdwYAAAAAAIBbil2JrHPnzik6OloZGRkymUxq3bq1kpOTdc8990iSMjIyFBsbq3Pnzik4OFiPPPKInn32WZs5jhw5ori4OF28eFENGzbU008/rZiYGMftCAAAAAAAoJy4dL1yKvcdWc7C0UIAAAAAACpedb0j6/tfLjht7ca1fZ22dmVX7juyAAAAAAAAbjUuoiKrMuLuMgAAAAAAAFQJJLIAAAAAAABQJZQrkRUfHy+DwaCpU6dKkq5evaoZM2aoVatW8vLyUkhIiB555BH99NNPNu+ZzWZNmjRJfn5+8vLy0sCBA3XmzJnyhAIAAAAAAOAwBoPzGkpX5kTW3r17tWTJErVu3dral5+fr/379+vZZ5/V/v379dFHH+no0aMaOHCgzbtTp05VYmKi1qxZox07dig3N1d//etfVVhYWPadAAAAAAAA4JZWpq8W5ubmqn379lq0aJFeeOEFtW3bVgsWLChx7N69e3XHHXfohx9+UIMGDZSdnS1/f3/9+9//1rBhwyRJP/30k+rXr6/169erb9++NxUDXy0EAAAAAKDiVdevFv6Qfclpa4ea6jht7cquTBVZEyZMUP/+/dWnT58bjs3OzpbBYFDt2rUlSWlpabp69aoiIyOtY0JCQhQeHq6dO3eWJRwAAAAAAABUA272vrBmzRrt379fe/fuveHY3377TTNnztRDDz0kHx8fSVJmZqbc3d1Vp45tdjEwMFCZmZklzmM2m2U2m236CgoLZTQa7Q0fAAAAAAAAVZRdFVk//vijpkyZonfeeUceHh7XHXv16lUNHz5cRUVFWrRo0Q3ntlgsMpRyo1l8fLxMJpNNS0hIsCd0AAAAAACAm+bixIbS2XVH1rp163TffffJ1dXV2ldYWCiDwSAXFxeZzWa5urrq6tWrGjp0qE6cOKEtW7bI19fXOn7Lli3q3bu3Ll68aFOV1aZNGw0ePFjPPfdcsXWpyAIAAAAAwDmq6x1ZPzrxjqz63JFVKruOFvbu3VsHDx606Rs9erSaNWumGTNm2CSxjh07pq1bt9oksSSpQ4cOqlGjhlJSUjR06FBJUkZGhg4dOqT58+eXuK7RaCyWtOKydwAAAAAAUFFcSjk1BueyK5Hl7e2t8PBwmz4vLy/5+voqPDxcBQUFevDBB7V//3598sknKiwstN57VbduXbm7u8tkMmnMmDF64okn5Ovrq7p162ratGlq1arVTV0eDwAAAAAAgOrJ7sver+fMmTNKSkqSJLVt29bm2datWxURESFJeuWVV+Tm5qahQ4fq119/Ve/evfX222/bHFkEAAAAAABwFhdRkVUZ2XVHVmXC0UIAAAAAACpedb0jKyMn22lrB/uYnLZ2Zcdl+AAAAAAAAKgSHHq0EAAAAAAA4FbAXe+VExVZAAAAAAAAqBLKlciKj4+XwWDQ1KlTS3w+btw4GQwGLViwwKZ/yZIlioiIkI+PjwwGg3755ZfyhAEAAAAAAOBQLjI4raF0ZU5k7d27V0uWLFHr1q1LfL5u3Trt2bNHISEhxZ7l5+erX79+euqpp8q6PAAAAAAAAKqZMiWycnNzNXLkSC1dulR16tQp9vzs2bOaOHGi3n33XdWoUaPY86lTp2rmzJnq0qVLWZYHAAAAAABANVSmRNaECRPUv39/9enTp9izoqIiRUdHa/r06WrZsmW5AwQAAAAAAPhvczEYnNZQOru/WrhmzRrt379fe/fuLfH5vHnz5ObmpsmTJ5c7uGvMZrPMZrNNX0FhoYxGo8PWAAAAAAAAQOVmV0XWjz/+qClTpuidd96Rh4dHsedpaWl69dVX9fbbb8vgwAxifHy8TCaTTUtISHDY/AAAAAAAAH/k4sSG0hksFovlZgevW7dO9913n1xdXa19hYWFMhgMcnFx0bx58zR9+nS5uLjYPHdxcVH9+vV16tQpm/m2bdumXr166dKlS6pdu3ap61KRBQAAAACAc3h5ejo7BKe4mHvZaWvXreXttLUrO7uOFvbu3VsHDx606Rs9erSaNWumGTNmKDg4WH379rV53rdvX0VHR2v06NFlDtJoNBZLWuXl55d5PgAAAAAAAFQ9diWyvL29FR4ebtPn5eUlX19fa7+vr6/N8xo1aigoKEhNmza19mVmZiozM1Pff/+9JOngwYPy9vZWgwYNVLdu3TJtBAAAAAAAwFFcxKXrlZFTjl6+8cYbateuncaOHStJ6tmzp9q1a6ekpCRnhAMAAAAAAIAqwK47sioTjhYCAAAAAFDxqusdWdl5uU5b2+RVy2lrV3Zchg8AAAAAAIAqwa47sgAAAAAAAKoD7siqnKjIAgAAAAAAqOIWLVqksLAweXh4qEOHDtq+fft1x6empqpDhw7y8PDQbbfdpjfeeKPYmA8//FAtWrSQ0WhUixYtlJiYWO51y6tciaz4+HgZDAZNnTrVpv/w4cMaOHCgTCaTvL291aVLF50+fVqSdPHiRU2aNElNmzaVp6enGjRooMmTJys7O7s8oQAAAAAAAFRLa9eu1dSpU/X000/rwIEDuvPOOxUVFWXNxfzZyZMnde+99+rOO+/UgQMH9NRTT2ny5Mn68MMPrWN27dqlYcOGKTo6Wl999ZWio6M1dOhQ7dmzp8zrOkKZL3vfu3evhg4dKh8fH/Xq1UsLFiyQJB0/flx33HGHxowZoxEjRshkMunw4cPq1KmTAgICdOjQIc2aNUuPPvqoWrRooR9++EHjx49X69at9cEHH9z0+lz2DgAAAABAxauul707M+9g7795586d1b59ey1evNja17x5cw0ePFjx8fHFxs+YMUNJSUk6fPiwtW/8+PH66quvtGvXLknSsGHDlJOTow0bNljH9OvXT3Xq1NF7771XpnUdoUwVWbm5uRo5cqSWLl2qOnXq2Dx7+umnde+992r+/Plq166dbrvtNvXv318BAQGSpPDwcH344YcaMGCAGjVqpLvvvltz5szRf/7zHxUUFJR/RwAAAAAAAFWY2WxWTk6OTTObzSWOvXLlitLS0hQZGWnTHxkZqZ07d5b4zq5du4qN79u3r/bt26erV69ed8y1OcuyriOUKZE1YcIE9e/fX3369LHpLyoq0qeffqrbb79dffv2VUBAgDp37qx169Zdd77s7Gz5+PjIzY275wEAAAAAgPMZZHFai4+Pl8lksmmlVTidP39ehYWFCgwMtOkPDAxUZmZmie9kZmaWOL6goEDnz5+/7phrc5ZlXUewO5G1Zs0a7d+/v8R/wKysLOXm5urFF19Uv379tGnTJt133326//77lZqaWuJ8Fy5c0D/+8Q+NGzfO/ugBAAAAAABuMXFxccrOzrZpcXFx133HYLD9yqLFYinWd6Pxf+6/mTntXbe87CqB+vHHHzVlyhRt2rRJHh4exZ4XFRVJkgYNGqSYmBhJUtu2bbVz50698cYbuuuuu2zG5+TkqH///mrRooVmzZpV6rpms7lYCV1BYaGMRqM94QMAAAAAAFR6RqPxpnMefn5+cnV1LVYFlZWVVaxa6pqgoKASx7u5ucnX1/e6Y67NWZZ1HcGuiqy0tDRlZWWpQ4cOcnNzk5ubm1JTU/Xaa69ZN+vm5qYWLVrYvNe8efNiN9ZfvnxZ/fr1U61atZSYmKgaNWqUum5JJXUJCQn2hA4AAAAAAHDzLEXOa3Zwd3dXhw4dlJKSYtOfkpKibt26lfhO165di43ftGmTOnbsaM3PlDbm2pxlWdcR7KrI6t27tw4ePGjTN3r0aDVr1kwzZsyQ0WhUp06ddOTIEZsxR48eVWhoqPXvnJwc9e3bV0ajUUlJSSVWd/1RXFycYmNjbfoKCgvtCR0AAAAAAOCWFBsbq+joaHXs2FFdu3bVkiVLdPr0aY0fP17S73mVs2fPatWqVZJ+/0LhwoULFRsbq7Fjx2rXrl1atmyZ9WuEkjRlyhT17NlT8+bN06BBg/Txxx9r8+bN2rFjx02vWxHsSmR5e3srPDzcps/Ly0u+vr7W/unTp2vYsGHq2bOnevXqpeTkZP3nP//Rtm3bJP1eiRUZGan8/Hy988471tv3Jcnf31+urq7F1i2ppM6Zn8EEAAAAAAC3Ovsqo5xp2LBhunDhgp5//nllZGQoPDxc69evtxYVZWRk2JyUCwsL0/r16xUTE6PXX39dISEheu211/TAAw9Yx3Tr1k1r1qzRM888o2effVaNGjXS2rVr1blz55tetyIYLNdu8yqjiIgItW3bVgsWLLD2LV++XPHx8Tpz5oyaNm2q5557ToMGDZIkbdu2Tb169SpxrpMnT6phw4Y3tS6JLAAAAAAAKp6Xp6ezQ3CK/Lxsp63t6WVy2tqVXbkTWc5CIgsAAAAAgIpXbRNZuZectrZnrTpOW7uys+uydwAAAAAAAMBZSGQBAAAAAACgSrDrsncAAAAAAIDqoepc9l6dlKsiKz4+XgaDQVOnTrX25ebmauLEiapXr55q1qyp5s2ba/HixTbvjRs3To0aNVLNmjXl7++vQYMG6bvvvitPKAAAAAAAALjFlTmRtXfvXi1ZskStW7e26Y+JiVFycrLeeecdHT58WDExMZo0aZI+/vhj65gOHTpoxYoVOnz4sDZu3CiLxaLIyEgVFhaWfScAAAAAAACOYilyXkOpypTIys3N1ciRI7V06VLVqWN7k/6uXbs0atQoRUREqGHDhvrb3/6mNm3aaN++fdYxf/vb39SzZ081bNhQ7du31wsvvKAff/xRp06dKtdmAAAAAAAAcOsqUyJrwoQJ6t+/v/r06VPsWY8ePZSUlKSzZ8/KYrFo69atOnr0qPr27VviXHl5eVqxYoXCwsJUv379soQDAAAAAACAasDuy97XrFmj/fv3a+/evSU+f+211zR27FjVq1dPbm5ucnFx0VtvvaUePXrYjFu0aJGefPJJ5eXlqVmzZkpJSZG7u3vZdgEAAAAAAOBQHPGrjOyqyPrxxx81ZcoUvfPOO/Lw8ChxzGuvvabdu3crKSlJaWlpeumll/T4449r8+bNNuNGjhypAwcOKDU1VU2aNNHQoUP122+/lTin2WxWTk6OTTObzfaEDgAAAAAAgCrOYLFYLDc7eN26dbrvvvvk6upq7SssLJTBYJCLi4uys7NVp04dJSYmqn///tYxjz32mM6cOaPk5OQS571y5Yrq1Kmjt956SyNGjCj2fPbs2Xruueds+uKeekpPP/30zYYOAAAAAADKwMvT09khOEV+TobT1vb0CXba2pWdXUcLe/furYMHD9r0jR49Ws2aNdOMGTNUWFioq1evysXFttDL1dVVRUXXL8mzWCylVlnFxcUpNjbWpq+ALxwCAAAAAABUK3Ylsry9vRUeHm7T5+XlJV9fX2v/XXfdpenTp6tmzZoKDQ1VamqqVq1apZdfflmSdOLECa1du1aRkZHy9/fX2bNnNW/ePNWsWVP33ntviesajUYZjUabvrz8fHtCBwAAAAAAsAN3ZFVGdl/2fiNr1qxRXFycRo4cqYsXLyo0NFRz5szR+PHjJUkeHh7avn27FixYoEuXLikwMFA9e/bUzp07FRAQ4OhwAAAAAAAAcIuw646syoSKLAAAAAAAKl71vSPrrNPW9vT5i9PWruwcXpEFAAAAAABQ5Vk4WlgZudx4CAAAAAAAAOB8VGQBAAAAAAAUQ0VWZWRXRdbs2bNlMBhsWlBQkPW5xWLR7NmzFRISopo1ayoiIkLffPNNiXNZLBZFRUXJYDBo3bp15doEAAAAAAAAbn12Hy1s2bKlMjIyrO3gwYPWZ/Pnz9fLL7+shQsXau/evQoKCtI999yjy5cvF5tnwYIFMhgM5YseAAAAAAAA1YbdRwvd3NxsqrCusVgsWrBggZ5++mndf//9kqSVK1cqMDBQq1ev1rhx46xjv/rqK7388svau3evgoODyxE+AAAAAABABeCy90rJ7oqsY8eOKSQkRGFhYRo+fLhOnDghSTp58qQyMzMVGRlpHWs0GnXXXXdp586d1r78/HyNGDFCCxcuLDEhBgAAAAAAAJTErkRW586dtWrVKm3cuFFLly5VZmamunXrpgsXLigzM1OSFBgYaPNOYGCg9ZkkxcTEqFu3bho0aJADwgcAAAAAAKgIRU5sKI1dRwujoqKs/92qVSt17dpVjRo10sqVK9WlSxdJKnbvlcVisfYlJSVpy5YtOnDggF1Bms1mmc1mm76CwkIZjUa75gEAAAAAAEDVZffRwj/y8vJSq1atdOzYMesxwT9WX0lSVlaWtUpry5YtOn78uGrXri03Nze5uf2eR3vggQcUERFR6jrx8fEymUw2LSEhoTyhAwAAAAAAlMpgsTitoXTlSmSZzWYdPnxYwcHBCgsLU1BQkFJSUqzPr1y5otTUVHXr1k2SNHPmTH399ddKT0+3Nkl65ZVXtGLFilLXiYuLU3Z2tk2bNm1aeUIHAAAAAABAFWPX0cJp06ZpwIABatCggbKysvTCCy8oJydHo0aNksFg0NSpUzV37lw1adJETZo00dy5c+Xp6amHHnpIkhQUFFTiBe8NGjRQWFhYqesajcZixwjz8vPtCR0AAAAAAABVnF2JrDNnzmjEiBE6f/68/P391aVLF+3evVuhoaGSpCeffFK//vqrHn/8cV26dEmdO3fWpk2b5O3tXSHBAwAAAAAAVAwuXa+MDBZL1Tx8SUUWAAAAAAAVz8vT09khOMWvl446be2adW532tqVnV0VWQAAAAAAANWChYqsyqhcl70DAAAAAAAA/y0ksgAAAAAAAFAl2JXImj17tgwGg0279hXCq1evasaMGWrVqpW8vLwUEhKiRx55RD/99JPNHBEREcXmGD58uON2BAAAAAAAUG5FTmwojd13ZLVs2VKbN2+2/u3q6ipJys/P1/79+/Xss8+qTZs2unTpkqZOnaqBAwdq3759NnOMHTtWzz//vPXvmjVrljV+AAAAAAAAVBN2J7Lc3NysVVh/ZDKZlJKSYtP3r3/9S3fccYdOnz6tBg0aWPs9PT1LnAMAAAAAAKBS4LL3SsnuO7KOHTumkJAQhYWFafjw4Tpx4kSpY7Ozs2UwGFS7dm2b/nfffVd+fn5q2bKlpk2bpsuXL9sdOAAAAAAAAKoXg8Visdzs4A0bNig/P1+33367zp07pxdeeEHfffedvvnmG/n6+tqM/e2339SjRw81a9ZM77zzjrV/6dKlCgsLU1BQkA4dOqS4uDg1bty4WDXXjeTl59s1HgAAAAAA2M/L09PZITjFrxe+dtraNX1bO23tys6uRNaf5eXlqVGjRnryyScVGxtr7b969aqGDBmi06dPa9u2bfLx8Sl1jrS0NHXs2FFpaWlq3759iWPMZrPMZrNNX0FhoYxGY1lDBwAAAAAAN4FE1n8fiazS2X208I+8vLzUqlUrHTt2zNp39epVDR06VCdPnlRKSsp1k1iS1L59e9WoUcNmjj+Lj4+XyWSyaQkJCeUJHQAAAAAAAFWM3Ze9/5HZbNbhw4d15513Svp/Saxjx45p69atxY4bluSbb77R1atXFRwcXOqYuLg4m4ov6feKLAAAAAAAgArBZe+Vkl2JrGnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo1SQUGBHnzwQe3fv1+ffPKJCgsLlZmZKUmqW7eu3N3ddfz4cb377ru699575efnp2+//VZPPPGE2rVrp+7du5e6rtFoLHaMkDuyAAAAAAAAqhe7EllnzpzRiBEjdP78efn7+6tLly7avXu3QkNDderUKSUlJUmS2rZta/Pe1q1bFRERIXd3d3322Wd69dVXlZubq/r166t///6aNWuWXF1dHbYpAAAAAACA8qEiqzIq12XvzkRFFgAAAAAAFa/aXvZ+fr/T1q7pV/LH8FDOy94BAAAAAACA/5ZyXfYOAAAAAABwS+Ky90qJiiwAAAAAAABUCXYlsmbPni2DwWDTgoKCShw7btw4GQwGLViwoNizXbt26e6775aXl5dq166tiIgI/frrr2XaAAAAAAAAgOMVObGhNHYfLWzZsqU2b95s/bukrw2uW7dOe/bsUUhISLFnu3btUr9+/RQXF6d//etfcnd311dffSUXF4rDAAAAAAAAUDq7E1lubm6lVmFJ0tmzZzVx4kRt3LhR/fv3L/Y8JiZGkydP1syZM619TZo0sTcMAAAAAACAisMdWZWS3WVQx44dU0hIiMLCwjR8+HCdOHHC+qyoqEjR0dGaPn26WrZsWezdrKws7dmzRwEBAerWrZsCAwN11113aceOHeXbBQAAAAAAAG55diWyOnfurFWrVmnjxo1aunSpMjMz1a1bN124cEGSNG/ePLm5uWny5Mklvn8t6TV79myNHTtWycnJat++vXr37q1jx46VcysAAAAAAAC4ldl1tDAqKsr6361atVLXrl3VqFEjrVy5UnfddZdeffVV7d+/XwaDocT3i4p+L8sbN26cRo8eLUlq166dPvvsMy1fvlzx8fElvmc2m2U2m236CgoLZTQa7QkfAAAAAADgJnG0sDIq1w3rXl5eatWqlY4dO6bt27crKytLDRo0kJubm9zc3PTDDz/oiSeeUMOGDSVJwcHBkqQWLVrYzNO8eXOdPn261HXi4+NlMplsWkJCQnlCBwAAAAAAQBVj92Xvf2Q2m3X48GHdeeedio6OVp8+fWye9+3bV9HR0dbqq4YNGyokJERHjhyxGXf06FGbaq8/i4uLU2xsrE1fQWFheUIHAAAAAAAoHZe9V0p2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sr6+vvL19bUZX6NGDQUFBalp06aSJIPBoOnTp2vWrFlq06aN2rZtq5UrV+q7777TBx98UOq6RqOx2DHCvPx8e0IHAAAAAABAFWdXIuvMmTMaMWKEzp8/L39/f3Xp0kW7d+9WaGjoTc8xdepU/fbbb4qJidHFixfVpk0bpaSkqFGjRnYHDwAAAAAAgOrDYLFYLM4OoiyoyAIAAAAAoOJ5eXo6OwSnyM9MddrankF3OW3tyq5cl70DAAAAAAAA/y3luuwdAAAAAADgVmQp4rL3yoiKLAAAAAAAAFQJdiWyZs+eLYPBYNOCgoJsxhw+fFgDBw6UyWSSt7e3unTpotOnT0uSTp06Vez9a+3999933K4AAAAAAABwy7H7aGHLli21efNm69+urq7W/z5+/Lh69OihMWPG6LnnnpPJZNLhw4fl4eEhSapfv74yMjJs5luyZInmz5+vqKiosu4BAAAAAADAoSyWQmeHgBLYnchyc3MrVoV1zdNPP617771X8+fPt/bddttt1v92dXUt9m5iYqKGDRumWrVq2RsKAAAAAAAAqhG778g6duyYQkJCFBYWpuHDh+vEiROSpKKiIn366ae6/fbb1bdvXwUEBKhz585at25dqXOlpaUpPT1dY8aMKfMGAAAAAAAAHM1SVOi0htLZlcjq3LmzVq1apY0bN2rp0qXKzMxUt27ddOHCBWVlZSk3N1cvvvii+vXrp02bNum+++7T/fffr9TU1BLnW7ZsmZo3b65u3bo5ZDMAAAAAAAC4dRksFoulrC/n5eWpUaNGevLJJzV8+HD95S9/0YgRI7R69WrrmIEDB8rLy0vvvfeezbu//vqrgoOD9eyzz+qJJ5647jpms1lms9mmr6CwUEajsayhAwAAAACAm+Dl6ensEJwi5/R6p63t0+Bep61d2dl9tPCPvLy81KpVKx07dkx+fn5yc3NTixYtbMY0b97c+tXCP/rggw+Un5+vRx555IbrxMfHy2Qy2bSEhITyhA4AAAAAAFCtXLp0SdHR0dbcSnR0tH755ZfrvmOxWDR79myFhISoZs2aioiI0DfffGN9fvHiRU2aNElNmzaVp6enGjRooMmTJys7O9tmnoYNG8pgMNi0mTNn2r2HciWyzGazDh8+rODgYLm7u6tTp046cuSIzZijR48qNDS02LvLli3TwIED5e/vf8N14uLilJ2dbdOmTZtWntABAAAAAACqlYceekjp6elKTk5WcnKy0tPTFR0dfd135s+fr5dfflkLFy7U3r17FRQUpHvuuUeXL1+WJP3000/66aeflJCQoIMHD+rtt99WcnJyifehP//888rIyLC2Z555xu492PXVwmnTpmnAgAFq0KCBsrKy9MILLygnJ0ejRo2SJE2fPl3Dhg1Tz5491atXLyUnJ+s///mPtm3bZjPP999/r88//1zr199cmZ7RaCx2jDAvP9+e0AEAAAAAAG5eUZGzI3Cow4cPKzk5Wbt371bnzp0lSUuXLlXXrl115MgRNW3atNg7FotFCxYs0NNPP637779fkrRy5UoFBgZq9erVGjdunMLDw/Xhhx9a32nUqJHmzJmjhx9+WAUFBXJz+3+pJ29vbwUFBZVrH3ZVZJ05c0YjRoxQ06ZNdf/998vd3V27d++2Vlzdd999euONNzR//ny1atVKb731lj788EP16NHDZp7ly5frL3/5iyIjI8sVPAAAAAAAwK3GbDYrJyfHpv357nB77dq1SyaTyZrEkqQuXbrIZDJp586dJb5z8uRJZWZm2uRvjEaj7rrrrlLfkaTs7Gz5+PjYJLEkad68efL19VXbtm01Z84cXblyxe592FWRtWbNmhuO+Z//+R/9z//8z3XHzJ07V3PnzrVnaQAAAAAAgP8ai6XQaWvHx8frueees+mbNWuWZs+eXeY5MzMzFRAQUKw/ICBAmZmZpb4jSYGBgTb9gYGB+uGHH0p858KFC/rHP/6hcePG2fRPmTJF7du3V506dfTll18qLi5OJ0+e1FtvvWXXPuxKZAEAAAAAAKBixcXFKTY21qbvz1cuXTN79uxiSa8/27t3ryTJYDAUe2axWErs/6M/Py/tnZycHPXv318tWrTQrFmzbJ7FxMRY/7t169aqU6eOHnzwQWuV1s0ikQUAAAAAAFCJlHRXeGkmTpyo4cOHX3dMw4YN9fXXX+vcuXPFnv3888/FKq6uuXafVWZmpoKDg639WVlZxd65fPmy+vXrp1q1aikxMVE1atS4bkxdunSR9Ps96iSyAAAAAAAAysFS5Lyjhfbw8/OTn5/fDcd17dpV2dnZ+vLLL3XHHXdIkvbs2aPs7Gx169atxHfCwsIUFBSklJQUtWvXTpJ05coVpaamat68edZxOTk56tu3r4xGo5KSkuTh4XHDeA4cOCBJNgmym0EiCwAAAAAA4BbXvHlz9evXT2PHjtWbb74pSfrb3/6mv/71rzZfLGzWrJni4+N13333yWAwaOrUqZo7d66aNGmiJk2aaO7cufL09NRDDz0k6fdKrMjISOXn5+udd96xXk4vSf7+/nJ1ddWuXbu0e/du9erVSyaTSXv37lVMTIwGDhyoBg0a2LUPu75aOHv2bBkMBpv2x88m5ubmauLEiapXr55q1qyp5s2ba/HixTZzZGZmKjo6WkFBQfLy8lL79u31wQcf2BU0AAAAAABARbJYCp3WKsq7776rVq1aKTIyUpGRkWrdurX+/e9/24w5cuSIsrOzrX8/+eSTmjp1qh5//HF17NhRZ8+e1aZNm+Tt7S1JSktL0549e3Tw4EE1btxYwcHB1vbjjz9K+v2o5Nq1axUREaEWLVrof//3fzV27Fi99957du/BYLFYLDc7ePbs2frggw+0efNma5+rq6v8/f0lSWPHjtXWrVv11ltvqWHDhtq0aZMef/xxffjhhxo0aJAk6Z577lF2drYWLlwoPz8/rV69WrNmzdK+ffusZWo3Iy8//6bHAgAAAACAsvHy9HR2CE5x6fv3nbZ2ncZDnLZ2ZWdXRZYkubm5KSgoyNquJbEkadeuXRo1apQiIiLUsGFD/e1vf1ObNm20b98+mzGTJk3SHXfcodtuu03PPPOMateurf379ztmRwAAAAAAAOVkKSpyWkPp7E5kHTt2TCEhIQoLC9Pw4cN14sQJ67MePXooKSlJZ8+elcVi0datW3X06FH17dvXZszatWt18eJFFRUVac2aNTKbzYqIiHDIhgAAAAAAAHBrsuuy986dO2vVqlW6/fbbde7cOb3wwgvq1q2bvvnmG/n6+uq1117T2LFjVa9ePbm5ucnFxUVvvfWWevToYZ1j7dq1GjZsmHx9feXm5iZPT08lJiaqUaNGpa5rNptlNptt+goKC2/6U5QAAAAAAACo+uyqyIqKitIDDzygVq1aqU+fPvr0008lSStXrpQkvfbaa9q9e7eSkpKUlpaml156SY8//rjNnVrPPPOMLl26pM2bN2vfvn2KjY3VkCFDdPDgwVLXjY+Pl8lksmkJCQll2S8AAAAAAMAN3YqXvd8K7LrsvST33HOPGjdurJdfflkmk0mJiYnq37+/9fljjz2mM2fOKDk5WcePH1fjxo116NAhtWzZ0jqmT58+aty4sd54440S16AiCwAAAAAA56iul71fOLLaaWv7Nn3IaWtXdnYdLfwzs9msw4cP684779TVq1d19epVubjYFnm5urqq6P+/qCz////S4PXGlMRoNBZLWvHVQgAAAAAAUFEsRVRGVUZ2JbKmTZumAQMGqEGDBsrKytILL7ygnJwcjRo1Sj4+Prrrrrs0ffp01axZU6GhoUpNTdWqVav08ssvS5KaNWumxo0ba9y4cUpISJCvr6/WrVunlJQUffLJJxWyQQAAAAAAANwa7EpknTlzRiNGjND58+fl7++vLl26aPfu3QoNDZUkrVmzRnFxcRo5cqQuXryo0NBQzZkzR+PHj5ck1ahRQ+vXr9fMmTM1YMAA5ebmqnHjxlq5cqXuvfdex+8OAAAAAAAAt4xy35HlLBwtBAAAAACg4lXXO7J+/vZtp63t3+JRp61d2dn11UIAAAAAAADAWcp12TsAAAAAAMCtyHKdj9LBeajIAgAAAAAAQJVgdyLr7Nmzevjhh+Xr6ytPT0+1bdtWaWlp1ucWi0WzZ89WSEiIatasqYiICH3zzTc2cxw/flz33Xef/P395ePjo6FDh+rcuXPl3w0AAAAAAIADWCyFTmsonV2JrEuXLql79+6qUaOGNmzYoG+//VYvvfSSateubR0zf/58vfzyy1q4cKH27t2roKAg3XPPPbp8+bIkKS8vT5GRkTIYDNqyZYu++OILXblyRQMGDFARZXsAAAAAAAAohV1fLZw5c6a++OILbd++vcTnFotFISEhmjp1qmbMmCFJMpvNCgwM1Lx58zRu3Dht2rRJUVFRunTpknx8fCT9niCrW7euUlJS1KdPn5uKha8WAgAAAABQ8arrVwvPHVzqtLUDW4112tqVnV0VWUlJSerYsaOGDBmigIAAtWvXTkuX/r8f9uTJk8rMzFRkZKS1z2g06q677tLOnTsl/Z7YMhgMMhqN1jEeHh5ycXHRjh07yrsfAAAAAACA8isqdF5DqexKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrJEmZmZmSpMDAQJv3AgMDrc+6dOkiLy8vzZgxQ/n5+crLy9P06dNVVFSkjIyMEtc1m83KycmxaWaz2e7NAgAAAAAAoOqyK5FVVFSk9u3ba+7cuWrXrp3GjRunsWPHavHixTbjDAaDzd8Wi8Xa5+/vr/fff1//+c9/VKtWLZlMJmVnZ6t9+/ZydXUtcd34+HiZTCablpCQYE/oAAAAAAAAN43L3isnN3sGBwcHq0WLFjZ9zZs314cffihJCgoKkvR7ZVZwcLB1TFZWlk2VVmRkpI4fP67z58/Lzc1NtWvXVlBQkMLCwkpcNy4uTrGxsTZ9BYX8sAAAAAAAANWJXRVZ3bt315EjR2z6jh49qtDQUElSWFiYgoKClJKSYn1+5coVpaamqlu3bsXm8/PzU+3atbVlyxZlZWVp4MCBJa5rNBrl4+Nj0/54xxYAAAAAAABufXZVZMXExKhbt26aO3euhg4dqi+//FJLlizRkiVLJP1+pHDq1KmaO3eumjRpoiZNmmju3Lny9PTUQw89ZJ1nxYoVat68ufz9/bVr1y5NmTJFMTExatq0qWN3BwAAAAAAUAaWoiJnh4AS2JXI6tSpkxITExUXF6fnn39eYWFhWrBggUaOHGkd8+STT+rXX3/V448/rkuXLqlz587atGmTvL29rWOOHDmiuLg4Xbx4UQ0bNtTTTz+tmJgYx+0KAAAAAAAAtxyDxWKxODuIssjLz3d2CAAAAAAA3PK8PD2dHYJT/JS2wGlrh3SY6rS1Kzu77sgCAAAAAAAAnMWuo4UAAAAAAADVgaWo0NkhoARUZAEAAAAAAKBKsDuRdfbsWT388MPy9fWVp6en2rZtq7S0NOvz2bNnq1mzZvLy8lKdOnXUp08f7dmzx2YOs9msSZMmyc/PT15eXho4cKDOnDlT/t0AAAAAAADglmVXIuvSpUvq3r27atSooQ0bNujbb7/VSy+9pNq1a1vH3H777Vq4cKEOHjyoHTt2qGHDhoqMjNTPP/9sHTN16lQlJiZqzZo12rFjh3Jzc/XXv/5VhYWU7QEAAAAAAOezWAqd1lA6u75aOHPmTH3xxRfavn37TS+Qk5Mjk8mkzZs3q3fv3srOzpa/v7/+/e9/a9iwYZKkn376SfXr19f69evVt2/fm5qXrxYCAAAAAFDxqutXC898Od9pa9e740mnrV3Z2VWRlZSUpI4dO2rIkCEKCAhQu3bttHTp0lLHX7lyRUuWLJHJZFKbNm0kSWlpabp69aoiIyOt40JCQhQeHq6dO3eWcRsAAAAAAACOYykqclpD6exKZJ04cUKLFy9WkyZNtHHjRo0fP16TJ0/WqlWrbMZ98sknqlWrljw8PPTKK68oJSVFfn5+kqTMzEy5u7urTp06Nu8EBgYqMzOzxHXNZrNycnJsmtlstid0AAAAAAAAVHF2JbKKiorUvn17zZ07V+3atdO4ceM0duxYLV682GZcr169lJ6erp07d6pfv34aOnSosrKyrju3xWKRwWAo8Vl8fLxMJpNNS0hIsCd0AAAAAAAAVHF2JbKCg4PVokULm77mzZvr9OnTNn1eXl5q3LixunTpomXLlsnNzU3Lli2TJAUFBenKlSu6dOmSzTtZWVkKDAwscd24uDhlZ2fbtGnTptkTOgAAAAAAwE3jsvfKya5EVvfu3XXkyBGbvqNHjyo0NPS671ksFutRwA4dOqhGjRpKSUmxPs/IyNChQ4fUrVu3Et83Go3y8fGxaUaj0Z7QAQAAAAAAUMW52TM4JiZG3bp109y5czV06FB9+eWXWrJkiZYsWSJJysvL05w5czRw4EAFBwfrwoULWrRokc6cOaMhQ4ZIkkwmk8aMGaMnnnhCvr6+qlu3rqZNm6ZWrVqpT58+jt8hAAAAAACAnSxFVEZVRnYlsjp16qTExETFxcXp+eefV1hYmBYsWKCRI0dKklxdXfXdd99p5cqVOn/+vHx9fdWpUydt375dLVu2tM7zyiuvyM3NTUOHDtWvv/6q3r176+2335arq6tjdwcAAAAAAIBbhsFisVicHURZ5OXnOzsEAAAAAABueV6ens4OwSlO7ZjltLUb9njOaWtXdnbdkQUAAAAAAAA4C4ksAAAAAAAAVAl23ZEFAAAAAABQHXDZe+Vkd0XW2bNn9fDDD8vX11eenp5q27at0tLSrM8fffRRGQwGm9alSxebOZYsWaKIiAj5+PjIYDDol19+KfdGAAAAAAAAcGuzqyLr0qVL6t69u3r16qUNGzYoICBAx48fV+3atW3G9evXTytWrLD+7e7ubvM8Pz9f/fr1U79+/RQXF1f26AEAAAAAACqApZCKrMrIrkTWvHnzVL9+fZskVcOGDYuNMxqNCgoKKnWeqVOnSpK2bdtmz/IAAAAAAACoxuw6WpiUlKSOHTtqyJAhCggIULt27bR06dJi47Zt26aAgADdfvvtGjt2rLKyshwWMAAAAAAAAKonuyqyTpw4ocWLFys2NlZPPfWUvvzyS02ePFlGo1GPPPKIJCkqKkpDhgxRaGioTp48qWeffVZ333230tLSZDQayxSk2WyW2Wy26SsoLCzzfAAAAAAAANfDZe+Vk10VWUVFRWrfvr3mzp2rdu3aady4cRo7dqwWL15sHTNs2DD1799f4eHhGjBggDZs2KCjR4/q008/LXOQ8fHxMplMNi0hIaHM8wEAAAAA/r/27jysxvz/H/jztJdyRDvaLClr2Zexq+yGj132fV/G0pgRYwmTZTD2JNsw1sEQEUa2imQpRSFLibQpSp3794ef850zFZ3E3ann47ru6+q87+15zhzT6XXeCxGR6lGqR5a5uTkcHBwU2uzt7XHw4MFPnmNlZYX79+8XLiEAd3d3TJ8+XaEtm5OuEREREREREdFXwsneiyelClnNmzdHZGSkQltUVBSsrKzyPScxMRFPnjyBubl54RLiw+Tx/x1GmJ6RUejrERERERERERGR6lGqkDVt2jQ0a9YMS5YsQZ8+fRAUFITNmzdj8+bNAIA3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffy+/Tnx8POLj4/HgwQMAwO3bt2FgYABLS0uUL1++CJ8eEREREREREZHyZJwjq1hSao6shg0b4vDhw/jjjz9Qq1YtLFy4EKtXr8bAgQMBAOrq6rh9+za6d++O6tWrY8iQIahevTquXLkCAwMD+XU2btwIR0dHjBo1CgDQsmVLODo64ujRo0X41IiIiIiIiIiIqCSRCIIgiB2iMDi0kIiIiIiIiOjrK6OnJ3YEUUT5TRXt3tVdV4t27+JOqaGFRERERERERESlASd7L56UGlpIREREREREREQkFvbIIiIiIiIiIiL6D/bIKp6U7pH17NkzDBo0CBUqVICenh7q1auH69evy/dLJJI8t19//RUA8Pr1a0yaNAl2dnbQ09ODpaUlJk+ejJSUlKJ7VkREREREREREVOIo1SMrKSkJzZs3R5s2bXDy5EmYmJggOjoa5cqVkx8TFxencM7JkycxYsQI9OrVCwDw/PlzPH/+HF5eXnBwcMDjx48xduxYPH/+HAcOHPjyZ0RERERERERERCWSUqsWzpkzB5cuXcLFixcLfIMePXogLS0NZ8+ezfeY/fv3Y9CgQUhPT4eGRsFqa1y1kIiIiIiIiOjrK62rFkYcGS3ave17bBbt3sWdUkMLjx49igYNGqB3794wMTGBo6MjtmzZku/xL168wN9//40RI0Z88ropKSkoW7ZsgYtYRERERERERERU+ihVOYqJicGGDRswffp0/PjjjwgKCsLkyZOhra2NwYMH5zre19cXBgYG6NmzZ77XTExMxMKFCzFmzJh8j8nMzERmZqZCW3ZODrS1tZWJT0RERERERERUIDJO9l4sKdUjSyaTwcnJCUuWLIGjoyPGjBmDUaNGYcOGDXkev23bNgwcOBA6Ojp57k9NTUXnzp3h4OAADw+PfO/r6ekJqVSqsHl5eSkTnYiIiIiIiIiIVJxSPbLMzc3h4OCg0GZvb4+DBw/mOvbixYuIjIzEvn378rxWWloaXF1doa+vj8OHD0NTUzPf+7q7u2P69OkKbdmsjBIRERERERERlSpKFbKaN2+OyMhIhbaoqChYWVnlOtbb2xv169dH3bp1c+1LTU2Fi4sLtLW1cfTo0Xx7bH2kra2daxghJ3snIiIiIiIioq9FkLEDTXGk1NDCadOm4erVq1iyZAkePHiAPXv2YPPmzZgwYYLCcampqdi/fz9GjhyZ6xppaWlwdnZGeno6vL29kZqaivj4eMTHxyOHvayIiIiIiIiIiCgfSvXIatiwIQ4fPgx3d3f88ssvsLGxwerVqzFw4ECF4/bu3QtBENC/f/9c17h+/TquXbsGAKhatarCvocPH8La2lrJp0BEREREREREVLQEdrYpliSCIAhihygMDi0kIiIiIiIi+vrK6OmJHUEUt/e6iXbv2v12inbv4k6pHllERERERERERKUB58gqnpSaI4uIiIiIiIiIiFRTUlIS3NzcIJVKIZVK4ebmhuTk5E+eIwgC5s+fDwsLC+jq6qJ169a4e/euwjGtW7eGRCJR2Pr16/fF984LC1lERERERERERKXAgAEDcPPmTfj5+cHPzw83b96Em9unh1AuX74cK1euxLp16xAcHAwzMzN06NABaWlpCseNGjUKcXFx8m3Tpk1ffO+8KF3IevbsGQYNGoQKFSpAT08P9erVw/Xr1+X7X7x4gaFDh8LCwgJ6enpwdXXF/fv3Fa4xZswYVKlSBbq6ujA2Nkb37t1x7949pcMTEREREREREX0Nspwc0bavISIiAn5+fti6dSuaNm2Kpk2bYsuWLTh+/DgiIyPzPEcQBKxevRpz585Fz549UatWLfj6+iIjIwN79uxROFZPTw9mZmbyTSqVftG986NUISspKQnNmzeHpqYmTp48ifDwcKxYsQLlypWTP8EePXogJiYGf/31F0JDQ2FlZYX27dsjPT1dfp369evDx8cHEREROHXqFARBgLOzM3K4IgARERERERERlXKZmZlITU1V2DIzM7/omleuXIFUKkXjxo3lbU2aNIFUKsXly5fzPOfhw4eIj4+Hs7OzvE1bWxutWrXKdc7u3bthZGSEmjVr4ocfflDosVWYe+dHqcnely1bhsqVK8PHx0feZm1tLf/5/v37uHr1Ku7cuYOaNWsCANavXw8TExP88ccfGDlyJABg9OjRCucvWrQIdevWxaNHj1ClShWlngARERERERERUVETc7J3T09PLFiwQKHNw8MD8+fPL/Q14+PjYWJikqvdxMQE8fHx+Z4DAKampgrtpqamePz4sfzxwIEDYWNjAzMzM9y5cwfu7u4ICwuDv79/oe+dH6V6ZB09ehQNGjRA7969YWJiAkdHR2zZskW+/2N1UEdHR96mrq4OLS0tBAYG5nnN9PR0+Pj4wMbGBpUrV1YqPBERERERERFRSePu7o6UlBSFzd3dPc9j58+fn2ui9f9uISEhAACJRJLrfEEQ8mz/t//u/+85o0aNQvv27VGrVi3069cPBw4cwJkzZ3Djxo18r1HQe/+XUoWsmJgYbNiwAdWqVcOpU6cwduxYTJ48GTt27AAA1KhRA1ZWVnB3d0dSUhKysrKwdOlSxMfHIy4uTuFa69evh76+PvT19eHn5wd/f39oaWkpFZ6IiIiIiIiIqKTR1tZG2bJlFTZtbe08j504cSIiIiI+udWqVQtmZmZ48eJFrvNfvnyZq8fVR2ZmZgCQq9dUQkJCvucAgJOTEzQ1NeVzphfm3vlRamihTCZDgwYNsGTJEgCAo6Mj7t69iw0bNmDw4MHQ1NTEwYMHMWLECJQvXx7q6upo3749OnbsmOtaAwcORIcOHRAXFwcvLy/06dMHly5dUujN9VFmZmausaDZOTn5/kckIiIiIiIiIvoSgorM421kZAQjI6PPHte0aVOkpKQgKCgIjRo1AgBcu3YNKSkpaNasWZ7nfBwu6O/vD0dHRwBAVlYWLly4gGXLluV7r7t37+L9+/cwNzcv9L3zo1SPLHNzczg4OCi02dvbIzY2Vv64fv36uHnzJpKTkxEXFwc/Pz8kJibCxsZG4TypVIpq1aqhZcuWOHDgAO7du4fDhw/neV9PT09IpVKFzcvLS5noRERERERERESllr29PVxdXTFq1ChcvXoVV69exahRo9ClSxfY2dnJj6tRo4a8PiORSDB16lQsWbIEhw8fxp07dzB06FDo6elhwIABAIDo6Gj88ssvCAkJwaNHj3DixAn07t0bjo6OaN68uVL3LgilemQ1b94817KIUVFRsLKyynXsx2UW79+/j5CQECxcuPCT1xYEId8Z+N3d3TF9+nSFtmwVqYwSERERERERkeoRcrLFjlDkdu/ejcmTJ8tXIezWrRvWrVuncExkZCRSUlLkj2fNmoW3b99i/PjxSEpKQuPGjXH69GkYGBgAALS0tHD27Fn89ttvePPmDSpXrozOnTvDw8MD6urqSt27ICSCIAgFPTg4OBjNmjXDggUL0KdPHwQFBWHUqFHYvHkzBg4cCADYv38/jI2NYWlpidu3b2PKlCmoX78+Dh48CODDPFv79u2Ds7MzjI2N8ezZMyxbtgwXL15EREREnrPY5yU9I0PpJ0tEREREREREyimjpyd2BFFc39JVtHvXH3VMtHsXd0r1yGrYsCEOHz4Md3d3/PLLL7CxscHq1avlRSwAiIuLw/Tp0/HixQuYm5tj8ODB+Pnnn+X7dXR0cPHiRaxevRpJSUkwNTVFy5Ytcfny5QIXsYiIiIiIiIiIviaZjCPBiiOlemQVJ+yRRURERERERPT1ldYeWcGbOol274ZjToh27+JOqcneiYiIiIiIiIiIxKLU0EIiIiIiIiIiotJA4CJzxRJ7ZBERERERERERkUpQqpBlbW0NiUSSa5swYQIA4NChQ3BxcYGRkREkEglu3ryZ77UEQUDHjh0hkUhw5MiRL3kORERERERERERFSpDliLZR/pQqZAUHByMuLk6++fv7AwB69+4NAEhPT0fz5s2xdOnSz15r9erVkEgkhYhMRERERERERESlkVJzZBkbGys8Xrp0KapUqYJWrVoBANzc3AAAjx49+uR1wsLCsHLlSgQHB8Pc3FyZCEREREREREREVEoVerL3rKws7Nq1C9OnT1eqZ1VGRgb69++PdevWwczMrLC3JyIiIiIiIiL6ajjZe/FU6Mnejxw5guTkZAwdOlSp86ZNm4ZmzZqhe/fuhb01ERERERERERGVQoXukeXt7Y2OHTvCwsKiwOccPXoUAQEBCA0NVepemZmZyMzMVGjLzsmBtra2UtchIiIiIiIiIioIGSddL5YK1SPr8ePHOHPmDEaOHKnUeQEBAYiOjka5cuWgoaEBDY0PdbRevXqhdevW+Z7n6ekJqVSqsHl5eRUmOhERERERERERqahC9cjy8fGBiYkJOnfurNR5c+bMyVX8ql27NlatWoWuXbvme567uzumT5+u0JbNsapERERERERE9JVwjqziSelClkwmg4+PD4YMGSLvUfXR69evERsbi+fPnwMAIiMjAQBmZmYK239ZWlrCxsYm33tqa2vnGkaYnpGhbHQiIiIiIiIiIlJhSg8tPHPmDGJjYzF8+PBc+44ePQpHR0d5T61+/frB0dERGzdu/PKkRERERERERERUqkkEQRDEDlEY7JFFRERERERE9PWV0dMTO4IoApc3Fu3eLWZdE+3exV2hJnsnIiIiIiIiIiL61go12TsRERERERERUUnGyd6LJ/bIIiIiIiIiIiIilaBUIcva2hoSiSTXNmHCBADA/PnzUaNGDZQpUwaGhoZo3749rl1THNfZunXrXOf369ev6J4RERERERERERGVSEoNLQwODkbOv7rW3blzBx06dEDv3r0BANWrV8e6detga2uLt2/fYtWqVXB2dsaDBw9gbGwsP2/UqFH45Zdf5I91dXW/9HkQERERERERERUZmYxDC4sjpQpZ/y5GAcDSpUtRpUoVtGrVCgAwYMAAhf0rV66Et7c3bt26hXbt2snb9fT0YGZmVtjMRERERERERERUChV6jqysrCzs2rULw4cPh0QiyXP/5s2bIZVKUbduXYV9u3fvhpGREWrWrIkffvgBaWlphY1BRERERERERFTkhJwc0TbKX6FXLTxy5AiSk5MxdOhQhfbjx4+jX79+yMjIgLm5Ofz9/WFkZCTfP3DgQNjY2MDMzAx37tyBu7s7wsLC4O/vX+gnQUREREREREREJZ9EEAShMCe6uLhAS0sLx44dU2hPT09HXFwcXr16hS1btiAgIADXrl2DiYlJnte5fv06GjRogOvXr8PJySnPYzIzM5GZmanQlp2TA21t7cJEJyIiIiIiIqICKqOnJ3YEUQTMry3avdvOvy3avYu7Qg0tfPz4Mc6cOYORI0fm2lemTBlUrVoVTZo0gbe3NzQ0NODt7Z3vtZycnKCpqYn79+/ne4ynpyekUqnC5uXlVZjoRERERERERESkogo1tNDHxwcmJibo3LnzZ48VBCFXb6p/u3v3Lt6/fw9zc/N8j3F3d8f06dMV2rI5ZpSIiIiIiIiIqFRRupAlk8ng4+ODIUOGQEPj/05PT0/H4sWL0a1bN5ibmyMxMRHr16/H06dP0bt3bwBAdHQ0du/ejU6dOsHIyAjh4eGYMWMGHB0d0bx583zvqa2tnWsYYXpGhrLRiYiIiIiIiIgKRCaTiR2B8qB0IevMmTOIjY3F8OHDFdrV1dVx7949+Pr64tWrV6hQoQIaNmyIixcvombNmgAALS0tnD17Fr/99hvevHmDypUro3PnzvDw8IC6unrRPCMiIiIiIiIiIiqRCj3Zu9jYI4uIiIiIiIjo6yutk72f/slBtHs7LwoX7d7FXaEmeyciIiIiIiIiIvrWWMgiIiIiIiIiIiKVUKhVC4mIiIiIiIiISjKZTCVnYirxlOqRZW1tDYlEkmubMGECAGDo0KG59jVp0iTXda5cuYK2bduiTJkyKFeuHFq3bo23b98WzTMiIiIiIiIiIqISSakeWcHBwcjJyZE/vnPnDjp06IDevXvL21xdXeHj4yN/rKWlpXCNK1euwNXVFe7u7li7di20tLQQFhYGNTWOciQiIiIiIiKi4kEmyMSOQHlQqpBlbGys8Hjp0qWoUqUKWrVqJW/T1taGmZlZvteYNm0aJk+ejDlz5sjbqlWrpkwMIiIiIiIiIiIqhQrdDSorKwu7du3C8OHDIZFI5O3nz5+HiYkJqlevjlGjRiEhIUG+LyEhAdeuXYOJiQmaNWsGU1NTtGrVCoGBgV/2LIiIiIiIiIiIipBMJoi2Uf4KXcg6cuQIkpOTMXToUHlbx44dsXv3bgQEBGDFihUIDg5G27ZtkZmZCQCIiYkBAMyfPx+jRo2Cn58fnJyc0K5dO9y/f//LngkREREREREREZVohV610NvbGx07doSFhYW8rW/fvvKfa9WqhQYNGsDKygp///03evbsCZnsw/jSMWPGYNiwYQAAR0dHnD17Ftu2bYOnp2ee98rMzJQXwz7KzsmBtrZ2YeMTEREREREREZGKKVSPrMePH+PMmTMYOXLkJ48zNzeHlZWVvLeVubk5AMDBwUHhOHt7e8TGxuZ7HU9PT0ilUoXNy8urMNGJiIiIiIiIiD5LJpOJtlH+CtUjy8fHByYmJujcufMnj0tMTMSTJ0/kBSxra2tYWFggMjJS4bioqCh07Ngx3+u4u7tj+vTpCm3Z/1o9kYiIiIiIiIiISj6lC1kymQw+Pj4YMmQINDT+7/Q3b95g/vz56NWrF8zNzfHo0SP8+OOPMDIywvfffw8AkEgkmDlzJjw8PFC3bl3Uq1cPvr6+uHfvHg4cOJDvPbW1tXMNI0zPyFA2OhERERERERFRgXDS9eJJ6ULWmTNnEBsbi+HDhyu0q6ur4/bt29ixYweSk5Nhbm6ONm3aYN++fTAwMJAfN3XqVLx79w7Tpk3D69evUbduXfj7+6NKlSpf/myIiIiIiIiIiKjEkgiCoJIlRvbIIiIiIiIiIvr6yujpiR1BFEdmiNfhpseKaNHuXdwVetVCIiIiIiIiIqKSikMLi6dCrVpIRERERERERET0rbFHFhERERERERHRf8hkMrEjUB6U6pFlbW0NiUSSa5swYQIA5LlPIpHg119/BQA8evQo32P2799f9M+OiIiIiIiIiIhKDKV6ZAUHByMnJ0f++M6dO+jQoQN69+4NAIiLi1M4/uTJkxgxYgR69eoFAKhcuXKuYzZv3ozly5ejY8eOhXoCRERERERERERFjXNkFU9KFbKMjY0VHi9duhRVqlRBq1atAABmZmYK+//66y+0adMGtra2AAB1dfVcxxw+fBh9+/aFvr6+0uGJiIiIiIiIiKj0KPRk71lZWdi1axeGDx8OiUSSa/+LFy/w999/Y8SIEfle4/r167h58+YnjyEiIiIiIiIiIgK+YLL3I0eOIDk5GUOHDs1zv6+vLwwMDNCzZ898r+Ht7Q17e3s0a9assDGIiIiIiIiIiIochxYWT4UuZHl7e6Njx46wsLDIc/+2bdswcOBA6Ojo5Ln/7du32LNnD37++efP3iszMxOZmZkKbdk5OdDW1lY+OBERERERERERqaRCDS18/Pgxzpw5g5EjR+a5/+LFi4iMjMx3PwAcOHAAGRkZGDx48Gfv5+npCalUqrB5eXkVJjoRERERERER0WfJBJloG+VPIgiC0n3l5s+fj02bNuHJkyfQ0MjdqWvo0KG4c+cOQkJC8r1G69atYWRkhAMHDnz2fuyRRURERERERCSOMnp6YkcQxZ7xlUS794D1T0W7d3Gn9NBCmUwGHx8fDBkyJM8iVmpqKvbv348VK1bke40HDx7gn3/+wYkTJwp0T21t7VxFq/SMDOWCExERERERERGRSlO6kHXmzBnExsZi+PDhee7fu3cvBEFA//79873Gtm3bULFiRTg7Oyt7eyIiIiIiIiKir46TvRdPhRpaWBywRxYRERERERHR11dahxbuGltRtHsP2vhMtHsXd4VetZCIiIiIiIiIqKSSyTjpenFUqFULiYiIiIiIiIiIvjUWsoiIiIiIiIiISCUoVciytraGRCLJtU2YMAEA8OLFCwwdOhQWFhbQ09ODq6sr7t+/r3CN+Ph4uLm5wczMDGXKlIGTkxMOHDhQdM+IiIiIiIiIiOgLyWSCaBvlT6lCVnBwMOLi4uSbv78/AKB3794QBAE9evRATEwM/vrrL4SGhsLKygrt27dHenq6/Bpubm6IjIzE0aNHcfv2bfTs2RN9+/ZFaGho0T4zIiIiIiIiIiIqUb5o1cKpU6fi+PHjuH//Pu7fvw87OzvcuXMHNWvWBADk5OTAxMQEy5Ytw8iRIwEA+vr62LBhA9zc3OTXqVChApYvX44RI0YU+N5ctZCIiIiIiIjo6yutqxZuG24q2r2Hb3sh2r2Lu0LPkZWVlYVdu3Zh+PDhkEgkyMzMBADo6OjIj1FXV4eWlhYCAwPlbS1atMC+ffvw+vVryGQy7N27F5mZmWjdunXhnwUREREREREREZV4hS5kHTlyBMnJyRg6dCgAoEaNGrCysoK7uzuSkpKQlZWFpUuXIj4+HnFxcfLz9u3bh+zsbFSoUAHa2toYM2YMDh8+jCpVqnzxkyEiIiIiIiIiKgoymUy0jfJX6EKWt7c3OnbsCAsLCwCApqYmDh48iKioKJQvXx56eno4f/48OnbsCHV1dfl5P/30E5KSknDmzBmEhIRg+vTp6N27N27fvp3vvTIzM5GamqqwfewBRkREREREREREn5eUlAQ3NzdIpVJIpVK4ubkhOTn5k+cIgoD58+fDwsICurq6aN26Ne7evSvf/+jRozwXBpRIJNi/f7/8uLwWEJwzZ47Sz6FQhazHjx/jzJkz8nmvPqpfvz5u3ryJ5ORkxMXFwc/PD4mJibCxsQEAREdHY926ddi2bRvatWuHunXrwsPDAw0aNMDvv/+e7/08PT3lL/LHzcvLqzDRiYiIiIiIiIhKpQEDBuDmzZvw8/ODn58fbt68qTCHeV6WL1+OlStXYt26dQgODoaZmRk6dOiAtLQ0AEDlypUVFgaMi4vDggULUKZMGXTs2FHhWr/88ovCcT/99JPSz0FD6TMA+Pj4wMTEBJ07d85zv1QqBQDcv38fISEhWLhwIQAg4/9P0K6mplg/U1dX/2TXOXd3d0yfPl2hLTsnpzDRiYiIiIiIiIg+SyYr9Np4xVJERAT8/Pxw9epVNG7cGACwZcsWNG3aFJGRkbCzs8t1jiAIWL16NebOnYuePXsCAHx9fWFqaoo9e/ZgzJgxUFdXh5mZmcJ5hw8fRt++faGvr6/QbmBgkOtYZSndI0smk8HHxwdDhgyBhoZiHWz//v04f/48YmJi8Ndff6FDhw7o0aMHnJ2dAXyYR6tq1aoYM2YMgoKCEB0djRUrVsDf3x89evTI957a2tooW7aswqatra1sdCIiIiIiIiKiYu9rTLF05coVSKVSeRELAJo0aQKpVIrLly/nec7Dhw8RHx8vr+sAH2o0rVq1yvec69ev4+bNmxgxYkSufcuWLUOFChVQr149LF68GFlZWUo/D6ULWWfOnEFsbCyGDx+ea19cXBzc3NxQo0YNTJ48GW5ubvjjjz/k+zU1NXHixAkYGxuja9euqFOnDnbs2AFfX1906tRJ6fBERERERERERF+DTCaItuU1xZKnp+cXPZ/4+HiYmJjkajcxMUF8fHy+5wCAqampQrupqWm+53h7e8Pe3h7NmjVTaJ8yZQr27t2Lc+fOYeLEiVi9ejXGjx+v9PNQemihs7MzBCHv7nWTJ0/G5MmTP3l+tWrVcPDgQWVvS0RERERERERUKuQ1xVJ+I9Pmz5+PBQsWfPJ6wcHBAACJRJJrnyAIebb/23/353fO27dvsWfPHvz888+59k2bNk3+c506dWBoaIj//e9/8l5aBVWoObKIiIiIiIiIiOjr0NbWLvCUShMnTkS/fv0+eYy1tTVu3bqFFy9e5Nr38uXLXD2uPvo4n1V8fDzMzc3l7QkJCXmec+DAAWRkZGDw4MGfzd2kSRMAwIMHD1jIIiIiIiIiIiL6Ep9alK44MTIygpGR0WePa9q0KVJSUhAUFIRGjRoBAK5du4aUlJRcwwA/srGxgZmZGfz9/eHo6AgAyMrKwoULF7Bs2bJcx3t7e6Nbt24wNjb+bJ7Q0FAAUCiQFQQLWUREREREREREJZy9vT1cXV0xatQobNq0CQAwevRodOnSRWHFwho1asDT0xPff/89JBIJpk6diiVLlqBatWqoVq0alixZAj09PQwYMEDh+g8ePMA///yDEydO5Lr3lStXcPXqVbRp0wZSqRTBwcGYNm0aunXrBktLS6WeBwtZRERERERERET/IctnfnBVtnv3bkyePFm+CmG3bt2wbt06hWMiIyORkpIifzxr1iy8ffsW48ePR1JSEho3bozTp0/DwMBA4bxt27ahYsWKCiscfqStrY19+/ZhwYIFyMzMhJWVFUaNGoVZs2Yp/RwkQn4zt+chOzsb8+fPx+7du+XjI4cOHYqffvoJamofFkA8dOgQNm3ahOvXryMxMRGhoaGoV6+ewnWio6Pxww8/IDAwEJmZmXB1dcXatWvzHZOZl/SMjAIfS0RERERERESFU0ZPT+wIoljXv5xo9574R7Jo9y7u1JQ5eNmyZdi4cSPWrVuHiIgILF++HL/++ivWrl0rPyY9PR3NmzfH0qVL87xGeno6nJ2dIZFIEBAQgEuXLiErKwtdu3ZVmfGnRERERERERFSyyWQy0TbKn1JDC69cuYLu3bujc+fOAD7Mev/HH38gJCREfoybmxsA4NGjR3le49KlS3j06BFCQ0NRtmxZAICPjw/Kly+PgIAAtG/fvjDPg4iIiIiIiIiISjilemS1aNECZ8+eRVRUFAAgLCwMgYGB6NSpU4GvkZmZCYlEorCMpI6ODtTU1BAYGKhMHCIiIiIiIiIiKkWU6pE1e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37F/gaTZo0QZkyZTB79mwsWbIEgiBg9uzZkMlkiIuLy/OczMxMZGZmKrRl5+QoFMOIiIiIiIiIiIqKTFbyJnsvCZTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voW+BrGxsbYv38/jh07Bn19fUilUqSkpMDJyQnq6up5nuPp6QmpVKqweXl5KROdiIiIiIiIiIhUnFI9smbOnIk5c+agX79+AIDatWvj8ePH8PT0xJAhQwp8HWdnZ0RHR+PVq1fQ0NBAuXLlYGZmBhsbmzyPd3d3x/Tp0xXasnNylIlORERERERERFRg7JFVPClVyMrIyICammInLnV19ULPqG9kZAQACAgIQEJCArp165bncdra2rmGEaZnZBTqnkREREREREREpJqUKmR17doVixcvhqWlJWrWrInQ0FCsXLkSw4cPlx/z+vVrxMbG4vnz5wCAyMhIAICZmRnMzMwAfFil0N7eHsbGxrhy5QqmTJmCadOmwc7OrqieFxERERERERERlTASQRAK3FcuLS0NP//8Mw4fPoyEhARYWFigf//+mDdvHrS0tAAA27dvx7Bhw3Kd6+Hhgfnz5wMA5syZg+3bt+P169ewtrbG2LFjMW3aNEgkkgIHZ48sIiIiIiIioq+vjJ6e2BFE4fV9GdHu/cPhdNHuXdwpVcgqTljIIiIiIiIiIvr6WMj69ljIyp9SQwuJiIiIiIiIiEoDzvVePKl9/hAiIiIiIiIiIiLxsUcWEREREREREdF/sEdW8aRUj6zs7Gz89NNPsLGxga6uLmxtbfHLL79AJpPlefyYMWMgkUiwevVqhfbMzExMmjQJRkZGKFOmDLp164anT58W+kkQEREREREREVHJp1Qha9myZdi4cSPWrVuHiIgILF++HL/++ivWrl2b69gjR47g2rVrsLCwyLVv6tSpOHz4MPbu3YvAwEC8efMGXbp0QU5OTuGfCRERERERERERlWhKDS28cuUKunfvjs6dOwMArK2t8ccffyAkJEThuGfPnmHixIk4deqU/NiPUlJS4O3tjZ07d6J9+/YAgF27dqFy5co4c+YMXFxcvuT5EBERERERERF9sRyOLSyWlOqR1aJFC5w9exZRUVEAgLCwMAQGBqJTp07yY2QyGdzc3DBz5kzUrFkz1zWuX7+O9+/fw9nZWd5mYWGBWrVq4fLly4V9HkREREREREREVMIp1SNr9uzZSElJQY0aNaCuro6cnBwsXrwY/fv3lx+zbNkyaGhoYPLkyXleIz4+HlpaWjA0NFRoNzU1RXx8fJ7nZGZmIjMzU6EtOycH2traysQnIiIiIiIiIioQdsgqnpTqkbVv3z7s2rULe/bswY0bN+Dr6wsvLy/4+voC+NDb6rfffsP27dshkUiUCiIIQr7neHp6QiqVKmxeXl5KXZ+IiIiIiIiIiFSbUj2yZs6ciTlz5qBfv34AgNq1a+Px48fw9PTEkCFDcPHiRSQkJMDS0lJ+Tk5ODmbMmIHVq1fj0aNHMDMzQ1ZWFpKSkhR6ZSUkJKBZs2Z53tfd3R3Tp09XaMvmxPBERERERERERKWKUoWsjIwMqKkpduJSV1eHTCYDALi5uckncP/IxcUFbm5uGDZsGACgfv360NTUhL+/P/r06QMAiIuLw507d7B8+fI876utrZ1rGGF6RoYy0YmIiIiIiIiICoxDC4snpQpZXbt2xeLFi2FpaYmaNWsiNDQUK1euxPDhwwEAFSpUQIUKFRTO0dTUhJmZGezs7AAAUqkUI0aMwIwZM1ChQgWUL18eP/zwA2rXrp2rCEZERERERERERPSRUoWstWvX4ueff8b48eORkJAACwsLjBkzBvPmzVPqpqtWrYKGhgb69OmDt2/fol27dti+fTvU1dWVug4RERERERER0dfAHlnFk0QQBJX8T8OhhURERERERERfXxk9PbEjiMKjk3jPe8EJ1jzyo1SPLCIiIiIiIiKi0uD/TwdOxYza5w8hIiIiIiIiIiISHwtZRERERERERESkEpQqZGVnZ+Onn36CjY0NdHV1YWtri19++QWy//S3i4iIQLdu3SCVSmFgYIAmTZogNjZWvn/z5s1o3bo1ypYtC4lEguTk5CJ5MkRERERERERERSFHEETbKH9KzZG1bNkybNy4Eb6+vqhZsyZCQkIwbNgwSKVSTJkyBQAQHR2NFi1aYMSIEViwYAGkUikiIiKgo6Mjv05GRgZcXV3h6uoKd3f3on1GRERERERERERUIim1amGXLl1gamoKb29veVuvXr2gp6eHnTt3AgD69esHTU1N+eNPOX/+PNq0aYOkpCSUK1dOqeBctZCIiIiIiIjo6yutqxbOcdYV7d5LT78V7d7FnVJDC1u0aIGzZ88iKioKABAWFobAwEB06tQJACCTyfD333+jevXqcHFxgYmJCRo3bowjR44UeXAiIiIiIiIiIipdlCpkzZ49G/3790eNGjWgqakJR0dHTJ06Ff379wcAJCQk4M2bN1i6dClcXV1x+vRpfP/99+jZsycuXLhQ6JCZmZlITU1V2DIzMwt9PSIiIiIiIiIiUj1KFbL27duHXbt2Yc+ePbhx4wZ8fX3h5eUFX19fAJBP+t69e3dMmzYN9erVw5w5c9ClSxds3Lix0CE9PT0hlUoVNi8vr0Jfj4iIiIiIiIjoU2Qy8TbKn1KTvc+cORNz5sxBv379AAC1a9fG48eP4enpiSFDhsDIyAgaGhpwcHBQOM/e3h6BgYGFDunu7o7p06crtGXn5BT6ekREREREREREpHqUKmRlZGRATU2xE5e6urq8J5aWlhYaNmyIyMhIhWOioqJgZWVV6JDa2trQ1tZWaONk70RERERERET0tcgKvDQefUtKFbK6du2KxYsXw9LSEjVr1kRoaChWrlyJ4cOHy4+ZOXMm+vbti5YtW6JNmzbw8/PDsWPHcP78efkx8fHxiI+Px4MHDwAAt2/fhoGBASwtLVG+fPmieWZERERERERERFSiSARBKHCNMS0tDT///DMOHz6MhIQEWFhYoH///pg3bx60tLTkx23btg2enp54+vQp7OzssGDBAnTv3l2+f/78+ViwYEGu6/v4+GDo0KEFysIeWURERERERERfXxk9PbEjiGJ6W13R7r0y4K1o9y7ulCpkFScsZBERERERERF9fSxkfXssZOVPqVULiYiIiIiIiIiIxKLUHFlERERERERERKVBjmoOYCvx2COLiIiIiIiIiIhUglKFrOzsbPz000+wsbGBrq4ubG1t8csvv0Amk8mPefPmDSZOnIhKlSpBV1cX9vb22LBhg3z/69evMWnSJNjZ2UFPTw+WlpaYPHkyUlJSiu5ZERERERERERF9AZlMvI3yp9TQwmXLlmHjxo3w9fVFzZo1ERISgmHDhkEqlWLKlCkAgGnTpuHcuXPYtWsXrK2tcfr0aYwfPx4WFhbo3r07nj9/jufPn8PLywsODg54/Pgxxo4di+fPn+PAgQNf5UkSEREREREREZHqU2rVwi5dusDU1BTe3t7ytl69ekFPTw87d+4EANSqVQt9+/bFzz//LD+mfv366NSpExYuXJjndffv349BgwYhPT0dGhoFq61x1UIiIiIiIiKir6+0rlo4qZWOaPdee+GdaPcu7pQaWtiiRQucPXsWUVFRAICwsDAEBgaiU6dOCsccPXoUz549gyAIOHfuHKKiouDi4pLvdVNSUlC2bNkCF7GIiIiIiIiIiL4mmSDeRvlTqnI0e/ZspKSkoEaNGlBXV0dOTg4WL16M/v37y49Zs2YNRo0ahUqVKkFDQwNqamrYunUrWrRokec1ExMTsXDhQowZMybf+2ZmZiIzM1OhLTsnB9ra2srEJyIiIiIiIiIiFaZUj6x9+/Zh165d2LNnD27cuAFfX194eXnB19dXfsyaNWtw9epVHD16FNevX8eKFSswfvx4nDlzJtf1UlNT0blzZzg4OMDDwyPf+3p6ekIqlSpsXl5eykQnIiIiIiIiIiow9sgqnpSaI6ty5cqYM2cOJkyYIG9btGgRdu3ahXv37uHt27eQSqU4fPgwOnfuLD9m5MiRePr0Kfz8/ORtaWlpcHFxgZ6eHo4fPw4dnfzHnrJHFhEREREREZE4SuscWeO+E2+OrA0XOUdWfpQaWpiRkQE1NcVOXOrq6pD9/7Uh379/j/fv33/yGOBDTywXFxdoa2vj6NGjnyxiAYC2tnauohUneyciIiIiIiKir+VfZQwqRpQqZHXt2hWLFy+GpaUlatasidDQUKxcuRLDhw8HAJQtWxatWrXCzJkzoaurCysrK1y4cAE7duzAypUrAXzoieXs7IyMjAzs2rULqampSE1NBQAYGxtDXV29iJ8iERERERERERGVBEoNLUxLS8PPP/+Mw4cPIyEhARYWFujfvz/mzZsHLS0tAEB8fDzc3d1x+vRpvH79GlZWVhg9ejSmTZsGiUSC8+fPo02bNnle/+HDh7C2ti5QFvbIIiIiIiIiIvr6SuvQwjHNxRtauOkShxbmR6lCVnHCQhYRERERERHR11daC1kjm4k3L/fWy5mfP6iUUmrVQiIiIiIiIiIiIrEoNUcWEREREREREVFpIFPJ8WslH3tkERERERERERGRSlC6kJWWloapU6fCysoKurq6aNasGYKDg+X7BUHA/PnzYWFhAV1dXbRu3Rp3795VuMaYMWNQpUoV6OrqwtjYGN27d8e9e/e+/NkQEREREREREVGJpXQha+TIkfD398fOnTtx+/ZtODs7o3379nj27BkAYPny5Vi5ciXWrVuH4OBgmJmZoUOHDkhLS5Nfo379+vDx8UFERAROnToFQRDg7OyMnJycontmRERERERERESFJJOJt1H+lFq18O3btzAwMMBff/2Fzp07y9vr1auHLl26YOHChbCwsMDUqVMxe/ZsAEBmZiZMTU2xbNkyjBkzJs/r3rp1C3Xr1sWDBw9QpUqVAmXhqoVEREREREREX19pXbVwaGPxVi3cfo2rFuZHqR5Z2dnZyMnJgY6OjkK7rq4uAgMD8fDhQ8THx8PZ2Vm+T1tbG61atcLly5fzvGZ6ejp8fHxgY2ODypUrF+IpEBEREREREREVLZkg3kb5U6qQZWBggKZNm2LhwoV4/vw5cnJysGvXLly7dg1xcXGIj48HAJiamiqcZ2pqKt/30fr166Gvrw99fX34+fnB398fWlpaed43MzMTqampCltmJquTRERERERERESlidJzZO3cuROCIKBixYrQ1tbGmjVrMGDAAKirq8uPkUgkCucIgpCrbeDAgQgNDcWFCxdQrVo19OnTB+/evcvznp6enpBKpQqbl5eXstGJiIiIiIiIiEiFKTVH1r+lp6cjNTUV5ubm6Nu3L968eYO1a9eiSpUquHHjBhwdHeXHdu/eHeXKlYOvr2+e18rKyoKhoSG2bt2K/v3759qfmZmZqwdWdk4OtLXFG69KREREREREVBqU1jmyBjUUr+awK5ij0PKjdI+sj8qUKQNzc3MkJSXh1KlT6N69O2xsbGBmZgZ/f3/5cVlZWbhw4QKaNWv2yesJgpDvcEFtbW2ULVtWYWMRi4iIiIiIiIiodNFQ9oRTp05BEATY2dnhwYMHmDlzJuzs7DBs2DBIJBJMnToVS5YsQbVq1VCtWjUsWbIEenp6GDBgAAAgJiYG+/btg7OzM4yNjfHs2TMsW7YMurq66NSpU5E/QSIiIiIiIiIiZeUUbgAbfWVKF7JSUlLg7u6Op0+fonz58ujVqxcWL14MTU1NAMCsWbPw9u1bjB8/HklJSWjcuDFOnz4NAwMDAICOjg4uXryI1atXIykpCaampmjZsiUuX74MExOTon12RERERERERERUYhR6jiyxpWdkiB2BiIiIiIiIqMQrrXNk9XXSEu3e+25kiXbv4q7Qc2QREREREREREZHqSEpKgpubG6RSKaRSKdzc3JCcnPzJcw4dOgQXFxcYGRlBIpHg5s2buY7JzMzEpEmTYGRkhDJlyqBbt254+vTpF987LyxkERERERERERGVAgMGDMDNmzfh5+cHPz8/3Lx5E25ubp88Jz09Hc2bN8fSpUvzPWbq1Kk4fPgw9u7di8DAQLx58wZdunRBTk7OF907LxxaSERERERERET5Kq1DC3s7ije0cH9o0Q8tjIiIgIODA65evYrGjRsDAK5evYqmTZvi3r17sLOz++T5jx49go2NDUJDQ1GvXj15e0pKCoyNjbFz50707dsXAPD8+XNUrlwZJ06cgIuLyxff+9/YI4uIiIiIiIiIqBjJzMxEamqqwpaZmflF17xy5QqkUqm8kAQATZo0gVQqxeXLlwt93evXr+P9+/dwdnaWt1lYWKBWrVry6xblvZVetbC4UIWKcGZmJjw9PeHu7g5tbW2x46gsvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WhYdvpZFg69j0eFrWbx9jV5RBTV//nwsWLBAoc3DwwPz588v9DXj4+NhYmKSq93ExATx8fFfdF0tLS0YGhoqtJuamsqvW5T3Zo+srygzMxMLFiz44qppacfXsejwtSw6fC2LBl/HosPXsujwtSwafB2LDl/LosPXsmjwdSw6fC0pP+7u7khJSVHY3N3d8zx2/vz5kEgkn9xCQkIAABKJJNf5giDk2f6l/nvdorq3yvbIIiIiIiIiIiIqibS1tQvcS2/ixIno16/fJ4+xtrbGrVu38OLFi1z7Xr58CVNT00LlBAAzMzNkZWUhKSlJoVdWQkICmjVrJj+mqO7NQhYRERERERERkYoyMjKCkZHRZ49r2rQpUlJSEBQUhEaNGgEArl27hpSUFHnBqTDq168PTU1N+Pv7o0+fPgCAuLg43LlzB8uXLy/ye7OQRURERERERERUwtnb28PV1RWjRo3Cpk2bAACjR49Gly5dFFYNrFGjBjw9PfH9998DAF6/fo3Y2Fg8f/4cABAZGQngQy8rMzMzSKVSjBgxAjNmzECFChVQvnx5/PDDD6hduzbat2+v1L0LgnNkfUXa2trw8PDgpH1fiK9j0eFrWXT4WhYNvo5Fh69l0eFrWTT4OhYdvpZFh69l0eDrWHT4WtK3tnv3btSuXRvOzs5wdnZGnTp1sHPnToVjIiMjkZKSIn989OhRODo6onPnzgCAfv36wdHRERs3bpQfs2rVKvTo0QN9+vRB8+bNoaenh2PHjkFdXV2pexeERBAEQemziIiIiIiIiIiIvjH2yCIiIiIiIiIiIpXAQhYREREREREREakEFrKIiIiIiIiIiEglsJBFREREREREREQqgYUsIiIiIiIiIiJSCSxkfQVZWVmIjIxEdna22FGI5Pi+JCIiotLmyZMn+e67evXqN0xScvAzJRGJjYWsIpSRkYERI0ZAT08PNWvWRGxsLABg8uTJWLp0qcjpVMuZM2fy3bdp06ZvmET18X1ZNNLS0uDv748TJ07g1atXYsdROampqQXeiKjkOnDggNgRqJTp0KEDEhMTc7VfunQJrq6uIiRSXfxMSUTFBQtZRcjd3R1hYWE4f/48dHR05O3t27fHvn37REymejp37owZM2YgKytL3vby5Ut07doV7u7uIiZTPXxffrlbt26hRo0acHV1RZcuXVC1atVPFlspt3LlysHQ0PCT28dj6PMePHiA69evK7SdPXsWbdq0QaNGjbBkyRKRkqmeuLg4zJ07V/64RYsWcHJykm8NGzbEs2fPREyoWrKzs3H37l1ERUUptP/111+oW7cuBg4cKFIyKq2+++47ODs7Iy0tTd72zz//oFOnTvDw8BAxmerhZ8qilZycjK1bt8Ld3R2vX78GANy4cYO/c4gKQEPsACXJkSNHsG/fPjRp0gQSiUTe7uDggOjoaBGTqZ5//vkHbm5uOHPmDPbs2YNHjx5h+PDhcHBwQFhYmNjxVArfl19uzpw5sLS0xP79+6Gjo4MFCxZg4sSJuHfvntjRVMa5c+fEjlCizJw5E7Vq1UL9+vUBAA8fPkTXrl3x3XffoU6dOvD09ISenh6mTp0qblAVsH79eiQnJ8sfh4WFYfjw4ShfvjwA4OTJk1i1ahW8vLxESqg6wsPD0aVLFzx+/BgA0L17d2zYsAF9+vRBWFgYRo4ciePHj4ucUrUcOHAAf/75J2JjYxW+3AM+/MFLn7d582b07t0bnTt3xunTp3HlyhV069YNixYtwpQpU8SOp1L4mbLo3Lp1C+3bt4dUKsWjR48watQolC9fHocPH8bjx4+xY8cOsSMSFW8CFRldXV0hOjpaEARB0NfXl/988+ZNoWzZsmJGU0lv3rwRBg0aJGhrawuamprCsmXLBJlMJnYslcP35ZczNjYWgoOD5Y9fvXolqKmpCWlpaSKmotKsUqVKwuXLl+WPFy5cKNStW1f+eOvWrQqPKX9169YVTp8+LX/87/9PCoIg+Pn5CQ4ODmJEUzldu3YV2rZtKxw7dkzo16+fIJFIhGrVqgkLFiwQUlNTxY6ncn777TdBX19fmDBhgqClpSWMGTNGaN++vSCVSoUff/xR7HgqJSsrS+jQoYPQrFkzQV9fX1i7dq3YkVQSP1MWnXbt2gkzZ84UBEHxtbx06ZJgZWUlYjIi1cChhUWoYcOG+Pvvv+WPP35TsWXLFjRt2lSsWCorMjISwcHBqFSpEjQ0NHDv3j1kZGSIHUvl8H355V69egVLS0v54woVKkBPTw8vX74UMZVqS05OxooVKzBy5EiMGjUKq1atQkpKitixVMarV69QqVIl+eNz586ha9eu8setW7fGo0ePREimeh49eoQqVarIH3fo0AFlypSRP7azs8PDhw/FiKZygoKC8Ouvv6JLly7YsGEDgA+9B+fNmwcDAwOR06me9evXY/PmzVi3bh20tLQwa9Ys+Pv7Y/Lkyfz/5WfcunVLYYuIiICHhweePHmCQYMGoWXLlvJ9VHD8TFl0goODMWbMmFztFStWRHx8vAiJiFQLhxYWIU9PT7i6uiI8PBzZ2dn47bffcPfuXVy5cgUXLlwQO55KWbp0KTw8PDB69Gj8+uuviI6OxqBBg1CnTh3s2rWLvyyVwPfll5NIJEhLS5PPByEIgrzt35OTly1bVqyIKiUkJAQuLi7Q1dVFo0aNIAgCVq5cicWLF+P06dNwcnISO2KxV758ecTFxaFy5cqQyWQICQnBtGnT5PuzsrIgCIKICVVHdna2QlHg0KFDCvuTkpKgpsbv/QoiISEBFStWBPBhXjw9PT20atVK5FSqKzY2Fs2aNQMA6Orqyud4cnNzQ5MmTbBu3Tox4xVr9erVg0QiUfj/4MfHmzZtwubNm+W/y3NyckRMqlr4mbLo6Ojo5LnATWRkJIyNjUVIRKRa+MmsCDVr1gyXLl1CRkYGqlSpgtOnT8PU1BRXrlyRz2NCBfPbb7/hyJEjWLt2LXR0dFCzZk0EBQWhZ8+eaN26tdjxVArfl19OEARUr15dPil5+fLl8ebNGzg6OnKS8kKYNm0aunXrhkePHuHQoUM4fPgwHj58iC5dunBOpwJq1aoVFi5ciCdPnmD16tWQyWRo06aNfH94eDisra3FC6hC7OzscPny5Xz3X7x4EdWrV/+GiVSXRCJRKPqpqalBU1NTxESqzczMTL7anpWVFa5evQrgw5x4LFR/2sOHDxETE4OHDx/Kt38//vhzTEyM2FFVCj9TFp3u3bvjl19+wfv37wF8+P9nbGws5syZg169eomcjqj4kwj8TUjF0KtXr2BkZJTnvgsXLvAbXvqmCvotI9+XBaOrq4vQ0FDUqFFDoT08PBwNGjTgEOICePjwITp06ICHDx9CTU0Na9aswbhx4+T7e/ToARsbG6xatUrElKrh119/xdKlS3Hu3DnUqVNHYV9YWBjatm2LOXPmYObMmSIlVB1qamqQSqXy4UbJyckoW7Zsrh5tH1fnok8bOXIkKleuDA8PD2zcuBHTp09H8+bNERISgp49e8Lb21vsiERUSKmpqejUqRPu3r2LtLQ0WFhYID4+Hk2bNsWJEycUhrgTUW4sZBWhvLqHAh8q7Nra2tDS0vrGiVRbcnIyDhw4gOjoaMycORPly5fHjRs3YGpqKh+6QAWTk5ODw4cPIyIiAhKJBPb29ujevTs0NDi6mL49U1NT7Ny5E87Ozgrtp06dwuDBg/HixQuRkqmW9+/fIzw8HMbGxrCwsFDYFxYWhkqVKqFChQoipVMd79+/R/v27XH58mV06NABdnZ2kEgkuHfvHvz9/dG0aVOcPXuWPYsKwNfXt0DHDRky5CsnKRlkMhlkMpn8d/Wff/6JwMBAVK1aFWPHjuXnSiWFh4fnufpjt27dREqkmviZsmgFBATgxo0bkMlkcHJyQvv27cWORKQSWMgqQmpqagpL0f5XpUqVMHToUHh4eHC+jc/475K0kZGRsLW1xc8//8wlaZV0584ddO/eHfHx8bCzswMAREVFwdjYGEePHkXt2rVFTqiaBEHAuXPn8PbtWzRr1oxDC5UwefJkHD58GF5eXmjWrBkkEgkCAwMxc+ZM9OrVC6tXrxY7osrKyspCVlYW9PX1xY6iUrKysrBy5Urs3bsXUVFRAIBq1aqhf//+mDZtGrS1tUVOSESFFRMTg++//x63b99WmDfr42d2zpFVcPxM+XUlJyejXLlyYscgUgksZBWhHTt2YO7cuRg6dKh8AuPg4GD4+vrip59+wsuXL+Hl5YWZM2fixx9/FDtusda+fXs4OTlh+fLlMDAwQFhYGGxtbXH58mUMGDCAq3EpoUmTJjAxMYGvr6+82JKUlIShQ4ciISEBV65cETlh8ZecnIwpU6bgxo0baNKkCVasWIFOnTrJ59UxNjaGv79/rmFJlLesrCzMnDkTGzduRHZ2NgBAU1MT48aNw9KlS1k0KCAfHx/5e3LgwIFwd3fHypUrkZ2djbZt22Lv3r3skUWk4pKTkxEUFISEhATIZDKFfYMHDxYplWrp2rUr1NXVsWXLFtja2iIoKAiJiYmYMWMGvLy88N1334kdUWXwM2XRWbZsGaytrdG3b18AQJ8+fXDw4EGYmZnhxIkTqFu3rsgJiYo3FrKKULt27TBmzBj06dNHof3PP//Epk2bcPbsWezcuROLFy/GvXv3REqpGqRSKW7cuIEqVaooFLIeP34MOzs7vHv3TuyIKkNXVxchISGoWbOmQvudO3fQsGFDvH37VqRkqmPkyJH4559/MHjwYBw/fhxqamoQBAGrV6+GmpoaZs2aBX19fRw7dkzsqMVeTk4OAgMDUbt2bejo6CA6OhqCIKBq1arQ09MTO57KWLx4MRYvXoxmzZohNDQUffr0wZEjRzB16lT5nFldunTBhg0bxI5a7CUlJWHXrl0YMmRIrpVHU1JSsGPHjjz3UW6Ghoaf7Jn+EefIKphjx45h4MCBSE9Ph4GBgcJrK5FI+DoWkJGREQICAlCnTh1IpVIEBQXBzs4OAQEBmDFjBkJDQ8WOqDL4mbLo2NraYteuXWjWrBn8/f3Rp08f7Nu3D3/++SdiY2Nx+vRpsSMSFWsczFyErly5go0bN+Zqd3R0lH9D0aJFC8TGxn7raCqHS9IWHTs7O7x48SLXh46EhARUrVpVpFSq5eTJk9izZw9atWqFYcOGoXLlyggICEDjxo0BfPhWjXNsFIy6ujpcXFwQERGB8uXLcxhCIW3fvh3e3t7o378/QkJC0LhxY+zbtw//+9//AAC1atXC2LFjRU6pGtatW4dbt25h0qRJufZJpVJcvHgRqampmDt3rgjpVMu/hwULgoBx48bhl19+gYmJiXihVNiMGTMwfPhwLFmyhIX+L5CTkyMfbm1kZITnz5/Dzs4OVlZWiIyMFDmdauFnyqITFxeHypUrAwCOHz+OPn36wNnZGdbW1vLPl0SUPxayilClSpXg7e2NpUuXKrR7e3vL/0eVmJjIuXQK4OOStH/++ScALkn7JZYsWYLJkydj/vz5aNKkCQDg6tWr+OWXX7Bs2TKFgiF7HOTtxYsXqF69OgCgYsWK0NHRkf+bBgBLS0u8fPlSrHgqp3bt2oiJiYGNjY3YUVRWbGwsWrRoAQBo0KABNDQ0FIqCderUQVxcnFjxVMrBgwexYsWKfPePGTMGP/zwAwtZBfDfSdwnTZqEXr16wdbWVqREqu3Zs2eYPHkyi1hfqFatWrh16xZsbW3RuHFjLF++HFpaWti8eTPfm0riZ8qiY2hoiCdPnqBy5crw8/PDokWLAHz4EoDzthF9HgtZRcjLywu9e/fGyZMn0bBhQ0gkEgQHByMiIgIHDx4EAAQHB8vHQlP+vLy80KlTJ5iYmODt27do1aoV4uLi0LRpUyxevFjseCqlS5cuAD6Mvf84LOHjiOKuXbvKH0skEv7izIdMJoO6urr8sbq6eq4hHlRwixcvxg8//ICFCxeifv36uZaY5offz3v//r3CXGJaWloKq+ppaGjw33MBRUdHo1q1avnur1atGqKjo79hIqIPXFxcEBISwmLLF/rpp5+Qnp4OAFi0aBG6dOmC7777DhUqVMC+fftETqda+Jmy6PTs2RMDBgxAtWrVkJiYiI4dOwIAbt68yd5tRAXAQlYR6tatG6KiorBhwwZERUVBEAR07NgRR44cQXJyMgBg3Lhx4oZUEWXLlkVgYKDCkrT169dHu3btxI6mcgICAlhoKQJbt26VD03Izs7G9u3bYWRkBABIS0sTM5rKcXV1BfDh/5n/fm/yw69ywsPDER8fD+DDa3fv3j28efMGAPDq1Ssxo6kUdXV1PH/+HJaWlnnuf/78OVcaJlF07twZM2fORHh4OGrXrq1QrAbAIe0F5OLiIv/Z1tYW4eHheP36dYHndKP/c+7cObEjlBirVq2CtbU1njx5guXLl8s/Y8bFxWH8+PEipyMq/jjZ+1eUnJyM3bt3Y9u2bbh58yb/OCuAa9eu4fXr1/JvJQDA19cXHh4eyMjIQI8ePbB27VquakbflLW1dYE+7D58+PAbpFF9Fy5c+OT+Vq1afaMkqktNTU1hGfl/+9jOomDBtGnTBo0bN841LcBHs2fPRlBQEP+AK4R/L9ZCyvtUAZX/vpX34MEDREdHo2XLltDV1ZX/f5KIiFQPe2R9BQEBAdi2bRsOHToEKysr9OrVC1u3bhU7lkqYP38+WrduLS9k3b59G6NGjcKQIUNgb2+PX3/9FRYWFpg/f764QVWIjY0Nhg0bhqFDh+bb44A+7dGjR2JHKFFYqPpyLJoWnYkTJ6Jfv36oVKkSxo0bJx9GnJOTg/Xr12PVqlXYs2ePyClVw/Tp0xUeZ2VlYfHixZBKpQrtK1eu/JaxVJZMJhM7QomQmJiIPn364Ny5c5BIJLh//z5sbW0xcuRIlCtX7pNz5FFuycnJ8Pb2RkREBCQSCRwcHDB8+PBc/86pYMLDwxEbG4usrCyFdva4JPo09sgqIk+fPsX27duxbds2pKeno0+fPti4cSPCwsLg4OAgdjyVYW5ujmPHjqFBgwYAgLlz5+LChQsIDAwEAOzfvx8eHh4IDw8XM6ZKWbt2LbZv346wsDC0adMGI0aMwPfff89ebSSqixcvYtOmTYiJicH+/ftRsWJF7Ny5EzY2NvJJzIm+lblz58LT0xMGBgawtbWFRCJBdHQ03rx5g5kzZ+bbW4sUtWnT5rPHSCQSBAQEfIM0RB8MHjwYCQkJ2Lp1K+zt7eW9BE+fPo1p06bh7t27YkdUGSEhIXBxcYGuri4aNWoEQRAQEhKCt2/f4vTp03BychI7osqIiYnB999/j9u3byv0sP7YS5A9Lok+jYWsItCpUycEBgaiS5cuGDhwIFxdXaGurg5NTU0WspSko6OD+/fvy1eEa9GiBVxdXfHTTz8B+NAzpnbt2pyTqBDCwsKwbds2/PHHH8jOzsaAAQMwfPhwfuhQwpo1a/Jsl0gk0NHRQdWqVdGyZUuFieEpt4MHD8LNzQ0DBw7Ezp07ER4eDltbW6xfvx7Hjx/HiRMnxI6oMm7dupVn+8f3pKWlJYvWBRQUFITdu3fjwYMHEAQB1atXx4ABA9CoUSOxo1EpsmbNGowePRo6Ojr5/s75aPLkyd8olWozMzPDqVOnULduXYXhrg8fPkTt2rXlcwvS53333XeoWrUqtmzZAg2NDwN7srOzMXLkSMTExOCff/4ROaHq6Nq1K9TV1bFlyxbY2toiKCgIiYmJmDFjBry8vPDdd9+JHZGoWGMhqwhoaGhg8uTJGDdunMLKRyxkKc/Kygo7d+5Ey5YtkZWVhXLlyuHYsWPySd5v376NVq1a4fXr1yInVV3v37/H+vXrMXv2bLx//x61atXClClTMGzYMM4V8Rk2NjZ4+fIlMjIyYGhoCEEQkJycDD09Pejr6yMhIQG2trY4d+6cvBhLuTk6OmLatGkYPHiwwh8VN2/ehKurq3wCc/q8j3Nl5UdTUxN9+/bFpk2boKOj8w2TUWn29u1b6Orq5rkvLi4O5ubm3ziR6rCxsUFISAgqVKgAGxubfI+TSCSIiYn5hslUl4GBAW7cuIFq1aop/M4JDg6Gq6srEhMTxY6oMnR1dREaGooaNWootIeHh6NBgwbIyMgQKZnqMTIyQkBAAOrUqQOpVIqgoCDY2dkhICAAM2bMQGhoqNgRiYo1LsNTBC5evIi0tDQ0aNAAjRs3xrp16/Dy5UuxY6kkV1dXzJkzBxcvXoS7uzv09PQUvpG4desWqlSpImJC1fX+/Xv8+eef6NatG2bMmIEGDRpg69at6NOnD+bOnYuBAweKHbHYW7JkCRo2bIj79+8jMTERr1+/RlRUFBo3bozffvsNsbGxMDMzw7Rp08SOWqxFRkaiZcuWudrLli0rX+GVCubw4cOoVq0aNm/ejJs3byI0NBSbN2+GnZ0d9uzZA29vbwQEBMh7tVJuy5cvx9u3b+WP//nnH2RmZsofp6WlcQUpJTk6OuLGjRu52g8cOIA6deqIkEh1PHz4EBUqVJD/nN/GIlbBtWzZEjt27JA/lkgkkMlk+PXXXws0HJb+T9myZREbG5ur/cmTJzAwMBAhkerKycmRr1RoZGSE58+fA/jwpX5kZKSY0YhUg0BFJj09XfD29haaN28uaGpqCmpqasLq1auF1NRUsaOpjISEBKFFixaCRCIRDAwMhEOHDinsb9u2rfDjjz+KlE61+Pr6Cu/evROuX78uTJw4UahQoYJgYmIizJgxQ4iIiFA4NigoSNDR0REpqeqwtbUVQkNDc7XfuHFDsLGxEQRBEC5duiSYmZl942SqxdbWVvD39xcEQRD09fWF6OhoQRA+vGft7e3FjKZyGjZsKPj5+eVq9/PzExo2bCgIgiAcPnxYsLW1/dbRVIaamprw4sUL+WMDAwP5e1IQBCE+Pl5QU1MTI5rKmjhxoqCtrS14enoKMplMSEtLE4YMGSLo6ekJa9asETselTJ3794VjI2NBVdXV0FLS0v43//+J9jb2wumpqbCgwcPxI6nUiZNmiRUqlRJ2Lt3rxAbGys8efJE+OOPP4RKlSoJU6ZMETueSmnRooVw+PBhQRAEoX///oKrq6sQGBgoDB48WKhZs6a44YhUAIcWfiWRkZHw9vbGzp07kZycjA4dOuDo0aNix1IZKSkp0NfXzzXX0OvXr6Gvrw8tLS2RkqkOdXV1+RCODh06YMSIEejRowc0NTVzHZueno6JEyfCx8dHhKSqQ09PD//88498MYKPgoOD0apVK2RkZODRo0eoVasW59z4hOXLl8PX1xfbtm1Dhw4dcOLECTx+/BjTpk3DvHnzMHHiRLEjqoz8hnncu3cPjo6OePv2LR49egQHBwcO+ciHmpoa4uPjYWJiAgAKQ48A4MWLF7CwsODEu0ry8/PDsGHDULVqVTx//hxly5bF7t27Od2CEv67CuRH/56XsXv37ihfvvw3TqZ64uPjsWHDBly/fh0ymQxOTk6YMGECh7kqKSsrCzNnzsTGjRuRnZ0N4MMQ9nHjxmHp0qWck1EJp06dQnp6Onr27ImYmBh06dIF9+7dQ4UKFbBv3z60bdtW7IhExRoLWV9ZTk4Ojh07hm3btrGQRd/Uxz/O3r59CysrK7HjlAidO3dGfHw8tm7dCkdHRwBAaGgoRo0aBTMzMxw/fhzHjh3Djz/+iNu3b4uctnibO3cuVq1ahXfv3gEAtLW18cMPP2DhwoUiJ1Mtjo6OqFu3LjZv3iwv8L9//x6jRo1CWFgYQkNDcenSJQwaNAgPHz4UOW3xxELW1yGTyTBp0iRs2LABGhoaOHbsGFxcXMSOpVLatGmDGzduICcnB3Z2dhAEAffv34e6ujpq1KiByMhISCQSBAYGskBI31RGRgaio6MhCAKqVq0KPT09sSOVCK9fv4ahoSHnrCUqABayiEooNTU1vHjxAsbGxmJHKTHi4+Ph5uaGs2fPynu2ZWdno127dti5cydMTU1x7tw5vH//Hs7OziKnLf4yMjIQHh4OmUwGBwcH+VwRVHCXL19Gt27doKamhjp16kAikeDWrVvIycnB8ePH0aRJE+zcuRPx8fGYOXOm2HGLJRayil50dDQGDBggL/xfuHABXl5emDx5MhYvXpxnz2DKbfXq1bh48SJ8fHxQtmxZAEBqaipGjBiBFi1aYNSoURgwYADevn2LU6dOiZy2eEtKSoK3tzciIiIgkUhgb2+PYcOGsTcbie7BgweIjo5Gy5YtoaurC0EQWMgiKgAWsohKKDU1NXTs2PGz3bwPHTr0jRKVHPfu3UNUVBQEQUCNGjVgZ2cndiSVMnz4cPz222+5JoZNT0/HpEmTsG3bNpGSqaY3b95g165dCu/JAQMGcOLdAlJTU8OiRYvkhdTZs2dj5syZMDIyAvBhsvd58+axkKUEAwMDdO7cGRs3bkS5cuUAfCi6flyplKtxFUzFihXh7++fq7fV3bt34ezsjGfPnuHGjRtwdnbGq1evREpZ/F24cAHdu3dH2bJl5VMDXL9+HcnJyTh69ChatWolcsLirWfPngU+lp8pCy4xMRF9+vTBuXPnIJFIcP/+fdja2mLEiBEoV64cVqxYIXZEomKNhSyiEkpNTQ19+vTJdwn0jzgvFn1rH+dv+9gD5qNXr17BzMxMPu8G0bdgbW1doG+/OTSz4Hbu3Ak3N7dc7WlpaZg6dSq8vb1FSKV69PX1cfz4cbRu3Vqh/fz58+jatSvS0tIQExODevXqITU1VZyQKqBWrVpo1qwZNmzYIJ97NScnB+PHj8elS5dw584dkRMWb8OGDSvwsfxMWXCDBw9GQkICtm7dCnt7e3lP4NOnT2PatGm4e/eu2BGJijUWsohKqP8Ol6Evl5OTg+3bt+Ps2bNISEiATCZT2B8QECBSMtWQmpoKQRBgaGiI+/fvKwx7/Tif4Jw5c+RLUFPBREVF4fz583m+J+fNmydSKiL6UgMHDsSVK1ewYsUKNGzYEBKJBEFBQfjhhx/QrFkz7Ny5E3v37oWXlxdCQkLEjlts6erq4ubNm7l6T0dGRqJevXp4+/atSMmoNDMzM8OpU6dQt25dhSHtDx8+RO3atbloENFnaIgdgIi+Do6vL3pTpkzB9u3b0blzZ9SqVYuvsZLKlSsHiUQCiUSC6tWr59ovkUiwYMECEZKpri1btmDcuHEwMjKCmZmZwntSIpGwkEWiCg8PR2xsLLKysuRtEokEXbt2FTGV6ti0aROmTZuGfv36yXuqamhoYMiQIVi1ahUAoEaNGti6dauYMYs9JycnRERE5CpkRUREoF69euKEKiEuXLiA9PR0NG3aFIaGhmLHUSnp6el5TpL/6tUrrv5IVADskUVUQrFHVtEzMjLCjh070KlTJ7GjqKQLFy5AEAS0bdsWBw8eVJhkV0tLC1ZWVrCwsBAxoeqxsrLC+PHjMXv2bLGjqLw1a9bk2S6RSKCjo4OqVauiZcuW8qFJlL+YmBh8//33uH37NiQSCT5+1PxYaOV8Y8p58+YNYmJiIAgCqlSpwoUxlLRv3z7MmjULkyZNQpMmTQAAV69exe+//46lS5fC3t5efmydOnXEilms/frrr3jz5o38yyZBENCxY0ecPn0aAGBiYoKzZ8+iZs2aYsZUKZ07d4aTkxMWLlwIAwMD3Lp1C1ZWVujXrx9kMhkOHDggdkSiYo2FLKIS6sKFC2jevDk0NNjxsqhYWFjg/PnzefYmooJ7/PgxLC0t2aOtCJQtWxY3b96Ur7BHhWdjY4OXL18iIyMDhoaGEAQBycnJ0NPTg76+PhISEmBra4tz586hcuXKYsct1rp27Qp1dXVs2bIFtra2CAoKQmJiImbMmAEvLy989913YkekUkRNTe2T+z8WWyUSCYus+XBycsLs2bPRt29fAMD+/fsxZMgQ+Pv7w97eHoMHD4aenh7+/PNPkZOqjvDwcLRu3Rr169dHQEAAunXrhrt37+L169e4dOkSqlSpInZEomKNhSyiUuDs2bP5zuvEFeIKbsWKFYiJicG6detYhPkCfn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHJ6ghBEjRqBhw4YYO3as2FFU3h9//IHNmzdj69at8j8gHjx4gDFjxmD06NFo3rw5+vXrBzMzM35T/hlGRkYICAhAnTp1IJVKERQUBDs7OwQEBGDGjBlctbCA0tPTsXTp0nx/f8fExIiUTLU8fvy4wMdaWVl9xSSqy9DQEJcvX5b3Xhs2bBiys7Oxc+dOAB96uPXu3RtPnjwRM6bKiY+Px4YNG3D9+nXIZDI4OTlhwoQJMDc3FzsaUbHHrhpEJdyCBQvwyy+/oEGDBjA3N2cB5gsEBgbi3LlzOHnyJGrWrAlNTU2F/Vx2umBmzpyJZcuWAQBu376N6dOnY8aMGQgICMD06dO56pESqlatip9//hlXr15F7dq1c70nJ0+eLFIy1fPTTz/h4MGDCt+CV61aFV5eXujVqxdiYmKwfPly9OrVS8SUqiEnJ0c+/M3IyAjPnz+HnZ0drKysEBkZKXI61TFy5EhcuHABbm5u/P39BVic+nLv379XmLfpypUrmDJlivyxhYUFXr16JUY0lWZmZsa5QYkKiYUsohJu48aN2L59e55LoZNyypUrh++//17sGCrv4cOHcHBwAAAcPHgQXbt2xZIlS3Djxg3OP6akzZs3Q19fHxcuXMCFCxcU9kkkEhaylBAXFyefUPvfsrOzER8fD+DDH2tpaWnfOprKqVWrFm7dugVbW1s0btwYy5cvh5aWFjZv3sxhsEo4efIk/v77bzRv3lzsKCrn6NGjBT62W7duXzFJyVC1alX8888/sLW1RWxsLKKiotCqVSv5/qdPn6JChQoiJlQ97J1O9GVYyCIq4bKystCsWTOxY5QI7ClUNLS0tJCRkQEAOHPmDAYPHgwAKF++PFJTU8WMpnIePnwodoQSo02bNhgzZgy2bt0KR0dHAEBoaCjGjRuHtm3bAvjQg9DGxkbMmCrhp59+Qnp6OgBg0aJF6NKlC7777jtUqFABe/fuFTmd6jA0NFRYFIMKrkePHgqP/73owMfHH3FerM8bN24cJk6ciIsXL+Lq1ato2rSp/AspAAgICJD/f5MKhr3Tib7Mp2c/JCKVN3LkSOzZs0fsGERyLVq0wPTp07Fw4UIEBQWhc+fOAICoqChUqlRJ5HRUWnl7e6N8+fKoX78+tLW1oa2tjQYNGqB8+fLw9vYGAOjr62PFihUiJy3+XFxc0LNnTwCAra0twsPD8erVKyQkJKBdu3Yip1MdCxcuxLx58+SFfyo4mUwm306fPo169erh5MmTSE5ORkpKCk6cOAEnJyf4+fmJHVUljBkzBr/99htev36Nli1b4uDBgwr7nz9/juHDh4uUTjXl1zt9/fr1OHnypMjpiIo/TvZOVMJNmTIFO3bsQJ06dVCnTp1cc+isXLlSpGSqwcnJCWfPnoWhoSEcHR0/OUfJjRs3vmEy1RUbG4vx48fjyZMnmDx5MkaMGAEAmDZtGnJycrBmzRqRExZvH4uAZcqUwfTp0z95LP99K+/evXuIioqCIAioUaMG7OzsxI6kMgr6hywXGSkYR0dHREdHQxAEWFtb5/r9zd85BVOrVi1s3LhRPoTro4sXL2L06NGIiIgQKVnJtXTpUowdOxblypUTO0qxVb58eQQGBsLBwQEtWrTA4MGDMXr0aDx69AgODg4sYBN9BocWEpVwt27dQr169QAAd+7cUdjHiWM/r3v37vIJTrt3787XrAhYWlri+PHjudpXrVolQhrVExoaivfv38t/pqJVo0YN1KhRQ+wYKmn79u2wsrKCo6Mj+D3pl/vv8DgqnOjoaEil0lztUqkUjx49+vaBSoElS5agT58+LGR9wsfe6c2bN0dQUBD27dsHgL3TiQqKPbKIiOibi46Oho+PD6Kjo/Hbb7/BxMQEfn5+qFy5MmrWrCl2PCqFcnJysH37dpw9exYJCQmQyWQK+wMCAkRKpjrGjx+PvXv3wtLSEsOHD8egQYM4x9NXkp2dDQ0Nfh9dEC1btoSmpiZ27doFc3NzAEB8fDzc3NyQlZWVa6EM+nIGBgYICwvj4g6fwN7pRF+Gc2QRERWQra0tEhMTc7UnJyfzw5oSLly4gNq1a+PatWs4dOgQ3rx5A+BD70EPDw+R06mW4cOH57mKXnp6OucrUdKUKVMwZcoU5OTkoFatWqhbt67CRp+3fv16xMXFYfbs2Th27BgqV66MPn364NSpU+yhVUTCw8MxY8YMVKxYUewoKmPbtm1ISEiAlZUVqlatiqpVq8LS0hJxcXHy+e+IvrWPvdPDwsLkRSzgQ+90FrGIPo89sohKoJ49e2L79u0oW7asfMLd/Bw6dOgbpVJ9ampqiI+Ph4mJiUL7ixcvULlyZWRlZYmUTLU0bdoUvXv3xvTp0xW+tQ0ODkaPHj3w7NkzsSOqDHV1dcTFxeV6T7569QpmZmbIzs4WKZnqMTIywo4dO9CpUyexo5QYjx8/xvbt27Fjxw68f/8e4eHh0NfXFzuWynnz5g327t0Lb29vBAcHo0mTJujVqxemTZsmdjSVIQgC/P39ce/ePQiCAAcHB7Rv357TBXwl7JGVt9TUVJQtW1b+86d8PI6I8sY+yUQlkFQqlX84y2teCFLO0aNH5T+fOnVK4TXNycnB2bNnYWNjI0Y0lXT79u08V9I0NjbOs8cb5ZaamgpBECAIAtLS0qCjoyPfl5OTgxMnTuQqbtGnaWlpoWrVqmLHKFEkEgkkEgkEQcg1VJM+LzAwEFu3bsXBgwdhY2OD8PBwXLhwAc2bNxc7msqRSCRwdnaGs7Oz2FGoFDM0NJR/+VSuXLk8C6mCIEAikSAnJ0eEhESqg4UsohLIx8cnz5+pcD5OuCuRSDBkyBCFfZqamrC2tsaKFStESKaaypUrh7i4uFzFv9DQUA6XKaCPH4AlEgmqV6+ea79EIsGCBQtESKa6ZsyYgd9++w3r1q1jL40vkJmZiUOHDmHbtm0IDAxEly5dsG7dOri6ukJNjTNaFMTy5cuxbds2vHnzBv3790dgYCDq1q0LTU1NGBoaih1PJSgzNGvy5MlfMQnR/wkICJDPG3ju3DmR0xCpNg4tJCIqIBsbGwQHB8PIyEjsKCpt1qxZuHLlCvbv34/q1avjxo0bePHiBQYPHozBgwdznqwCuHDhAgRBQNu2bXHw4EGFCbW1tLRgZWUFCwsLEROqnu+//x7nzp1D+fLlUbNmTWhqairs5zDsz/v3ZO/Dhg3DoEGDUKFCBbFjqRwNDQ3Mnj0bv/zyC9TV1eXtmpqaCAsLg4ODg4jpVENBe0lLJBLExMR85TSqb8eOHejbt698FefP6dSpE7y9veWT6xMRFTUWsohKgQMHDuDPP/9EbGxsrnmcbty4IVKqkiE5OZnLSyvp/fv3GDp0KPbu3QtBEKChoYGcnBwMGDAA27dvV/jDjT7t8ePHsLS0ZA+iIjBs2LBP7mfv1s9TU1ODpaUlHB0dP/meZFHw05YsWYLt27fj3bt36N+/P9zc3FCrVi0Wsr7Qy5cvoaamxuJqIeQ3HyMV3v379/HXX3/h0aNHkEgksLW1Rffu3TmvGFEBsZBFVMKtWbMGc+fOxZAhQ7BlyxYMGzYM0dHRCA4OxoQJE7B48WKxI6qMZcuWwdraGn379gUA9O7dGwcPHoS5uTlOnDjBlc2UFB0djdDQUMhkMjg6OqJatWpiR1I5fn5+0NfXR4sWLQAAv//+O7Zs2QIHBwf8/vvvHIZE39TQoUMLVFRlUbBgLly4gG3btuHgwYOoUqUK7t69yzmylJScnIy5c+di3759SEpKAvBhnqJ+/fph8eLFnEe0gPJb7IYKx9PTE/PmzYNMJoOJiQkEQcDLly+hrq6OJUuW4IcffhA7IlGxx0IWUQlXo0YNeHh4oH///gqryMybNw+vX7/GunXrxI6oMmxtbbFr1y40a9YM/v7+6NOnD/bt2yfv7Xb69GmxI1IpU7t2bSxbtgydOnXC7du30aBBA8yYMQMBAQGwt7dnwYCoBEhLS8Pu3bvh4+OD69evo1GjRvjf//6H6dOnix2tWHv9+jWaNm2KZ8+eYeDAgbC3t4cgCIiIiMCePXtQuXJlXL58mQX/AlBTU8OLFy9gbGwsdhSVd+7cObRv3x4///wzpkyZIn//vX79GqtXr8aSJUsQEBCAli1bipyUqHhjIYuohNPT00NERASsrKxgYmICf39/1K1bF/fv30eTJk24SpwSdHV1ERUVhcqVK2PKlCl49+4dNm3ahKioKDRu3Fj+bS/lpswfXCtXrvyKSUoWfX193LlzB9bW1pg/fz7u3LmDAwcO4MaNG+jUqRPi4+PFjlisOTk54ezZszA0NPzscDgOw6bi4Pbt2/D29saePXuQkJAgdpxiberUqTh79izOnDkDU1NThX3x8fFwdnZGu3btsGrVKpESqg41NTV07Njxs3Nkcdjw5/Xt2xflypXDpk2b8tw/evRopKWl4Y8//vjGyYhUC1ctJCrhzMzMkJiYCCsrK1hZWeHq1auoW7cuHj58CNaxlWNoaIgnT56gcuXK8PPzw6JFiwB8WCqZyyR/WmhoaIGO41xPytHS0kJGRgYA4MyZMxg8eDAAoHz58khNTRUzmkro3r27/A+z7t278/1Hxda7d++go6OD2rVrY/Xq1fj111/FjlTsHTlyBJs2bcpVxAI+fDZavnw5xo4dy0JWARkYGEBXV1fsGCovKCgIO3fuzHe/m5ub/Hc5EeWPhSyiEq5t27Y4duwYnJycMGLECEybNg0HDhxASEgIevbsKXY8ldKzZ08MGDAA1apVQ2JiIjp27AgAuHnzJqpWrSpyuuKNy0x/HS1atMD06dPRvHlzBAUFYd++fQCAqKgoVKpUSeR0xd+/V8icP3++eEGI8iCTybB48WJs3LgRL168QFRUlHxqAGtrawwfPlzsiMVaXFwcatasme/+WrVqsdeqEtasWcM5sorAixcvYG1tne9+Gxsbvi+JCkBN7ABE9HVt3rwZc+fOBQCMHTsW27dvh729PRYsWIANGzaInE61rFq1ChMnToSDgwP8/f2hr68P4MOH5fHjx4ucTjU9ffoUz549EzuGylq3bh00NDRw4MABbNiwARUrVgQAnDx5Eq6uriKnUy22trZ5DrVOTk7mKlIkikWLFmH79u1Yvnw5tLS05O21atXCli1bREymGoyMjPDo0aN89z98+JArGBYQe6sWnXfv3in8e/4vTU3NXCuME1FunCOLqAS7du0ajh49ivfv36N9+/ZwdnYWOxIRZDIZFi1ahBUrVuDNmzcAPgxZmDFjBubOnQs1NX7HQt9efqtyvXjxApUrV+YfFvTNVa1aFZs2bUK7du0UFmu5d+8emjZtynkZP2PEiBF48OAB/P39cxUOMjMz4eLigipVqsDb21ukhKqDqxYWHTU1NSxatEj+Zeh/paWlYd68eZyygugzOLSQqIQ6fPgwevfuDR0dHWhoaGDFihVYsWIFpk6dKnY0lbZz505s2rQJMTExuHLlCqysrLB69WrY2Nige/fuYsdTCXPnzoW3tzeWLl2K5s2bQxAEXLp0CfPnz8e7d++wePFisSOqpLdv3+L9+/cKbWXLlhUpjeo4evSo/OdTp05BKpXKH+fk5ODs2bOwsbERIxqVcs+ePctz2LpMJsv1b51yW7BgARo0aIBq1aphwoQJqFGjBgAgPDwc69evR2Zm5ifnKqL/s2TJEly7dg1du3aVt+3YsQMeHh5IT09Hjx49sHbt2s9OBk+ApaXlZ3tUWlpafqM0RCpMIKISqUGDBsKIESOE9+/fC4IgCAsXLhQqVKggcirVtn79esHIyEhYtGiRoKurK0RHRwuCIAg+Pj5C69atRU6nOszNzYW//vorV/uRI0cECwsLERKprjdv3ggTJkwQjI2NBTU1tVwbfZ5EIhEkEomgpqYm//njpqWlJVSvXl04duyY2DGpFKpfv76wc+dOQRAEQV9fX/47Z/78+UKLFi3EjKYyYmJiBFdXV4V/32pqaoKLi4tw//59seOpDBcXF2Hp0qXyx7du3RI0NDSEkSNHCitWrBDMzMwEDw8P8QISUanD8RtEJVRkZCRmzZoFDY0PHS9nzpyJ5ORkvHr1SuRkqmvt2rXYsmUL5s6dC3V1dXl7gwYNcPv2bRGTqZbXr1/Lvxn/txo1auD169ciJFJds2bNQkBAANavXw9tbW1s3boVCxYsgIWFBXbs2CF2PJUgk8kgk8lgaWmJhIQE+WOZTIbMzExERkaiS5cuYsekUsjDwwMTJ07EsmXLIJPJcOjQIYwaNQpLlizBvHnzxI6nEmxsbHDy5Em8evUKV69exdWrV/Hy5Uv4+flxkRYlhIWFoV27dvLHe/fuRePGjbFlyxZMnz4da9aswZ9//iliQtWzY8cOZGZm5mrPysri72+iAmAhi6iEevPmDcqVKyd/rK2tDV1dXaSmpooXSsU9fPgQjo6Oudq1tbWRnp4uQiLVVLduXaxbty5X+7p161C3bl0REqmuY8eOYf369fjf//4HDQ0NfPfdd/jpp5+wZMkS7N69W+x4KuXhw4cwMjJSaEtOThYnDBGArl27Yt++fThx4gQkEgnmzZuHiIgIHDt2DB06dBA7nkoxNDREo0aN0KhRI5QvX17sOConKSkJpqam8scXLlxQWFCkYcOGePLkiRjRVNawYcOQkpKSqz0tLQ3Dhg0TIRGRauEcWUQl2H/ne5HJZDh79izu3Lkjb+vWrZsY0VSSjY0Nbt68CSsrK4X2kydPwt7eXqRUqmf58uXo3Lkzzpw5g6ZNm0IikeDy5ct48uQJTpw4IXY8lfL69Wv5/E1ly5aV92hr0aIFxo0bJ2Y0lbNs2TJYW1ujb9++AIDevXvj4MGDMDc3x4kTJ1hkJVG4uLjAxcVF7BhUypmamuLhw4fyhS9u3LiBBQsWyPenpaVBU1NTxISqRxCEPFeDfPr0qcJndyLKGwtZRCXYkCFDcrWNGTNG/rNEIuGqKEqYOXMmJkyYgHfv3kEQBAQFBeGPP/7AkiVLuOqRElq1aoWoqCj8/vvvuHfvHgRBQM+ePTF+/HhYWFiIHU+l2Nra4tGjR7CysoKDgwP+/PNPNGrUCMeOHVPokUmft2nTJuzatQsA4O/vjzNnzsDPzw9//vknZs6cidOnT4uckEqbJ0+eQCKRoFKlSgCAoKAg7NmzBw4ODhg9erTI6ag0cXV1xZw5c7Bs2TIcOXIEenp6+O677+T7b926hSpVqoiYUHU4OjpCIpFAIpGgXbt28ilAgA8LjDx8+FChtxsR5Y2FLKISSiaTiR2hxBk2bBiys7Mxa9YsZGRkYMCAAahYsSLWrl2r8IGOPs/CwoKrE36BmJgYWFtbY9iwYQgLC0OrVq3g7u6Ozp07Y+3atcjOzsbKlSvFjqlS4uLiULlyZQDA8ePH0adPHzg7O8Pa2hqNGzcWOR2VRgMGDMDo0aPh5uaG+Ph4tG/fHrVq1cKuXbsQHx/PebLom1m0aBF69uyJVq1aQV9fH76+vtDS0pLv37ZtG5ydnUVMqDp69OgBALh58yZcXFygr68v36elpQVra2v06tVLpHREqkMiCIIgdggi+nr++ecfNGvWTOEbH+DDtz6XLl1Cy5YtRUqm2l69egWZTIacnBwsWbIEW7duxdu3b8WOpTKSk5MRFBQkn1z73wYPHixSKtWhrq6OuLg4mJiYAAD69u2LNWvWIDMzEyEhIahSpQqHwinJwsICBw4cQLNmzWBnZ4dFixahd+/eiIyMRMOGDTm/IH1zhoaGuHr1Kuzs7LBmzRrs27cPly5dwunTpzF27FjExMSIHZFKmZSUFOjr6ysseAN8GOaur6+vUNyi/OXk5GDnzp1wcXGBubm52HGIVBJ7ZBGVcG3atFH4g/ej5ORktGnThkMLCyA5ORkTJkzA6dOnoampiTlz5mDixIlYsGABvLy84ODggG3btokdU2UcO3YMAwcORHp6OgwMDBTmiJBIJCxkFcB/v4M6ceIEPD09YWtrC0tLS5FSqbaePXtiwIABqFatGhITE9GxY0cAH7415+pmJIb3799DW1sbAHDmzBn5nJY1atRAXFycmNGolMpv7iZOoK8cdXV1jB07FhEREWJHIVJZXLWQqITLbzLJxMRElClTRoREqufHH3/EP//8gyFDhqB8+fKYNm0aunTpgosXL+LEiRMIDg5G//79xY6pMmbMmIHhw4cjLS0NycnJSEpKkm8fJysn+tZWrVqFiRMnwsHBAf7+/vLhHnFxcRg/frzI6ag0qlmzJjZu3IiLFy/C399fPm/O8+fPUaFCBZHTEdGXqF27NntVEn0BDi0kKqF69uwJAPjrr7/g6uoq/1YX+NCl+datW7Czs4Ofn59YEVWGlZUVvL290b59e8TExKBq1aqYPHkyVq9eLXY0lVSmTBncvn0btra2YkdRWerq6oiPj4exsTEAwMDAALdu3ZKvYEhEqu/8+fP4/vvvkZqaiiFDhsh7/v7444+4d+8eDh06JHJCIiqs06dPY/bs2Vi4cCHq16+f68vlsmXLipSMSDVwaCFRCfWx+7cgCDAwMICurq58n5aWFpo0aYJRo0aJFU+lPH/+HA4ODgA+rBKno6ODkSNHipxKdbm4uCAkJISFrC8gCAKGDh0qL1C/e/cOY8eOzfVBmH/oKmfnzp3YtGkTYmJicOXKFVhZWWH16tWwsbFB9+7dxY5HpUzr1q3x6tUrpKamwtDQUN4+evRo6OnpiZiMiL7Uxx6W3bp1Uxg58XEkBaf+IPo0FrKISigfHx8AgLW1NX744QcOI/wCMpkMmpqa8sfq6up8PZV09OhR+c+dO3fGzJkzER4ejtq1ayu8tgDk88BQ/oYMGaLweNCgQSIlKTk2bNiAefPmYerUqVi8eLH8j4hy5cph9erVLGSRKNTV1RWKWMCH3+tEpNrOnTsndgQilcahhUQl3Nu3byEIgvzb28ePH+Pw4cNwcHDgUskFpKamho4dO8p7vxw7dgxt27Zl7xclqKkVbEpGfgtJYnFwcMCSJUvQo0cPGBgYICwsDLa2trhz5468ZwzR1+bk5ISzZ8/C0NAQjo6Oec5x+dGNGze+YTIiIqLigz2yiEq47t27o2fPnhg7diySk5PRqFEjaGlp4dWrV1i5ciXGjRsndsRij71fvpxMJhM7AtEnPXz4EI6OjrnatbW1kZ6eLkIiKo26d+8u/9KkR48e4oYhoq8uIyMDsbGxyMrKUmivU6eOSImIVAMLWUQl3I0bN7Bq1SoAwIEDB2BmZobQ0FAcPHgQ8+bNYyGrAD4O06QvExAQgIkTJ+Lq1au5JjFNSUlBs2bNsHHjRnz33XciJaTSzMbGBjdv3oSVlZVC+8mTJ2Fvby9SKiptPDw88vyZiEqWly9fYtiwYTh58mSe+9k7nejTCjbWg4hUVkZGBgwMDAB8WCGlZ8+eUFNTQ5MmTfD48WOR01Fpsnr1aowaNSrPlXikUinGjBmDlStXipCMCJg5cyYmTJiAffv2QRAEBAUFYfHixXB3d8esWbPEjkelUHBwMK5du5ar/dq1awgJCREhEREVlalTpyIpKQlXr16Frq4u/Pz84Ovri2rVqinMK0pEeWMhi6iEq1q1Ko4cOYInT57g1KlT8nmxEhISuLQvfVNhYWHyVXry4uzsjOvXr3/DRET/Z9iwYfDw8MCsWbOQkZGBAQMGYOPGjVi7di17CZIoJkyYgCdPnuRqf/bsGSZMmCBCIiIqKgEBAVi1ahUaNmwINTU1WFlZYdCgQVi+fDk8PT3FjkdU7LGQRVTCzZs3Dz/88AOsra3RqFEjNG3aFMCH3ll5zQdD9LW8ePEi1wqF/6ahoYGXL19+w0REikaNGoXHjx8jISEB8fHxCAoKQmhoKKpWrSp2NCqFwsPD4eTklKvd0dER4eHhIiQioqKSnp4OExMTAED58uXln39q167NhRyICoCFLKIS7n//+x9iY2MREhKCU6dOydvbtWsnnzuL6FuoWLEibt++ne/+W7duwdzc/BsmIgKSk5MxcOBAGBsbw8LCAmvWrEH58uXx+++/o2rVqrh69Sq2bdsmdkwqhbS1tfHixYtc7XFxcdDQ4DS3RKrMzs4OkZGRAIB69eph06ZNePbsGTZu3MjPQkQFIBEEQRA7BBF9fQ8ePEB0dDRatmwJXV1dCILwyWW9iYrapEmTcP78eQQHB0NHR0dh39u3b9GoUSO0adMGa9asESkhlUbjx4/HsWPH0LdvX/j5+SEiIgIuLi549+4dPDw80KpVK7EjUinVr18/xMfH46+//oJUKgXwofDao0cPmJiY4M8//xQ5IREV1u7du/H+/XsMHToUoaGhcHFxQWJiIrS0tLB9+3b07dtX7IhExRoLWUQlXGJiIvr06YNz585BIpHg/v37sLW1xYgRI1CuXDmsWLFC7IhUSrx48QJOTk5QV1fHxIkTYWdnB4lEgoiICPz+++/IycnBjRs3YGpqKnZUKkWsrKzg7e2N9u3bIyYmBlWrVsXkyZOxevVqsaNRKff06VO0atUKiYmJ8qkAbt68CVNTU/j7+6Ny5coiJySiopKRkYF79+7B0tISRkZGYschKvZYyCIq4QYPHoyEhARs3boV9vb2CAsLg62tLU6fPo1p06bh7t27YkekUuTx48cYN24cTp06hY+/fiQSCVxcXLB+/XpYW1uLG5BKHU1NTTx+/BgWFhYAAD09PQQFBaFWrVoiJyP6MI/O7t27ERYWBl1dXdSpUwf9+/f/5HyDRKQ6srKy8PDhQ1SpUoVDhomUwH8tRCXc6dOncerUKVSqVEmhvVq1anj8+LFIqai0srKywokTJ5CUlIQHDx5AEARUq1YNhoaGYkejUkomkykUBdTV1VGmTBkRExEB79+/h52dHY4fP47Ro0eLHYeIilhGRgYmTZoEX19fAEBUVBRsbW0xefJkWFhYYM6cOSInJCreWMgiKuHS09Ohp6eXq/3Vq1fQ1tYWIRERYGhoiIYNG4odgwiCIGDo0KHy/x++e/cOY8eOzVXMOnTokBjxqJTS1NREZmYm57IkKqHc3d0RFhaG8+fPw9XVVd7evn17eHh4sJBF9BlctZCohGvZsiV27NghfyyRSCCTyfDrr7+iTZs2IiYjIhLfkCFDYGJiAqlUCqlUikGDBsHCwkL++ONG9K1NmjQJy5YtQ3Z2tthRiKiIHTlyBOvWrUOLFi0UCtYODg6Ijo4WMRmRamCPLKIS7tdff0Xr1q0REhKCrKwszJo1C3fv3sXr169x6dIlseMREYnKx8dH7AhEebp27RrOnj2L06dPo3bt2uwlSFSCvHz5EiYmJrna09PT2ROTqABYyCIq4RwcHHDr1i1s2LAB6urqSE9PR8+ePTFhwgSYm5uLHY+IiIjyUK5cOfTq1UvsGET0FTRs2BB///03Jk2aBADy4tWWLVvQtGlTMaMRqQSuWkhERERERET0jVy+fBmurq4YOHAgtm/fjjFjxuDu3bu4cuUKLly4gPr164sdkahYYyGLqBRITk5GUFAQEhISIJPJFPYNHjxYpFRERET0KdnZ2Th//jyio6MxYMAAGBgY4Pnz5yhbtiz09fXFjkdEX+D27dvw8vLC9evXIZPJ4OTkhNmzZ6N27dpiRyMq9ljIIirhjh07hoEDByI9PR0GBgYK4+4lEglev34tYjoiIiLKy+PHj+Hq6orY2FhkZmYiKioKtra2mDp1Kt69e4eNGzeKHZGIlJSamlqg48qWLfuVkxCpNhayiEq46tWro1OnTliyZAn09PTEjkNEREQF0KNHDxgYGMDb2xsVKlRAWFgYbG1tceHCBYwcORL3798XOyIRKUlNTe2Tk7kLggCJRIKcnJxvmIpI9XCyd6IS7tmzZ5g8eTKLWERERCokMDAQly5dgpaWlkK7lZUVnj17JlIqIvoS586dk/8sCAI6deqErVu3omLFiiKmIlI9LGQRlXAuLi4ICQmBra2t2FGIiIiogGQyWZ69Mp4+fQoDAwMREhHRl2rVqpXCY3V1dTRp0oSf04mUxEIWUQl09OhR+c+dO3fGzJkzER4ejtq1a0NTU1Ph2G7dun3reERERPQZHTp0wOrVq7F582YAH+a1fPPmDTw8PNCpUyeR0xEREYmHc2QRlUBqamoFOo5j8ImIiIqn58+fo02bNlBXV8f9+/fRoEED3L9/H0ZGRvjnn39gYmIidkQi+kIGBgby+e+IqOBYyCIiIiIiKobevn2LvXv34vr165DJZHBycsLAgQOhq6srdjQiKgIGBga4desWbGxsxI5CpFJYyCIqoQICAjBx4kRcvXo11xK+KSkpaNasGTZu3IjvvvtOpIRERESUnxcvXsDU1DTPfbdu3UKdOnW+cSIi+lI9e/ZUeHzs2DG0bdsWZcqUUWg/dOjQt4xFpHIKNv6IiFTO6tWrMWrUqFxFLACQSqUYM2YMVq5cKUIyIiIi+pzatWsrzHn5kZeXFxo3bixCIiL6UlKpVGEbNGgQLCwscrUT0aexRxZRCWVlZQU/Pz/Y29vnuf/evXtwdnZGbGzsN05GREREn7NixQr89NNPGDJkCFatWoXXr1/Dzc0Nd+/exZYtW7hYCxERlVrskUVUQr148SLXCoX/pqGhgZcvX37DRERERFRQM2bMwNWrV3Hp0iXUqVMHderUga6uLm7dusUiFhERlWosZBGVUBUrVsTt27fz3X/r1i2Ym5t/w0RERESkDFtbW9SsWROPHj1Camoq+vTpk++8WURERKUFC1lEJVSnTp0wb948vHv3Lte+t2/fwsPDA126dBEhGREREX3Ox55YDx48wK1bt7BhwwZMmjQJffr0QVJSktjxiIiIRMM5sohKqBcvXsDJyQnq6uqYOHEi7OzsIJFIEBERgd9//x05OTm4ceMGv9klIiIqhrS1tTFt2jQsXLhQPlVAdHQ03NzcEBsbi6dPn4qckIiISBwsZBGVYI8fP8a4ceNw6tQpfPynLpFI4OLigvXr18Pa2lrcgERERJSnCxcuoFWrVrnaZTIZFi9ejJ9//lmEVEREROJjIYuoFEhKSsKDBw8gCAKqVasGQ0NDsSMRERFRHjp16oQ//vgDUqkUALB48WJMmDAB5cqVAwAkJibiu+++Q3h4uIgpiYiIxMNCFhERERFRMaGuro64uDiYmJgAAMqWLYubN2/C1tYWwIepAywsLJCTkyNmTCIiItFwsnciIiIiomLiv98x8ztnIiIiRSxkERERERERERGRSmAhi4iIiIiomJBIJJBIJLnaiIiI6AMNsQMQEREREdEHgiBg6NCh0NbWBgC8e/cOY8eORZkyZQAAmZmZYsYjIiISHSd7JyIiIiIqJoYNG1ag43x8fL5yEiIiouKJhSwiIiIiIiIiIlIJnCOLiIiIiIiIiIhUAgtZRERERERERESkEljIIiIiIiIiIiIilcBCFhERERERERERqQQWsoiIiIiIiIiISCWwkEVERERERERERCqBhSwiIiIiIiIiIlIJ/w+Yja6qDn5L+QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "### visualize in the heatmap\n", + "plt.figure(figsize = (16,8))\n", + "sns.heatmap(data.isna(),cmap='BrBG')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "88eee4d5-03fa-4bee-bd8e-7233d215499b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", + "
" + ], + "text/plain": [ + " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", + "0 40 M ATA 140 289 0 Normal 172 \n", + "1 49 F NAP 160 180 0 Normal 156 \n", + "2 37 M ATA 130 283 0 ST 98 \n", + "3 48 F ASY 138 214 0 Normal 108 \n", + "4 54 M NAP 150 195 0 Normal 122 \n", + "\n", + " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", + "0 N 0.0 Up 0 \n", + "1 N 1.0 Flat 1 \n", + "2 N 0.0 Up 0 \n", + "3 Y 1.5 Flat 1 \n", + "4 N 0.0 Up 0 " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "677f1259-f567-4629-8924-a15277bdefed", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "e107b348-5817-42d9-bbb6-5c4c5afcffe3", + "metadata": {}, + "source": [ + "## Data analysis\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "66174ff8-73c5-4a6c-bb61-4cd7beb1f308", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Sex\n", + "M 725\n", + "F 193\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['Sex'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0d25c72c-aaf6-482f-b703-21c9ddffcd4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0FklEQVR4nO3de5DddX3/8deSyxJCspILe9iyYCiptwSFQClRSSAXpCAqDsGCChIUDMauJIRGxjY6dtPAcOmYlhYEwmUwnVGDVhGTqEQjUkO8AVq8pRJK1qAsuwksuzGc3x+W83OTACGGz4nh8Zj5znA+3885+/7yV+Y53/M9DdVqtRoAAAAAgJfYPvUeAAAAAAB4eRAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKGJgvQfYEzzzzDN59NFHM2zYsDQ0NNR7HAAAAAD4k1KtVrNp06a0tLRkn32e+/5HMTLJo48+mtbW1nqPAQAAAAB/0tavX5+DDz74Oc+LkUmGDRuW5Pf/s4YPH17naQAAAADgT0t3d3daW1trne25iJFJ7avZw4cPFyMBAAAAYBe90CMQ/YANAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFDGw3gNQXxMuuaXeIwAAL9LaK95b7xEAAGCXuDMSAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAi6hojX/nKV6ahoWG746KLLkqSVKvVLFiwIC0tLRkyZEgmT56cBx98sN9n9Pb2Zvbs2Rk1alSGDh2a0047LY888kg9LgcAAAAAeB51jZFr1qzJhg0baseKFSuSJGeccUaS5PLLL89VV12VxYsXZ82aNalUKpk2bVo2bdpU+4y2trYsW7YsS5cuzerVq7N58+aceuqp2bp1a12uCQAAAADYsbrGyNGjR6dSqdSOL33pS/nzP//zTJo0KdVqNddcc00uu+yynH766Rk3blxuvvnmPPXUU7n99tuTJF1dXbnhhhty5ZVXZurUqTnyyCNz22235f7778/KlSvreWkAAAAAwDb2mGdG9vX15bbbbst5552XhoaGrFu3Lh0dHZk+fXptT2NjYyZNmpR77rknSbJ27dps2bKl356WlpaMGzeutmdHent7093d3e8AAAAAAF5ae0yMvOOOO/LEE0/k3HPPTZJ0dHQkSZqbm/vta25urp3r6OjI4MGDc8ABBzznnh1ZuHBhmpqaakdra+tuvBIAAAAAYEf2mBh5ww035OSTT05LS0u/9YaGhn6vq9XqdmvbeqE98+fPT1dXV+1Yv379rg8OAAAAAOyUPSJG/upXv8rKlStz/vnn19YqlUqSbHeH48aNG2t3S1YqlfT19aWzs/M59+xIY2Njhg8f3u8AAAAAAF5ae0SMvOmmm3LggQfmlFNOqa2NGTMmlUql9gvbye+fK7lq1apMnDgxSTJhwoQMGjSo354NGzbkgQceqO0BAAAAAPYMA+s9wDPPPJObbrop55xzTgYO/P/jNDQ0pK2tLe3t7Rk7dmzGjh2b9vb27LfffjnrrLOSJE1NTZk5c2bmzJmTkSNHZsSIEZk7d27Gjx+fqVOn1uuSAAAAAIAdqHuMXLlyZR5++OGcd955252bN29eenp6MmvWrHR2dubYY4/N8uXLM2zYsNqeq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEDJywAAAAAAXkBDtVqt1nuIeuvu7k5TU1O6urpeds+PnHDJLfUeAQB4kdZe8d56jwAAAP3sbF/bI54ZCQAAAADs/cRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIi6x8j//d//zbvf/e6MHDky++23X97whjdk7dq1tfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIDnUdcY2dnZmTe+8Y0ZNGhQvvKVr+THP/5xrrzyyrziFa+o7bn88stz1VVXZfHixVmzZk0qlUqmTZuWTZs21fa0tbVl2bJlWbp0aVavXp3Nmzfn1FNPzdatW+twVQAAAADAjgys5x9ftGhRWltbc9NNN9XWXvnKV9b+u1qt5pprrslll12W008/PUly8803p7m5ObfffnsuuOCCdHV15YYbbsitt96aqVOnJkluu+22tLa2ZuXKlTnppJOKXhMAAAAAsGN1vTPyi1/8Yo4++uicccYZOfDAA3PkkUfm+uuvr51ft25dOjo6Mn369NpaY2NjJk2alHvuuSdJsnbt2mzZsqXfnpaWlowbN662Z1u9vb3p7u7udwAAAAAAL626xshf/vKXufbaazN27Nh89atfzYUXXpgPf/jDueWWW5IkHR0dSZLm5uZ+72tubq6d6+joyODBg3PAAQc8555tLVy4ME1NTbWjtbV1d18aAAAAALCNusbIZ555JkcddVTa29tz5JFH5oILLsj73//+XHvttf32NTQ09HtdrVa3W9vW8+2ZP39+urq6asf69ev/uAsBAAAAAF5QXWPkQQcdlNe+9rX91l7zmtfk4YcfTpJUKpUk2e4Ox40bN9bulqxUKunr60tnZ+dz7tlWY2Njhg8f3u8AAAAAAF5adY2Rb3zjG/PQQw/1W/vpT3+aQw89NEkyZsyYVCqVrFixona+r68vq1atysSJE5MkEyZMyKBBg/rt2bBhQx544IHaHgAAAACg/ur6a9of+chHMnHixLS3t2fGjBn57ne/m+uuuy7XXXddkt9/PbutrS3t7e0ZO3Zsxo4dm/b29uy3334566yzkiRNTU2ZOXNm5syZk5EjR2bEiBGZO3duxo8fX/t1bQAAAACg/uoaI4855pgsW7Ys8+fPzyc+8YmMGTMm11xzTc4+++zannnz5qWnpyezZs1KZ2dnjj322CxfvjzDhg2r7bn66qszcODAzJgxIz09PZkyZUqWLFmSAQMG1OOyAAAAAIAdaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RAACgn53ta3V9ZiQAAAAA8PIhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABF1DVGLliwIA0NDf2OSqVSO1+tVrNgwYK0tLRkyJAhmTx5ch588MF+n9Hb25vZs2dn1KhRGTp0aE477bQ88sgjpS8FAAAAAHgBdb8z8nWve102bNhQO+6///7aucsvvzxXXXVVFi9enDVr1qRSqWTatGnZtGlTbU9bW1uWLVuWpUuXZvXq1dm8eXNOPfXUbN26tR6XAwAAAAA8h4F1H2DgwH53Qz6rWq3mmmuuyWWXXZbTTz89SXLzzTenubk5t99+ey644IJ0dXXlhhtuyK233pqpU6cmSW677ba0trZm5cqVOemkk4peCwAAAADw3Op+Z+TPfvaztLS0ZMyYMXnXu96VX/7yl0mSdevWpaOjI9OnT6/tbWxszKRJk3LPPfckSdauXZstW7b029PS0pJx48bV9uxIb29vuru7+x0AAAAAwEurrjHy2GOPzS233JKvfvWruf7669PR0ZGJEyfmt7/9bTo6OpIkzc3N/d7T3NxcO9fR0ZHBgwfngAMOeM49O7Jw4cI0NTXVjtbW1t18ZQAAAADAtuoaI08++eS8853vzPjx4zN16tR8+ctfTvL7r2M/q6Ghod97qtXqdmvbeqE98+fPT1dXV+1Yv379H3EVAAAAAMDOqPvXtP/Q0KFDM378+PzsZz+rPUdy2zscN27cWLtbslKppK+vL52dnc+5Z0caGxszfPjwfgcAAAAA8NLao2Jkb29vfvKTn+Sggw7KmDFjUqlUsmLFitr5vr6+rFq1KhMnTkySTJgwIYMGDeq3Z8OGDXnggQdqewAAAACAPUNdf0177ty5eetb35pDDjkkGzduzCc/+cl0d3fnnHPOSUNDQ9ra2tLe3p6xY8dm7NixaW9vz3777ZezzjorSdLU1JSZM2dmzpw5GTlyZEaMGJG5c+fWvvYNAAAAAOw56hojH3nkkfzN3/xNfvOb32T06NH5q7/6q9x777059NBDkyTz5s1LT09PZs2alc7Ozhx77LFZvnx5hg0bVvuMq6++OgMHDsyMGTPS09OTKVOmZMmSJRkwYEC9LgsAAAAA2IGGarVarfcQ9dbd3Z2mpqZ0dXW97J4fOeGSW+o9AgDwIq294r31HgEAAPrZ2b62Rz0zEgAAAADYe4mRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBF7TIxcuHBhGhoa0tbWVlurVqtZsGBBWlpaMmTIkEyePDkPPvhgv/f19vZm9uzZGTVqVIYOHZrTTjstjzzySOHpAQAAAIAXskfEyDVr1uS6667LEUcc0W/98ssvz1VXXZXFixdnzZo1qVQqmTZtWjZt2lTb09bWlmXLlmXp0qVZvXp1Nm/enFNPPTVbt24tfRkAAAAAwPOoe4zcvHlzzj777Fx//fU54IADauvVajXXXHNNLrvsspx++ukZN25cbr755jz11FO5/fbbkyRdXV254YYbcuWVV2bq1Kk58sgjc9ttt+X+++/PypUr63VJAAAAAMAO7FKMPPHEE/PEE09st97d3Z0TTzzxRX3WRRddlFNOOSVTp07tt75u3bp0dHRk+vTptbXGxsZMmjQp99xzT5Jk7dq12bJlS789LS0tGTduXG3PjvT29qa7u7vfAQAAAAC8tAbuypvuvvvu9PX1bbf+9NNP51vf+tZOf87SpUvzve99L2vWrNnuXEdHR5Kkubm533pzc3N+9atf1fYMHjy43x2Vz+559v07snDhwnz84x/f6TkBAAAAgD/ei4qRP/rRj2r//eMf/7hf8Nu6dWvuuuuu/Nmf/dlOfdb69evzt3/7t1m+fHn23Xff59zX0NDQ73W1Wt1ubVsvtGf+/Pm5+OKLa6+7u7vT2tq6U3MDAAAAALvmRcXIN7zhDWloaEhDQ8MOv449ZMiQfOpTn9qpz1q7dm02btyYCRMm1Na2bt2ab37zm1m8eHEeeuihJL+/+/Gggw6q7dm4cWPtbslKpZK+vr50dnb2uzty48aNmThx4nP+7cbGxjQ2Nu7UnAAAAADA7vGiYuS6detSrVZz2GGH5bvf/W5Gjx5dOzd48OAceOCBGTBgwE591pQpU3L//ff3W3vf+96XV7/61bn00ktz2GGHpVKpZMWKFTnyyCOTJH19fVm1alUWLVqUJJkwYUIGDRqUFStWZMaMGUmSDRs25IEHHsjll1/+Yi4NAAAAAHiJvagYeeihhyZJnnnmmT/6Dw8bNizjxo3rtzZ06NCMHDmytt7W1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZSZKmpqbMnDkzc+bMyciRIzNixIjMnTs348eP3+4HcQAAAACA+tqlH7BJkp/+9Ke5++67s3Hjxu3i5N///d//0YMlybx589LT05NZs2als7Mzxx57bJYvX55hw4bV9lx99dUZOHBgZsyYkZ6enkyZMiVLlizZ6Ts0AQAAAIAyGqrVavXFvun666/PBz/4wYwaNSqVSqXfj8U0NDTke9/73m4d8qXW3d2dpqamdHV1Zfjw4fUep6gJl9xS7xEAgBdp7RXvrfcIAADQz872tV26M/KTn/xk/vEf/zGXXnrpLg8IAAAAALy87LMrb+rs7MwZZ5yxu2cBAAAAAPZiuxQjzzjjjCxfvnx3zwIAAAAA7MV26Wvahx9+eD72sY/l3nvvzfjx4zNo0KB+5z/84Q/vluEAAAAAgL3HLsXI6667Lvvvv39WrVqVVatW9TvX0NAgRgIAAAAA29mlGLlu3brdPQcAAAAAsJfbpWdGAgAAAAC8WLt0Z+R55533vOdvvPHGXRoGAAAAANh77VKM7Ozs7Pd6y5YteeCBB/LEE0/kxBNP3C2DAQAAAAB7l12KkcuWLdtu7ZlnnsmsWbNy2GGH/dFDAQAAAAB7n932zMh99tknH/nIR3L11Vfvro8EAAAAAPYiu/UHbH7xi1/kd7/73e78SAAAAABgL7FLX9O++OKL+72uVqvZsGFDvvzlL+ecc87ZLYMBAAAAAHuXXYqR3//+9/u93meffTJ69OhceeWVL/hL2wAAAADAy9MuxchvfOMbu3sOAAAAAGAvt0sx8lmPPfZYHnrooTQ0NOQv/uIvMnr06N01FwAAAACwl9mlH7B58sknc9555+Wggw7K8ccfnze/+c1paWnJzJkz89RTT+3uGQEAAACAvcAuxciLL744q1atyn/+53/miSeeyBNPPJEvfOELWbVqVebMmbO7ZwQAAAAA9gK79DXtz33uc/nsZz+byZMn19b++q//OkOGDMmMGTNy7bXX7q75AAAAAIC9xC7dGfnUU0+lubl5u/UDDzzQ17QBAAAAgB3apRh53HHH5R/+4R/y9NNP19Z6enry8Y9/PMcdd9xuGw4AAAAA2Hvs0te0r7nmmpx88sk5+OCD8/rXvz4NDQ35wQ9+kMbGxixfvnx3zwgAAAAA7AV2KUaOHz8+P/vZz3Lbbbflv//7v1OtVvOud70rZ599doYMGbK7ZwQAAAAA9gK7FCMXLlyY5ubmvP/97++3fuONN+axxx7LpZdeuluGAwAAAAD2Hrv0zMh///d/z6tf/ert1l/3utfl3/7t3/7ooQAAAACAvc8uxciOjo4cdNBB262PHj06GzZs+KOHAgAAAAD2PrsUI1tbW/Ptb397u/Vvf/vbaWlp+aOHAgAAAAD2Prv0zMjzzz8/bW1t2bJlS0488cQkyde+9rXMmzcvc+bM2a0DAgAAAAB7h12KkfPmzcvjjz+eWbNmpa+vL0my77775tJLL838+fN364AAAAAAwN5hl2JkQ0NDFi1alI997GP5yU9+kiFDhmTs2LFpbGzc3fMBAAAAAHuJXYqRz9p///1zzDHH7K5ZAAAAAIC92C79gA0AAAAAwIslRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARdY2R1157bY444ogMHz48w4cPz3HHHZevfOUrtfPVajULFixIS0tLhgwZksmTJ+fBBx/s9xm9vb2ZPXt2Ro0alaFDh+a0007LI488UvpSAAAAAIAXUNcYefDBB+ef/umfct999+W+++7LiSeemLe97W214Hj55ZfnqquuyuLFi7NmzZpUKpVMmzYtmzZtqn1GW1tbli1blqVLl2b16tXZvHlzTj311GzdurVelwUAAAAA7EBDtVqt1nuIPzRixIhcccUVOe+889LS0pK2trZceumlSX5/F2Rzc3MWLVqUCy64IF1dXRk9enRuvfXWnHnmmUmSRx99NK2trbnzzjtz0kkn7dTf7O7uTlNTU7q6ujJ8+PCX7Nr2RBMuuaXeIwAAL9LaK95b7xEAAKCfne1re8wzI7du3ZqlS5fmySefzHHHHZd169alo6Mj06dPr+1pbGzMpEmTcs899yRJ1q5dmy1btvTb09LSknHjxtX27Ehvb2+6u7v7HQAAAADAS6vuMfL+++/P/vvvn8bGxlx44YVZtmxZXvva16ajoyNJ0tzc3G9/c3Nz7VxHR0cGDx6cAw444Dn37MjChQvT1NRUO1pbW3fzVQEAAAAA26p7jHzVq16VH/zgB7n33nvzwQ9+MOecc05+/OMf1843NDT021+tVrdb29YL7Zk/f366urpqx/r16/+4iwAAAAAAXlDdY+TgwYNz+OGH5+ijj87ChQvz+te/Pv/8z/+cSqWSJNvd4bhx48ba3ZKVSiV9fX3p7Ox8zj070tjYWPsF72cPAAAAAOClVfcYua1qtZre3t6MGTMmlUolK1asqJ3r6+vLqlWrMnHixCTJhAkTMmjQoH57NmzYkAceeKC2BwAAAADYMwys5x//6Ec/mpNPPjmtra3ZtGlTli5dmrvvvjt33XVXGhoa0tbWlvb29owdOzZjx45Ne3t79ttvv5x11llJkqampsycOTNz5szJyJEjM2LEiMydOzfjx4/P1KlT63lpAAAAAMA26hojf/3rX+c973lPNmzYkKamphxxxBG56667Mm3atCTJvHnz0tPTk1mzZqWzszPHHntsli9fnmHDhtU+4+qrr87AgQMzY8aM9PT0ZMqUKVmyZEkGDBhQr8sCAAAAAHagoVqtVus9RL11d3enqakpXV1dL7vnR0645JZ6jwAAvEhrr3hvvUcAAIB+drav7XHPjAQAAAAA9k5iJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEXWPkwoULc8wxx2TYsGE58MAD8/a3vz0PPfRQvz3VajULFixIS0tLhgwZksmTJ+fBBx/st6e3tzezZ8/OqFGjMnTo0Jx22ml55JFHSl4KAAAAAPAC6hojV61alYsuuij33ntvVqxYkd/97neZPn16nnzyydqeyy+/PFdddVUWL16cNWvWpFKpZNq0adm0aVNtT1tbW5YtW5alS5dm9erV2bx5c0499dRs3bq1HpcFAAAAAOxAQ7VardZ7iGc99thjOfDAA7Nq1aocf/zxqVaraWlpSVtbWy699NIkv78Lsrm5OYsWLcoFF1yQrq6ujB49OrfeemvOPPPMJMmjjz6a1tbW3HnnnTnppJNe8O92d3enqakpXV1dGT58+Et6jXuaCZfcUu8RAIAXae0V7633CAAA0M/O9rU96pmRXV1dSZIRI0YkSdatW5eOjo5Mnz69tqexsTGTJk3KPffckyRZu3ZttmzZ0m9PS0tLxo0bV9uzrd7e3nR3d/c7AAAAAICX1h4TI6vVai6++OK86U1vyrhx45IkHR0dSZLm5uZ+e5ubm2vnOjo6Mnjw4BxwwAHPuWdbCxcuTFNTU+1obW3d3ZcDAAAAAGxjj4mRH/rQh/KjH/0on/nMZ7Y719DQ0O91tVrdbm1bz7dn/vz56erqqh3r16/f9cEBAAAAgJ2yR8TI2bNn54tf/GK+8Y1v5OCDD66tVyqVJNnuDseNGzfW7pasVCrp6+tLZ2fnc+7ZVmNjY4YPH97vAAAAAABeWnWNkdVqNR/60Ify+c9/Pl//+tczZsyYfufHjBmTSqWSFStW1Nb6+vqyatWqTJw4MUkyYcKEDBo0qN+eDRs25IEHHqjtAQAAAADqb2A9//hFF12U22+/PV/4whcybNiw2h2QTU1NGTJkSBoaGtLW1pb29vaMHTs2Y8eOTXt7e/bbb7+cddZZtb0zZ87MnDlzMnLkyIwYMSJz587N+PHjM3Xq1HpeHgAAAADwB+oaI6+99tokyeTJk/ut33TTTTn33HOTJPPmzUtPT09mzZqVzs7OHHvssVm+fHmGDRtW23/11Vdn4MCBmTFjRnp6ejJlypQsWbIkAwYMKHUpAAAAAMALaKhWq9V6D1Fv3d3daWpqSldX18vu+ZETLrml3iMAAC/S2iveW+8RKOjhT4yv9wgAwIt0yN/fX+8RitvZvrZH/IANAAAAALD3EyMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIuoaI7/5zW/mrW99a1paWtLQ0JA77rij3/lqtZoFCxakpaUlQ4YMyeTJk/Pggw/229Pb25vZs2dn1KhRGTp0aE477bQ88sgjBa8CAAAAANgZdY2RTz75ZF7/+tdn8eLFOzx/+eWX56qrrsrixYuzZs2aVCqVTJs2LZs2bartaWtry7Jly7J06dKsXr06mzdvzqmnnpqtW7eWugwAAAAAYCcMrOcfP/nkk3PyySfv8Fy1Ws0111yTyy67LKeffnqS5Oabb05zc3Nuv/32XHDBBenq6soNN9yQW2+9NVOnTk2S3HbbbWltbc3KlStz0kknFbsWAAAAAOD57bHPjFy3bl06Ojoyffr02lpjY2MmTZqUe+65J0mydu3abNmypd+elpaWjBs3rrZnR3p7e9Pd3d3vAAAAAABeWntsjOzo6EiSNDc391tvbm6unevo6MjgwYNzwAEHPOeeHVm4cGGamppqR2tr626eHgAAAADY1h4bI5/V0NDQ73W1Wt1ubVsvtGf+/Pnp6uqqHevXr98tswIAAAAAz22PjZGVSiVJtrvDcePGjbW7JSuVSvr6+tLZ2fmce3aksbExw4cP73cAAAAAAC+tPTZGjhkzJpVKJStWrKit9fX1ZdWqVZk4cWKSZMKECRk0aFC/PRs2bMgDDzxQ2wMAAAAA7Bnq+mvamzdvzs9//vPa63Xr1uUHP/hBRowYkUMOOSRtbW1pb2/P2LFjM3bs2LS3t2e//fbLWWedlSRpamrKzJkzM2fOnIwcOTIjRozI3LlzM378+NqvawMAAAAAe4a6xsj77rsvJ5xwQu31xRdfnCQ555xzsmTJksybNy89PT2ZNWtWOjs7c+yxx2b58uUZNmxY7T1XX311Bg4cmBkzZqSnpydTpkzJkiVLMmDAgOLXAwAAAAA8t4ZqtVqt9xD11t3dnaampnR1db3snh854ZJb6j0CAPAirb3ivfUegYIe/sT4eo8AALxIh/z9/fUeobid7Wt77DMjAQAAAIC9ixgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFDEXhMj//Vf/zVjxozJvvvumwkTJuRb3/pWvUcCAAAAAP7AXhEj/+M//iNtbW257LLL8v3vfz9vfvObc/LJJ+fhhx+u92gAAAAAwP/ZK2LkVVddlZkzZ+b888/Pa17zmlxzzTVpbW3NtddeW+/RAAAAAID/8ycfI/v6+rJ27dpMnz693/r06dNzzz331GkqAAAAAGBbA+s9wB/rN7/5TbZu3Zrm5uZ+683Nzeno6Njhe3p7e9Pb21t73dXVlSTp7u5+6QbdQ23t7an3CADAi/Ry/DfLy9mmp7fWewQA4EV6Of577dlrrlarz7vvTz5GPquhoaHf62q1ut3asxYuXJiPf/zj2623tra+JLMBAOxOTZ+6sN4jAADwfBY21XuCutm0aVOamp77+v/kY+SoUaMyYMCA7e6C3Lhx43Z3Sz5r/vz5ufjii2uvn3nmmTz++OMZOXLkcwZMgD8l3d3daW1tzfr16zN8+PB6jwMAwDb8ew3Y21Sr1WzatCktLS3Pu+9PPkYOHjw4EyZMyIoVK/KOd7yjtr5ixYq87W1v2+F7Ghsb09jY2G/tFa94xUs5JkBdDB8+3D9uAQD2YP69BuxNnu+OyGf9ycfIJLn44ovznve8J0cffXSOO+64XHfddXn44Ydz4YW+wgQAAAAAe4q9IkaeeeaZ+e1vf5tPfOIT2bBhQ8aNG5c777wzhx56aL1HAwAAAAD+z14RI5Nk1qxZmTVrVr3HANgjNDY25h/+4R+2eyQFAAB7Bv9eA16uGqov9HvbAAAAAAC7wT71HgAAAAAAeHkQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBNgLnHvuuWloaMiFF1643blZs2aloaEh5557bvnBAADo59l/t217/PznP6/3aABFiJEAe4nW1tYsXbo0PT09tbWnn346n/nMZ3LIIYfUcTIAAP7QW97ylmzYsKHfMWbMmHqPBVCEGAmwlzjqqKNyyCGH5POf/3xt7fOf/3xaW1tz5JFH1nEyAAD+UGNjYyqVSr9jwIAB9R4LoAgxEmAv8r73vS833XRT7fWNN96Y8847r44TAQAAwP8nRgLsRd7znvdk9erV+Z//+Z/86le/yre//e28+93vrvdYAAD8gS996UvZf//9a8cZZ5xR75EAihlY7wEA2H1GjRqVU045JTfffHOq1WpOOeWUjBo1qt5jAQDwB0444YRce+21tddDhw6t4zQAZYmRAHuZ8847Lx/60IeSJP/yL/9S52kAANjW0KFDc/jhh9d7DIC6ECMB9jJvectb0tfXlyQ56aST6jwNAAAA/H9iJMBeZsCAAfnJT35S+28AAADYU4iRAHuh4cOH13sEAAAA2E5DtVqt1nsIAAAAAGDvt0+9BwAAAAAAXh7ESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAqJuNGzfmggsuyCGHHJLGxsZUKpWcdNJJ+c53vlPv0QAAeAkMrPcAAAC8fL3zne/Mli1bcvPNN+ewww7Lr3/963zta1/L448/Xu/RAAB4CbgzEgCAunjiiSeyevXqLFq0KCeccEIOPfTQ/OVf/mXmz5+fU045JUnS1dWVD3zgAznwwAMzfPjwnHjiifnhD3+YJHnsscdSqVTS3t5e+8z/+q//yuDBg7N8+fK6XBMAAM9PjAQAoC7233//7L///rnjjjvS29u73flqtZpTTjklHR0dufPOO7N27docddRRmTJlSh5//PGMHj06N954YxYsWJD77rsvmzdvzrvf/e7MmjUr06dPr8MVAQDwQhqq1Wq13kMAAPDy9LnPfS7vf//709PTk6OOOiqTJk3Ku971rhxxxBH5+te/nne84x3ZuHFjGhsba+85/PDDM2/evHzgAx9Iklx00UVZuXJljjnmmPzwhz/MmjVrsu+++9brkgAAeB5iJAAAdfX000/nW9/6Vr7zne/krrvuyne/+918+tOfzmOPPZa/+7u/y5AhQ/rt7+npydy5c7No0aLa63HjxmX9+vW57777csQRR9TjMgAA2AliJAAAe5Tzzz8/K1asyKxZs/KpT30qd99993Z7XvGKV2TUqFFJkgcffDBHH310tmzZkmXLluWtb31r4YkBANhZfk0bAIA9ymtf+9rccccdOeqoo9LR0ZGBAwfmla985Q739vX15eyzz86ZZ56ZV7/61Zk5c2buv//+NDc3lx0aAICd4s5IAADq4re//W3OOOOMnHfeeTniiCMybNiw3HfffZk9e3ZOOeWUfPrTn87xxx+fTZs2ZdGiRXnVq16VRx99NHfeeWfe/va35+ijj84ll1ySz372s/nhD3+Y/fffPyeccEKGDRuWL33pS/W+PAAAdkCMBACgLnp7e7NgwYIsX748v/jFL7Jly5a0trbmjDPOyEc/+tEMGTIkmzZtymWXXZbPfe5zeeyxx1KpVHL88cdn4cKF+cUvfpFp06blG9/4Rt70pjclSR5++OEcccQRWbhwYT74wQ/W+QoBANiWGAkAAAAAFLFPvQcAAAAAAF4exEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAivh/cZcDM0IIT0YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (16,8))\n", + "sns.countplot(data = data, x = 'Sex')" + ] + }, + { + "cell_type": "markdown", + "id": "7310d0a7-c361-4214-a3e5-708d934cfccb", + "metadata": {}, + "source": [ + "## According to this dataset, which gender suffered more from heart disease?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "4b019dff-6704-4df9-9fd3-7786dc9d95c1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Sex\n", + "F 143\n", + "M 267\n", + "Name: HeartDisease, dtype: int64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tot = data['HeartDisease'].groupby(data['Sex']).count()\n", + "suff = data['HeartDisease'].groupby(data['Sex']).sum()\n", + "not_suf = tot-suff\n", + "not_suf" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "26ef5d40-ac18-4ef8-b2c0-20f1aa154562", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmg0lEQVR4nO3df1TVdZ7H8ddF5MeK4ISAkAiYWYw4OkLTYGHp1CVsnZxpR1rn+CN1i9FkkDKHcdV07JBbmf0Yf5Xmafoxrjaac2IVthR/1TYSpDuilVKQXSI0Qckg4bt/eLy7dy8a8usLn56Pc+453c/9fr/3fe2gz/P93st1WJZlCQAAwBA+dg8AAADQnogbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABjF1+4BOltTU5M+//xz9e7dWw6Hw+5xAABAC1iWpTNnzigqKko+Ppc/N/O9i5vPP/9c0dHRdo8BAABaoaKiQv3797/sNt+7uOndu7ekC384wcHBNk8DAABaora2VtHR0e5/xy/nexc3Fy9FBQcHEzcAAHQzLXlLCW8oBgAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBRb42b37t0aN26coqKi5HA4tHXr1u/cp7CwUImJiQoICNDAgQO1evXqjh8UAAB0G7bGTV1dnYYNG6bnnnuuRduXlZVp7NixSklJUXFxsX7/+98rMzNTr7/+egdPCgAAugtbvxU8LS1NaWlpLd5+9erVGjBggFasWCFJio+P14EDB/TEE0/o7rvv7qApAQBAd9Kt3nPzzjvvyOl0eqylpqbqwIED+vbbb5vdp76+XrW1tR43AABgLlvP3FypyspKRUREeKxFRETo/Pnzqq6uVmRkpNc+ubm5Wrx4cWeN6JY496VOf06gOyh6fLLdI7RZ+ZKhdo8AdEkDFh6yewRJ3ezMjSQ5HA6P+5ZlNbt+UU5Ojmpqaty3ioqKDp8RAADYp1uduenXr58qKys91qqqquTr66vQ0NBm9/H395e/v39njAcAALqAbnXmJjk5WQUFBR5r+fn5SkpKUs+ePW2aCgAAdCW2xs3Zs2dVUlKikpISSRc+6l1SUqLy8nJJFy4pTZ78v9fnMzIy9Omnnyo7O1ulpaVav3691q1bp4ceesiO8QEAQBdk62WpAwcOaPTo0e772dnZkqQpU6Zow4YNcrlc7tCRpLi4OOXl5WnOnDn64x//qKioKD3zzDN8DBwAALjZGje33nqr+w3BzdmwYYPX2i233KL333+/A6cCAADdWbd6zw0AAMB3IW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYxfa4WblypeLi4hQQEKDExETt2bPnstu/8sorGjZsmP7hH/5BkZGRuvfee3Xy5MlOmhYAAHR1tsbNxo0blZWVpfnz56u4uFgpKSlKS0tTeXl5s9vv3btXkydP1vTp0/X3v/9dmzZt0t/+9jfNmDGjkycHAABdla1xs3z5ck2fPl0zZsxQfHy8VqxYoejoaK1atarZ7d99913FxsYqMzNTcXFxuvnmm3X//ffrwIEDl3yO+vp61dbWetwAAIC5bIubhoYGFRUVyel0eqw7nU7t37+/2X1Gjhypzz77THl5ebIsS1988YU2b96sO++885LPk5ubq5CQEPctOjq6XV8HAADoWmyLm+rqajU2NioiIsJjPSIiQpWVlc3uM3LkSL3yyitKT0+Xn5+f+vXrpz59+ujZZ5+95PPk5OSopqbGfauoqGjX1wEAALoW299Q7HA4PO5bluW1dtHhw4eVmZmphQsXqqioSNu3b1dZWZkyMjIueXx/f38FBwd73AAAgLl87Xrivn37qkePHl5naaqqqrzO5lyUm5urm266SXPnzpUk/ehHP1KvXr2UkpKipUuXKjIyssPnBgAAXZttZ278/PyUmJiogoICj/WCggKNHDmy2X2+/vpr+fh4jtyjRw9JF874AAAA2HpZKjs7Wy+88ILWr1+v0tJSzZkzR+Xl5e7LTDk5OZo8ebJ7+3Hjxukvf/mLVq1apePHj2vfvn3KzMzUT37yE0VFRdn1MgAAQBdi22UpSUpPT9fJkye1ZMkSuVwuJSQkKC8vTzExMZIkl8vl8Ttvpk6dqjNnzui5557Tgw8+qD59+mjMmDFatmyZXS8BAAB0MQ7re3Y9p7a2ViEhIaqpqenQNxcnzn2pw44NdGdFj0/+7o26uPIlQ+0eAeiSBiw81GHHvpJ/v23/tBQAAEB7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFNvjZuXKlYqLi1NAQIASExO1Z8+ey25fX1+v+fPnKyYmRv7+/rrmmmu0fv36TpoWAAB0db52PvnGjRuVlZWllStX6qabbtKaNWuUlpamw4cPa8CAAc3uM2HCBH3xxRdat26dBg0apKqqKp0/f76TJwcAAF2VrXGzfPlyTZ8+XTNmzJAkrVixQjt27NCqVauUm5vrtf327dtVWFio48eP66qrrpIkxcbGdubIAACgi7PtslRDQ4OKiorkdDo91p1Op/bv39/sPtu2bVNSUpL+7d/+TVdffbUGDx6shx56SOfOnbvk89TX16u2ttbjBgAAzGXbmZvq6mo1NjYqIiLCYz0iIkKVlZXN7nP8+HHt3btXAQEB2rJli6qrqzVz5kydOnXqku+7yc3N1eLFi9t9fgAA0DXZ/oZih8Phcd+yLK+1i5qamuRwOPTKK6/oJz/5icaOHavly5drw4YNlzx7k5OTo5qaGvetoqKi3V8DAADoOmw7c9O3b1/16NHD6yxNVVWV19mciyIjI3X11VcrJCTEvRYfHy/LsvTZZ5/p2muv9drH399f/v7+7Ts8AADosmw7c+Pn56fExEQVFBR4rBcUFGjkyJHN7nPTTTfp888/19mzZ91rH374oXx8fNS/f/8OnRcAAHQPtl6Wys7O1gsvvKD169ertLRUc+bMUXl5uTIyMiRduKQ0efJk9/YTJ05UaGio7r33Xh0+fFi7d+/W3LlzNW3aNAUGBtr1MgAAQBdi60fB09PTdfLkSS1ZskQul0sJCQnKy8tTTEyMJMnlcqm8vNy9fVBQkAoKCjR79mwlJSUpNDRUEyZM0NKlS+16CQAAoIuxNW4kaebMmZo5c2azj23YsMFr7frrr/e6lAUAAHCR7Z+WAgAAaE/EDQAAMEqr4mbMmDE6ffq013ptba3GjBnT1pkAAABarVVxs2vXLjU0NHitf/PNN9/5rd4AAAAd6YreUHzw4EH3fx8+fNjjF/A1NjZq+/btuvrqq9tvOgAAgCt0RXEzfPhwORwOORyOZi8/BQYG6tlnn2234QAAAK7UFcVNWVmZLMvSwIED9d577yksLMz9mJ+fn8LDw9WjR492HxIAAKClrihuLv5yvaampg4ZBgAAoK1a/Uv8PvzwQ+3atUtVVVVesbNw4cI2DwYAANAarYqb559/Xr/5zW/Ut29f9evXTw6Hw/2Yw+EgbgAAgG1aFTdLly7Vo48+qnnz5rX3PAAAAG3Sqt9z89VXX+lXv/pVe88CAADQZq2Km1/96lfKz89v71kAAADarFWXpQYNGqQFCxbo3Xff1dChQ9WzZ0+PxzMzM9tlOAAAgCvVqrhZu3atgoKCVFhYqMLCQo/HHA4HcQMAAGzTqrgpKytr7zkAAADaRavecwMAANBVterMzbRp0y77+Pr161s1DAAAQFu1Km6++uorj/vffvut/vu//1unT59u9gs1AQAAOkur4mbLli1ea01NTZo5c6YGDhzY5qEAAABaq93ec+Pj46M5c+boqaeeaq9DAgAAXLF2fUPxsWPHdP78+fY8JAAAwBVp1WWp7Oxsj/uWZcnlcunNN9/UlClT2mUwAACA1mhV3BQXF3vc9/HxUVhYmJ588snv/CQVAABAR2pV3OzcubO95wAAAGgXrYqbi7788ksdPXpUDodDgwcPVlhYWHvNBQAA0CqtekNxXV2dpk2bpsjISI0aNUopKSmKiorS9OnT9fXXX7f3jAAAAC3WqrjJzs5WYWGh/vrXv+r06dM6ffq03njjDRUWFurBBx9s7xkBAABarFWXpV5//XVt3rxZt956q3tt7NixCgwM1IQJE7Rq1ar2mg8AAOCKtOrMzddff62IiAiv9fDwcC5LAQAAW7UqbpKTk7Vo0SJ988037rVz585p8eLFSk5ObrfhAAAArlSrLkutWLFCaWlp6t+/v4YNGyaHw6GSkhL5+/srPz+/vWcEAABosVbFzdChQ/XRRx/p5Zdf1pEjR2RZlu655x79+te/VmBgYHvPCAAA0GKtipvc3FxFREToX/7lXzzW169fry+//FLz5s1rl+EAAACuVKvec7NmzRpdf/31XutDhgzR6tWr2zwUAABAa7UqbiorKxUZGem1HhYWJpfL1eahAAAAWqtVcRMdHa19+/Z5re/bt09RUVFtHgoAAKC1WvWemxkzZigrK0vffvutxowZI0l666239PDDD/MbigEAgK1aFTcPP/ywTp06pZkzZ6qhoUGSFBAQoHnz5iknJ6ddBwQAALgSrYobh8OhZcuWacGCBSotLVVgYKCuvfZa+fv7t/d8AAAAV6RVcXNRUFCQbrjhhvaaBQAAoM1a9YZiAACAroq4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGsT1uVq5cqbi4OAUEBCgxMVF79uxp0X779u2Tr6+vhg8f3rEDAgCAbsXWuNm4caOysrI0f/58FRcXKyUlRWlpaSovL7/sfjU1NZo8ebJ+9rOfddKkAACgu7A1bpYvX67p06drxowZio+P14oVKxQdHa1Vq1Zddr/7779fEydOVHJycidNCgAAugvb4qahoUFFRUVyOp0e606nU/v377/kfi+++KKOHTumRYsWteh56uvrVVtb63EDAADmsi1uqqur1djYqIiICI/1iIgIVVZWNrvPRx99pN/97nd65ZVX5Ovr26Lnyc3NVUhIiPsWHR3d5tkBAEDXZfsbih0Oh8d9y7K81iSpsbFREydO1OLFizV48OAWHz8nJ0c1NTXuW0VFRZtnBgAAXVfLTn90gL59+6pHjx5eZ2mqqqq8zuZI0pkzZ3TgwAEVFxfrgQcekCQ1NTXJsiz5+voqPz9fY8aM8drP399f/v7+HfMiAABAl2PbmRs/Pz8lJiaqoKDAY72goEAjR4702j44OFiHDh1SSUmJ+5aRkaHrrrtOJSUluvHGGztrdAAA0IXZduZGkrKzszVp0iQlJSUpOTlZa9euVXl5uTIyMiRduKR04sQJvfTSS/Lx8VFCQoLH/uHh4QoICPBaBwAA31+2xk16erpOnjypJUuWyOVyKSEhQXl5eYqJiZEkuVyu7/ydNwAAAP+Xw7Isy+4hOlNtba1CQkJUU1Oj4ODgDnuexLkvddixge6s6PHJdo/QZuVLhto9AtAlDVh4qMOOfSX/ftv+aSkAAID2RNwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwiu1xs3LlSsXFxSkgIECJiYnas2fPJbf9y1/+ottvv11hYWEKDg5WcnKyduzY0YnTAgCArs7WuNm4caOysrI0f/58FRcXKyUlRWlpaSovL292+927d+v2229XXl6eioqKNHr0aI0bN07FxcWdPDkAAOiqHJZlWXY9+Y033qgRI0Zo1apV7rX4+HiNHz9eubm5LTrGkCFDlJ6eroULFzb7eH19verr6933a2trFR0drZqaGgUHB7ftBVxG4tyXOuzYQHdW9Phku0dos/IlQ+0eAeiSBiw81GHHrq2tVUhISIv+/bbtzE1DQ4OKiorkdDo91p1Op/bv39+iYzQ1NenMmTO66qqrLrlNbm6uQkJC3Lfo6Og2zQ0AALo22+KmurpajY2NioiI8FiPiIhQZWVli47x5JNPqq6uThMmTLjkNjk5OaqpqXHfKioq2jQ3AADo2nztHsDhcHjctyzLa605r732mh555BG98cYbCg8Pv+R2/v7+8vf3b/OcAACge7Atbvr27asePXp4naWpqqryOpvz/23cuFHTp0/Xpk2bdNttt3XkmAAAoJux7bKUn5+fEhMTVVBQ4LFeUFCgkSNHXnK/1157TVOnTtWrr76qO++8s6PHBAAA3Yytl6Wys7M1adIkJSUlKTk5WWvXrlV5ebkyMjIkXXi/zIkTJ/TSSxc+efTaa69p8uTJevrpp/XTn/7UfdYnMDBQISEhtr0OAADQddgaN+np6Tp58qSWLFkil8ulhIQE5eXlKSYmRpLkcrk8fufNmjVrdP78ec2aNUuzZs1yr0+ZMkUbNmzo7PEBAEAXZPsbimfOnKmZM2c2+9j/D5Zdu3Z1/EAAAKBbs/3rFwAAANoTcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACj2B43K1euVFxcnAICApSYmKg9e/ZcdvvCwkIlJiYqICBAAwcO1OrVqztpUgAA0B3YGjcbN25UVlaW5s+fr+LiYqWkpCgtLU3l5eXNbl9WVqaxY8cqJSVFxcXF+v3vf6/MzEy9/vrrnTw5AADoqmyNm+XLl2v69OmaMWOG4uPjtWLFCkVHR2vVqlXNbr969WoNGDBAK1asUHx8vGbMmKFp06bpiSee6OTJAQBAV+Vr1xM3NDSoqKhIv/vd7zzWnU6n9u/f3+w+77zzjpxOp8daamqq1q1bp2+//VY9e/b02qe+vl719fXu+zU1NZKk2tratr6Ey2qsP9ehxwe6q47+2esMZ75ptHsEoEvqyJ/vi8e2LOs7t7Utbqqrq9XY2KiIiAiP9YiICFVWVja7T2VlZbPbnz9/XtXV1YqMjPTaJzc3V4sXL/Zaj46ObsP0AFor5NkMu0cA0FFyQzr8Kc6cOaOQkMs/j21xc5HD4fC4b1mW19p3bd/c+kU5OTnKzs52329qatKpU6cUGhp62eeBGWpraxUdHa2KigoFBwfbPQ6AdsTP9/eLZVk6c+aMoqKivnNb2+Kmb9++6tGjh9dZmqqqKq+zMxf169ev2e19fX0VGhra7D7+/v7y9/f3WOvTp0/rB0e3FBwczF9+gKH4+f7++K4zNhfZ9oZiPz8/JSYmqqCgwGO9oKBAI0eObHaf5ORkr+3z8/OVlJTU7PttAADA94+tn5bKzs7WCy+8oPXr16u0tFRz5sxReXm5MjIuXJPPycnR5MmT3dtnZGTo008/VXZ2tkpLS7V+/XqtW7dODz30kF0vAQAAdDG2vucmPT1dJ0+e1JIlS+RyuZSQkKC8vDzFxMRIklwul8fvvImLi1NeXp7mzJmjP/7xj4qKitIzzzyju+++266XgC7O399fixYt8ro0CaD74+cbl+KwWvKZKgAAgG7C9q9fAAAAaE/EDQAAMApxAwAAjELcAAAAoxA36JZ2796tcePGKSoqSg6HQ1u3br3ktvfff78cDodWrFjhtX7NNdcoMDBQYWFhuuuuu3TkyJGOHRzAZeXm5uqGG25Q7969FR4ervHjx+vo0aNe25WWlurnP/+5QkJC1Lt3b/30pz91f7r2k08+kcPhaPa2adOmzn5JsAFxg26prq5Ow4YN03PPPXfZ7bZu3ar/+q//avbXdScmJurFF19UaWmpduzYIcuy5HQ61djIlyICdiksLNSsWbP07rvvqqCgQOfPn5fT6VRdXZ17m2PHjunmm2/W9ddfr127dumDDz7QggULFBAQIOnCdwe6XC6P2+LFi9WrVy+lpaXZ9dLQifgoOLo9h8OhLVu2aPz48R7rJ06c0I033qgdO3bozjvvVFZWlrKysi55nIMHD2rYsGH6+OOPdc0113Ts0ABa5Msvv1R4eLgKCws1atQoSdI999yjnj176k9/+lOLj/PjH/9YI0aM0Lp16zpqVHQhnLmBkZqamjRp0iTNnTtXQ4YM+c7t6+rq9OKLLyouLo5vjAe6kJqaGknSVVddJenCz/abb76pwYMHKzU1VeHh4brxxhsve2m6qKhIJSUlmj59emeMjC6AuIGRli1bJl9fX2VmZl52u5UrVyooKEhBQUHavn27CgoK5Ofn10lTArgcy7KUnZ2tm2++WQkJCZIufFny2bNn9dhjj+mOO+5Qfn6+fvGLX+iXv/ylCgsLmz3OunXrFB8ff8nvLYR5bP36BaAjFBUV6emnn9b7778vh8Nx2W1//etf6/bbb5fL5dITTzyhCRMmaN++fe5r9wDs88ADD+jgwYPau3eve62pqUmSdNddd2nOnDmSpOHDh2v//v1avXq1brnlFo9jnDt3Tq+++qoWLFjQeYPDdpy5gXH27NmjqqoqDRgwQL6+vvL19dWnn36qBx98ULGxsR7bhoSE6Nprr9WoUaO0efNmHTlyRFu2bLFncABus2fP1rZt27Rz507179/fvd63b1/5+vrqhz/8ocf28fHxHt9FeNHmzZv19ddfe3wJM8zHmRsYZ9KkSbrttts81lJTUzVp0iTde++9l93XsizV19d35HgALsOyLM2ePVtbtmzRrl27FBcX5/G4n5+fbrjhBq+Ph3/44YfuL13+v9atW6ef//znCgsL69C50bUQN+iWzp49q48//th9v6ysTCUlJbrqqqs0YMAAhYaGemzfs2dP9evXT9ddd50k6fjx49q4caOcTqfCwsJ04sQJLVu2TIGBgRo7dmynvhYA/2vWrFl69dVX9cYbb6h3796qrKyUdOEsa2BgoCRp7ty5Sk9P16hRozR69Ght375df/3rX7Vr1y6PY3388cfavXu38vLyOvtlwG4W0A3t3LnTkuR1mzJlSrPbx8TEWE899ZT7/okTJ6y0tDQrPDzc6tmzp9W/f39r4sSJ1pEjRzrnBQBoVnM/15KsF1980WO7devWWYMGDbICAgKsYcOGWVu3bvU6Vk5OjtW/f3+rsbGxk6ZHV8HvuQEAAEbhDcUAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AIy1a9cuORwOnT592u5RAHQi4gbAJU2dOlXjx4/3Wu+saHjkkUc0fPhwr/XY2Fg5HA45HA4FBgYqNjZWEyZM0Ntvv+2x3ciRI+VyuRQSEtKhcwLoWogbAF2OZVk6f/78ZbdZsmSJXC6Xjh49qpdeekl9+vTRbbfdpkcffdS9jZ+fn/r16yeHw9HRIwPoQogbAG22f/9+jRo1SoGBgYqOjlZmZqbq6urcj7/88stKSkpS79691a9fP02cOFFVVVXuxy+eCdqxY4eSkpLk7++vP/3pT1q8eLE++OAD91maDRs2uPe5eKwBAwZo1KhRWrt2rRYsWKCFCxfq6NGjHse9eIbp008/1bhx4/SDH/xAvXr10pAhQzy+Mfrw4cMaO3asgoKCFBERoUmTJqm6utr9+Pbt23XzzTerT58+Cg0N1T/+4z/q2LFj7scbGhr0wAMPKDIyUgEBAYqNjVVubq778ZqaGt13330KDw9XcHCwxowZow8++KDd/j8AuIC4AdAmhw4dUmpqqn75y1/q4MGD2rhxo/bu3asHHnjAvU1DQ4P+8Ic/6IMPPtDWrVtVVlamqVOneh3r4YcfVm5urkpLS+V0OvXggw9qyJAhcrlccrlcSk9Pv+wsv/3tb2VZlt54441mH581a5bq6+u1e/duHTp0SMuWLVNQUJAkyeVy6ZZbbtHw4cN14MABbd++XV988YUmTJjg3r+urk7Z2dn629/+prfeeks+Pj76xS9+oaamJknSM888o23btunf//3fdfToUb388suKjY2VdOFs1J133qnKykrl5eWpqKhII0aM0M9+9jOdOnXqSv7IAXwXW7+THECXNmXKFKtHjx5Wr169PG4BAQGWJOurr76yJk2aZN13330e++3Zs8fy8fGxzp071+xx33vvPUuSdebMGcuyLGvnzp2WJGvr1q0e2y1atMgaNmyY1/4xMTHWU0891eyxIyIirN/85jcex/3qq68sy7KsoUOHWo888kiz+y1YsMByOp0eaxUVFZYk6+jRo83uU1VVZUmyDh06ZFmWZc2ePdsaM2aM1dTU5LXtW2+9ZQUHB1vffPONx/o111xjrVmzptnjA2gdztwAuKzRo0erpKTE4/bCCy+4Hy8qKtKGDRsUFBTkvqWmpqqpqUllZWWSpOLiYt11112KiYlR7969deutt0qSysvLPZ4rKSmpzfNalnXJ99hkZmZq6dKluummm7Ro0SIdPHjQ43Xs3LnT43Vcf/31kuS+9HTs2DFNnDhRAwcOVHBwsOLi4jxex9SpU1VSUqLrrrtOmZmZys/P9zj+2bNnFRoa6vEcZWVlHpe2ALSdr90DAOjaevXqpUGDBnmsffbZZ+7/bmpq0v3336/MzEyvfQcMGKC6ujo5nU45nU69/PLLCgsLU3l5uVJTU9XQ0OD1XG1x8uRJffnll+7o+P9mzJih1NRUvfnmm8rPz1dubq6efPJJzZ49W01NTRo3bpyWLVvmtV9kZKQkady4cYqOjtbzzz+vqKgoNTU1KSEhwf06RowYobKyMv3Hf/yH/vM//1MTJkzQbbfdps2bN6upqUmRkZHatWuX1/H79OnTptcNwBNxA6BNRowYob///e9eAXTRoUOHVF1drccee0zR0dGSpAMHDrTo2H5+fmpsbGzxLE8//bR8fHya/fj6RdHR0crIyFBGRoZycnL0/PPPa/bs2RoxYoRef/11xcbGytfX+6/GkydPqrS0VGvWrFFKSookae/evV7bBQcHKz09Xenp6fqnf/on3XHHHTp16pRGjBihyspK+fr6ut+HA6BjcFkKQJvMmzdP77zzjmbNmqWSkhJ99NFH2rZtm2bPni3pwtkbPz8/Pfvsszp+/Li2bdumP/zhDy06dmxsrMrKylRSUqLq6mrV19e7Hztz5owqKytVUVGh3bt367777tPSpUv16KOPXjK0srKytGPHDpWVlen999/X22+/rfj4eEkX3mx86tQp/fM//7Pee+89HT9+XPn5+Zo2bZoaGxv1gx/8QKGhoVq7dq0+/vhjvf3228rOzvY4/lNPPaU///nPOnLkiD788ENt2rRJ/fr1c39MPTk5WePHj9eOHTv0ySefaP/+/frXf/3XFscegJYhbgC0yY9+9CMVFhbqo48+UkpKin784x9rwYIF7ks5YWFh2rBhgzZt2qQf/vCHeuyxx/TEE0+06Nh333237rjjDo0ePVphYWF67bXX3I8tXLhQkZGRGjRokCZNmqSamhq99dZbmjdv3iWP19jYqFmzZik+Pl533HGHrrvuOq1cuVKSFBUVpX379qmxsVGpqalKSEjQb3/7W4WEhMjHx0c+Pj7685//rKKiIiUkJGjOnDl6/PHHPY4fFBSkZcuWKSkpSTfccIM++eQT5eXlycfHRw6HQ3l5eRo1apSmTZumwYMH65577tEnn3yiiIiIK/1jB3AZDsuyLLuHAAAAaC+cuQEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGCU/wGn1/tMFIuz6AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(data = data, x = not_suf)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "9ba7095a-b22a-4db7-9996-80adf8f096eb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmmklEQVR4nO3df1RVdb7/8dcB4kAqWIgHKETMLK6YXWEqKEqtMOy6blM3aWz5Y9QpRpOUfhiZP8eGcabMKfNX5TVvTXGrybw3rsJUommtlKCYZMyrFDQdIvwBqAUJ+/uHy/O9Zw4a8mvDp+djrbOW53P23ud9nEU+Z+8NOCzLsgQAAGAIP7sHAAAA6EjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMEmD3AF2tublZX3/9tfr06SOHw2H3OAAAoBUsy1J9fb2ioqLk53f2czM/ubj5+uuvFR0dbfcYAACgDSorK3XxxRefdZufXNz06dNH0qm/nJCQEJunAQAArVFXV6fo6GjPv+Nn85OLm9OXokJCQogbAAB6mNbcUsINxQAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxia9xs375d48aNU1RUlBwOhzZt2vSj+xQWFiohIUFBQUEaNGiQ1qxZ0/mDAgCAHsPWuDl+/LiGDx+ulStXtmr78vJyjR07VikpKSouLtajjz6qzMxMvfHGG508KQAA6Cls/a3gaWlpSktLa/X2a9as0YABA7RixQpJUlxcnPbs2aMnnnhCd9xxRydNCQAAepIedc/NBx98oNTUVK+1MWPGaM+ePfrhhx9a3KehoUF1dXVeDwAAYC5bz9ycq6qqKrlcLq81l8ulkydPqqamRpGRkT775OTkaPHixV01okfCQxu7/D2BnqDoD5PsHqHdKpYMs3sEoFsasKDU7hEk9bAzN5LkcDi8nluW1eL6adnZ2aqtrfU8KisrO31GAABgnx515iYiIkJVVVVea9XV1QoICFBYWFiL+zidTjmdzq4YDwAAdAM96sxNUlKSCgoKvNby8/OVmJio8847z6apAABAd2Jr3Bw7dkwlJSUqKSmRdOpbvUtKSlRRUSHp1CWlSZP+//X5jIwMffnll8rKylJZWZnWr1+vF154QQ8++KAd4wMAgG7I1stSe/bs0ahRozzPs7KyJEmTJ0/Whg0b5Ha7PaEjSbGxscrLy9OcOXP07LPPKioqSk8//TTfBg4AADxsjZuRI0d6bghuyYYNG3zWbrjhBn388cedOBUAAOjJetQ9NwAAAD+GuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU2+Nm1apVio2NVVBQkBISErRjx46zbv/yyy9r+PDhOv/88xUZGalf/vKXOnToUBdNCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7d9//31NmjRJ06ZN02effabXXntNu3fv1vTp07t4cgAA0F3ZGjfLly/XtGnTNH36dMXFxWnFihWKjo7W6tWrW9z+ww8/1MCBA5WZmanY2Fhdd911uvfee7Vnz54zvkdDQ4Pq6uq8HgAAwFy2xU1jY6OKioqUmprqtZ6amqpdu3a1uE9ycrK++uor5eXlybIsffPNN3r99dd16623nvF9cnJyFBoa6nlER0d36OcAAADdi21xU1NTo6amJrlcLq91l8ulqqqqFvdJTk7Wyy+/rPT0dAUGBioiIkJ9+/bVM888c8b3yc7OVm1tredRWVnZoZ8DAAB0L7bfUOxwOLyeW5bls3ba3r17lZmZqQULFqioqEhbtmxReXm5MjIyznh8p9OpkJAQrwcAADBXgF1v3K9fP/n7+/ucpamurvY5m3NaTk6Orr32Wj300EOSpCuuuEK9evVSSkqKli5dqsjIyE6fGwAAdG+2nbkJDAxUQkKCCgoKvNYLCgqUnJzc4j4nTpyQn5/3yP7+/pJOnfEBAACw9bJUVlaWnn/+ea1fv15lZWWaM2eOKioqPJeZsrOzNWnSJM/248aN05///GetXr1aBw8e1M6dO5WZmamrrrpKUVFRdn0MAADQjdh2WUqS0tPTdejQIS1ZskRut1vx8fHKy8tTTEyMJMntdnv9zJspU6aovr5eK1eu1AMPPKC+fftq9OjRWrZsmV0fAQAAdDMO6yd2Paeurk6hoaGqra3t1JuLEx7a2GnHBnqyoj9M+vGNurmKJcPsHgHolgYsKO20Y5/Lv9+2f7cUAABARyJuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTb42bVqlWKjY1VUFCQEhIStGPHjrNu39DQoHnz5ikmJkZOp1OXXHKJ1q9f30XTAgCA7i7AzjfPzc3V7NmztWrVKl177bVau3at0tLStHfvXg0YMKDFfcaPH69vvvlGL7zwggYPHqzq6mqdPHmyiycHAADdla1xs3z5ck2bNk3Tp0+XJK1YsUJbt27V6tWrlZOT47P9li1bVFhYqIMHD+rCCy+UJA0cOLArRwYAAN2cbZelGhsbVVRUpNTUVK/11NRU7dq1q8V9Nm/erMTERP3+97/XRRddpCFDhujBBx/Ud999d8b3aWhoUF1dndcDAACYy7YzNzU1NWpqapLL5fJad7lcqqqqanGfgwcP6v3331dQUJDefPNN1dTUaMaMGTp8+PAZ77vJycnR4sWLO3x+AADQPdl+Q7HD4fB6blmWz9ppzc3Ncjgcevnll3XVVVdp7NixWr58uTZs2HDGszfZ2dmqra31PCorKzv8MwAAgO7DtjM3/fr1k7+/v89Zmurqap+zOadFRkbqoosuUmhoqGctLi5OlmXpq6++0qWXXuqzj9PplNPp7NjhAQBAt2XbmZvAwEAlJCSooKDAa72goEDJyckt7nPttdfq66+/1rFjxzxrn3/+ufz8/HTxxRd36rwAAKBnsPWyVFZWlp5//nmtX79eZWVlmjNnjioqKpSRkSHp1CWlSZMmebafMGGCwsLC9Mtf/lJ79+7V9u3b9dBDD2nq1KkKDg6262MAAIBuxNZvBU9PT9ehQ4e0ZMkSud1uxcfHKy8vTzExMZIkt9utiooKz/a9e/dWQUGBZs2apcTERIWFhWn8+PFaunSpXR8BAAB0M7bGjSTNmDFDM2bMaPG1DRs2+KxdfvnlPpeyAAAATrP9u6UAAAA6EnEDAACM0qa4GT16tI4ePeqzXldXp9GjR7d3JgAAgDZrU9xs27ZNjY2NPuvff//9j/5WbwAAgM50TjcUf/rpp54/79271+sH8DU1NWnLli266KKLOm46AACAc3ROcXPllVfK4XDI4XC0ePkpODhYzzzzTIcNBwAAcK7OKW7Ky8tlWZYGDRqkjz76SOHh4Z7XAgMD1b9/f/n7+3f4kAAAAK11TnFz+ofrNTc3d8owAAAA7dXmH+L3+eefa9u2baqurvaJnQULFrR7MAAAgLZoU9w899xz+vWvf61+/fopIiJCDofD85rD4SBuAACAbdoUN0uXLtXjjz+uuXPndvQ8AAAA7dKmn3Nz5MgR3XnnnR09CwAAQLu1KW7uvPNO5efnd/QsAAAA7damy1KDBw/W/Pnz9eGHH2rYsGE677zzvF7PzMzskOEAAADOVZviZt26derdu7cKCwtVWFjo9ZrD4SBuAACAbdoUN+Xl5R09BwAAQIdo0z03AAAA3VWbztxMnTr1rK+vX7++TcMAAAC0V5vi5siRI17Pf/jhB/31r3/V0aNHW/yFmgAAAF2lTXHz5ptv+qw1NzdrxowZGjRoULuHAgAAaKsOu+fGz89Pc+bM0VNPPdVRhwQAADhnHXpD8YEDB3Ty5MmOPCQAAMA5adNlqaysLK/nlmXJ7Xbr7bff1uTJkztkMAAAgLZoU9wUFxd7Pffz81N4eLiefPLJH/1OKgAAgM7Uprh57733OnoOAACADtGmuDnt22+/1b59++RwODRkyBCFh4d31FwAAABt0qYbio8fP66pU6cqMjJS119/vVJSUhQVFaVp06bpxIkTHT0jAABAq7UpbrKyslRYWKj/+q//0tGjR3X06FG99dZbKiws1AMPPNDRMwIAALRamy5LvfHGG3r99dc1cuRIz9rYsWMVHBys8ePHa/Xq1R01HwAAwDlp05mbEydOyOVy+az379+fy1IAAMBWbYqbpKQkLVy4UN9//71n7bvvvtPixYuVlJTUYcMBAACcqzZdllqxYoXS0tJ08cUXa/jw4XI4HCopKZHT6VR+fn5HzwgAANBqbYqbYcOGaf/+/XrppZf0t7/9TZZl6a677tLdd9+t4ODgjp4RAACg1doUNzk5OXK5XPrVr37ltb5+/Xp9++23mjt3bocMBwAAcK7adM/N2rVrdfnll/usDx06VGvWrGn3UAAAAG3VpripqqpSZGSkz3p4eLjcbne7hwIAAGirNsVNdHS0du7c6bO+c+dORUVFtXsoAACAtmrTPTfTp0/X7Nmz9cMPP2j06NGSpHfeeUcPP/wwP6EYAADYqk1x8/DDD+vw4cOaMWOGGhsbJUlBQUGaO3eusrOzO3RAAACAc9GmuHE4HFq2bJnmz5+vsrIyBQcH69JLL5XT6ezo+QAAAM5Jm+LmtN69e+tnP/tZR80CAADQbm26oRgAAKC7Im4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFGIGwAAYBTiBgAAGIW4AQAARiFuAACAUYgbAABgFOIGAAAYhbgBAABGIW4AAIBRiBsAAGAU4gYAABiFuAEAAEYhbgAAgFFsj5tVq1YpNjZWQUFBSkhI0I4dO1q1386dOxUQEKArr7yycwcEAAA9iq1xk5ubq9mzZ2vevHkqLi5WSkqK0tLSVFFRcdb9amtrNWnSJN14441dNCkAAOgpbI2b5cuXa9q0aZo+fbri4uK0YsUKRUdHa/Xq1Wfd795779WECROUlJTURZMCAICewra4aWxsVFFRkVJTU73WU1NTtWvXrjPu9+///u86cOCAFi5c2Kr3aWhoUF1dndcDAACYy7a4qampUVNTk1wul9e6y+VSVVVVi/vs379fjzzyiF5++WUFBAS06n1ycnIUGhrqeURHR7d7dgAA0H3ZfkOxw+Hwem5Zls+aJDU1NWnChAlavHixhgwZ0urjZ2dnq7a21vOorKxs98wAAKD7at3pj07Qr18/+fv7+5ylqa6u9jmbI0n19fXas2ePiouLdd9990mSmpubZVmWAgIClJ+fr9GjR/vs53Q65XQ6O+dDAACAbse2MzeBgYFKSEhQQUGB13pBQYGSk5N9tg8JCVFpaalKSko8j4yMDF122WUqKSnR1Vdf3VWjAwCAbsy2MzeSlJWVpYkTJyoxMVFJSUlat26dKioqlJGRIenUJaW///3v2rhxo/z8/BQfH++1f//+/RUUFOSzDgAAfrpsjZv09HQdOnRIS5YskdvtVnx8vPLy8hQTEyNJcrvdP/ozbwAAAP4vh2VZlt1DdKW6ujqFhoaqtrZWISEhnfY+CQ9t7LRjAz1Z0R8m2T1Cu1UsGWb3CEC3NGBBaacd+1z+/bb9u6UAAAA6EnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKLbHzapVqxQbG6ugoCAlJCRox44dZ9z2z3/+s26++WaFh4crJCRESUlJ2rp1axdOCwAAujtb4yY3N1ezZ8/WvHnzVFxcrJSUFKWlpamioqLF7bdv366bb75ZeXl5Kioq0qhRozRu3DgVFxd38eQAAKC7cliWZdn15ldffbVGjBih1atXe9bi4uJ02223KScnp1XHGDp0qNLT07VgwYIWX29oaFBDQ4PneV1dnaKjo1VbW6uQkJD2fYCzSHhoY6cdG+jJiv4wye4R2q1iyTC7RwC6pQELSjvt2HV1dQoNDW3Vv9+2nblpbGxUUVGRUlNTvdZTU1O1a9euVh2jublZ9fX1uvDCC8+4TU5OjkJDQz2P6Ojods0NAAC6N9vipqamRk1NTXK5XF7rLpdLVVVVrTrGk08+qePHj2v8+PFn3CY7O1u1tbWeR2VlZbvmBgAA3VuA3QM4HA6v55Zl+ay15JVXXtGiRYv01ltvqX///mfczul0yul0tntOAADQM9gWN/369ZO/v7/PWZrq6mqfszn/KDc3V9OmTdNrr72mm266qTPHBAAAPYxtl6UCAwOVkJCggoICr/WCggIlJyefcb9XXnlFU6ZM0Z/+9CfdeuutnT0mAADoYWy9LJWVlaWJEycqMTFRSUlJWrdunSoqKpSRkSHp1P0yf//737Vx46nvPHrllVc0adIk/fGPf9Q111zjOesTHBys0NBQ2z4HAADoPmyNm/T0dB06dEhLliyR2+1WfHy88vLyFBMTI0lyu91eP/Nm7dq1OnnypGbOnKmZM2d61idPnqwNGzZ09fgAAKAbsv2G4hkzZmjGjBktvvaPwbJt27bOHwgAAPRotv/6BQAAgI5E3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCjEDQAAMApxAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAotsfNqlWrFBsbq6CgICUkJGjHjh1n3b6wsFAJCQkKCgrSoEGDtGbNmi6aFAAA9AS2xk1ubq5mz56tefPmqbi4WCkpKUpLS1NFRUWL25eXl2vs2LFKSUlRcXGxHn30UWVmZuqNN97o4skBAEB3ZWvcLF++XNOmTdP06dMVFxenFStWKDo6WqtXr25x+zVr1mjAgAFasWKF4uLiNH36dE2dOlVPPPFEF08OAAC6qwC73rixsVFFRUV65JFHvNZTU1O1a9euFvf54IMPlJqa6rU2ZswYvfDCC/rhhx903nnn+ezT0NCghoYGz/Pa2lpJUl1dXXs/wlk1NXzXqccHeqrO/trrCvXfN9k9AtAtdebX9+ljW5b1o9vaFjc1NTVqamqSy+XyWne5XKqqqmpxn6qqqha3P3nypGpqahQZGemzT05OjhYvXuyzHh0d3Y7pAbRV6DMZdo8AoLPkhHb6W9TX1ys09OzvY1vcnOZwOLyeW5bls/Zj27e0flp2draysrI8z5ubm3X48GGFhYWd9X1ghrq6OkVHR6uyslIhISF2jwOgA/H1/dNiWZbq6+sVFRX1o9vaFjf9+vWTv7+/z1ma6upqn7Mzp0VERLS4fUBAgMLCwlrcx+l0yul0eq317du37YOjRwoJCeE/foCh+Pr+6fixMzan2XZDcWBgoBISElRQUOC1XlBQoOTk5Bb3SUpK8tk+Pz9fiYmJLd5vAwAAfnps/W6prKwsPf/881q/fr3Kyso0Z84cVVRUKCPj1DX57OxsTZo0ybN9RkaGvvzyS2VlZamsrEzr16/XCy+8oAcffNCujwAAALoZW++5SU9P16FDh7RkyRK53W7Fx8crLy9PMTExkiS32+31M29iY2OVl5enOXPm6Nlnn1VUVJSefvpp3XHHHXZ9BHRzTqdTCxcu9Lk0CaDn4+sbZ+KwWvM9VQAAAD2E7b9+AQAAoCMRNwAAwCjEDQAAMApxAwAAjELcwAiLFi2Sw+HwekRERHhetyxLixYtUlRUlIKDgzVy5Eh99tlnNk4MoDVycnLkcDg0e/Zsz9qUKVN8vt6vueYar/2qqqo0ceJERUREqFevXhoxYoRef/31Lp4ediFuYIyhQ4fK7XZ7HqWlpZ7Xfv/732v58uVauXKldu/erYiICN18882qr6+3cWIAZ7N7926tW7dOV1xxhc9rt9xyi9fXe15entfrEydO1L59+7R582aVlpbq9ttvV3p6uoqLi7tqfNiIuIExAgICFBER4XmEh4dLOnXWZsWKFZo3b55uv/12xcfH68UXX9SJEyf0pz/9yeapAbTk2LFjuvvuu/Xcc8/pggsu8Hnd6XR6fb1feOGFXq9/8MEHmjVrlq666ioNGjRIjz32mPr27auPP/64qz4CbETcwBj79+9XVFSUYmNjddddd+ngwYOSpPLyclVVVSk1NdWzrdPp1A033KBdu3bZNS6As5g5c6ZuvfVW3XTTTS2+vm3bNvXv319DhgzRr371K1VXV3u9ft111yk3N1eHDx9Wc3OzXn31VTU0NGjkyJFdMD3sZvtvBQc6wtVXX62NGzdqyJAh+uabb7R06VIlJyfrs88+8/yy1X/8hawul0tffvmlHeMCOItXX31VH3/8sXbv3t3i62lpabrzzjsVExOj8vJyzZ8/X6NHj1ZRUZHnpxXn5uYqPT1dYWFhCggI0Pnnn68333xTl1xySVd+FNiEuIER0tLSPH8eNmyYkpKSdMkll+jFF1/03GjocDi89rEsy2cNgL0qKyt1//33Kz8/X0FBQS1uk56e7vlzfHy8EhMTFRMTo7ffflu33367JOmxxx7TkSNH9Je//EX9+vXTpk2bdOedd2rHjh0aNmxYl3wW2Ie4gZF69eqlYcOGaf/+/brtttsknfruicjISM821dXVPmdzANirqKhI1dXVSkhI8Kw1NTVp+/btWrlypRoaGuTv7++1T2RkpGJiYrR//35J0oEDB7Ry5Ur99a9/1dChQyVJw4cP144dO/Tss89qzZo1XfeBYAvuuYGRGhoaVFZWpsjISMXGxioiIkIFBQWe1xsbG1VYWKjk5GQbpwTwj2688UaVlpaqpKTE80hMTNTdd9+tkpISn7CRpEOHDqmystLzf15OnDghSfLz8/4nzt/fX83NzZ3/IWA7ztzACA8++KDGjRunAQMGqLq6WkuXLlVdXZ0mT57s+RkZv/3tb3XppZfq0ksv1W9/+1udf/75mjBhgt2jA/g/+vTpo/j4eK+1Xr16KSwsTPHx8Tp27JgWLVqkO+64Q5GRkfriiy/06KOPql+/fvr5z38uSbr88ss1ePBg3XvvvXriiScUFhamTZs2qaCgQP/93/9tx8dCFyNuYISvvvpKv/jFL1RTU6Pw8HBdc801+vDDDxUTEyNJevjhh/Xdd99pxowZOnLkiK6++mrl5+erT58+Nk8O4Fz4+/urtLRUGzdu1NGjRxUZGalRo0YpNzfX8/V83nnnKS8vT4888ojGjRunY8eOafDgwXrxxRc1duxYmz8BuoLDsizL7iEAAAA6CvfcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAw1rZt2+RwOHT06FG7RwHQhYgbAGc0ZcoUz29V/7+6KhoWLVqkK6+80md94MCBcjgccjgcCg4O1sCBAzV+/Hi9++67XtslJyfL7XYrNDS0U+cE0L0QNwC6HcuydPLkybNus2TJErndbu3bt08bN25U3759ddNNN+nxxx/3bBMYGKiIiAg5HI7OHhlAN0LcAGi3Xbt26frrr1dwcLCio6OVmZmp48ePe15/6aWXlJiYqD59+igiIkITJkxQdXW15/XTZ4K2bt2qxMREOZ1O/cd//IcWL16sTz75xHOWZsOGDZ59Th9rwIABuv7667Vu3TrNnz9fCxYs0L59+7yOe/oM05dffqlx48bpggsuUK9evTR06FDl5eV5jrl3716NHTtWvXv3lsvl0sSJE1VTU+N5fcuWLbruuuvUt29fhYWF6V/+5V904MABz+uNjY267777FBkZqaCgIA0cOFA5OTme12tra3XPPfeof//+CgkJ0ejRo/XJJ5902P8OAE4hbgC0S2lpqcaMGaPbb79dn376qXJzc/X+++/rvvvu82zT2Nio3/zmN/rkk0+0adMmlZeXa8qUKT7Hevjhh5WTk6OysjKlpqbqgQce0NChQ+V2u+V2u5Wenn7WWe6//35ZlqW33nqrxddnzpyphoYGbd++XaWlpVq2bJl69+4tSXK73brhhht05ZVXas+ePdqyZYu++eYbjR8/3rP/8ePHlZWVpd27d+udd96Rn5+ffv7zn6u5uVmS9PTTT2vz5s36z//8T+3bt08vvfSSBg4cKOnU2ahbb71VVVVVysvLU1FRkUaMGKEbb7xRhw8fPpe/cgA/xgKAM5g8ebLl7+9v9erVy+sRFBRkSbKOHDliTZw40brnnnu89tuxY4fl5+dnfffddy0e96OPPrIkWfX19ZZlWdZ7771nSbI2bdrktd3ChQut4cOH++wfExNjPfXUUy0e2+VyWb/+9a+9jnvkyBHLsixr2LBh1qJFi1rcb/78+VZqaqrXWmVlpSXJ2rdvX4v7VFdXW5Ks0tJSy7Isa9asWdbo0aOt5uZmn23feecdKyQkxPr++++91i+55BJr7dq1LR4fQNtw5gbAWY0aNUolJSVej+eff97zelFRkTZs2KDevXt7HmPGjFFzc7PKy8slScXFxfrXf/1XxcTEqE+fPho5cqQkqaKiwuu9EhMT2z2vZVlnvMcmMzNTS5cu1bXXXquFCxfq008/9foc7733ntfnuPzyyyXJc+npwIEDmjBhggYNGqSQkBDFxsZ6fY4pU6aopKREl112mTIzM5Wfn+91/GPHjiksLMzrPcrLy70ubQFovwC7BwDQvfXq1UuDBw/2Wvvqq688f25ubta9996rzMxMn30HDBig48ePKzU1VampqXrppZcUHh6uiooKjRkzRo2NjT7v1R6HDh3St99+64mOfzR9+nSNGTNGb7/9tvLz85WTk6Mnn3xSs2bNUnNzs8aNG6dly5b57BcZGSlJGjdunKKjo/Xcc88pKipKzc3Nio+P93yOESNGqLy8XP/zP/+jv/zlLxo/frxuuukmvf7662publZkZKS2bdvmc/y+ffu263MD8EbcAGiXESNG6LPPPvMJoNNKS0tVU1Oj3/3ud4qOjpYk7dmzp1XHDgwMVFNTU6tn+eMf/yg/P78Wv339tOjoaGVkZCgjI0PZ2dl67rnnNGvWLI0YMUJvvPGGBg4cqIAA3/80Hjp0SGVlZVq7dq1SUlIkSe+//77PdiEhIUpPT1d6err+7d/+TbfccosOHz6sESNGqKqqSgEBAZ77cAB0Di5LAWiXuXPn6oMPPtDMmTNVUlKi/fv3a/PmzZo1a5akU2dvAgMD9cwzz+jgwYPavHmzfvOb37Tq2AMHDlR5eblKSkpUU1OjhoYGz2v19fWqqqpSZWWltm/frnvuuUdLly7V448/fsbQmj17trZu3ary8nJ9/PHHevfddxUXFyfp1M3Ghw8f1i9+8Qt99NFHOnjwoPLz8zV16lQ1NTXpggsuUFhYmNatW6f//d//1bvvvqusrCyv4z/11FN69dVX9be//U2ff/65XnvtNUVERHi+TT0pKUm33Xabtm7dqi+++EK7du3SY4891urYA9A6xA2AdrniiitUWFio/fv3KyUlRf/8z/+s+fPney7lhIeHa8OGDXrttdf0T//0T/rd736nJ554olXHvuOOO3TLLbdo1KhRCg8P1yuvvOJ5bcGCBYqMjNTgwYM1ceJE1dbW6p133tHcuXPPeLympibNnDlTcXFxuuWWW3TZZZdp1apVkqSoqCjt3LlTTU1NGjNmjOLj43X//fcrNDRUfn5+8vPz06uvvqqioiLFx8drzpw5+sMf/uB1/N69e2vZsmVKTEzUz372M33xxRfKy8uTn5+fHA6H8vLydP3112vq1KkaMmSI7rrrLn3xxRdyuVzn+tcO4CwclmVZdg8BAADQUThzAwAAjELcAAAAoxA3AADAKMQNAAAwCnEDAACMQtwAAACjEDcAAMAoxA0AADAKcQMAAIxC3AAAAKMQNwAAwCj/D84Mk70lBymeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.countplot(data = data, x = suff)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6f5b5e9c-ffcd-4a3d-b3c1-750c101da277", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\3227672255.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " female_suffered = suff[0]\n", + "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\3227672255.py:2: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " male_suffered = suff[1]\n" + ] + } + ], + "source": [ + "female_suffered = suff[0]\n", + "male_suffered = suff[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "1b51947d-0785-4f5b-bc9f-de56cedbb420", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Female suffered percent 5.446623093681917\n" + ] + } + ], + "source": [ + "total_gend = data['Sex'].count()\n", + "print(\"Female suffered percent \", (female_suffered/total_gend)*100)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "c440e9cc-3288-45e7-afbb-a12c88d40018", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Male suffered percent 49.89106753812636\n" + ] + } + ], + "source": [ + "total_gend = data['Sex'].count()\n", + "print(\"Male suffered percent \", (male_suffered/total_gend)*100)" + ] + }, + { + "cell_type": "markdown", + "id": "7a15fa1e-b7f6-4b8d-bd01-9325972c5e8b", + "metadata": {}, + "source": [ + "## Analyze the chest pain type" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "877fec62-c514-469f-a0e0-072037f7d0f3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ChestPainType\n", + "ASY 496\n", + "NAP 203\n", + "ATA 173\n", + "TA 46\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data['ChestPainType'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "49a43505-823a-4f83-a731-a71b7ccc75b5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAAKnCAYAAAB9MFj8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6GklEQVR4nO3de7iVdZ3//9eWwxYQtoK6t3vcKY2ojaBN2DhqKclJHLOkxPPkV+xSUZQR069RSZaQmkecbMYLxHQcdCoPkzOK+k1KSUXKPI5ZOV/1GztSkJO0QVi/PxrXry0nRfgs3D4e17WuXPf9udd639S1Wjy911p1lUqlEgAAAACAzWyrWg8AAAAAAHwwiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAU0bnWA2wJVq9end/97nfp2bNn6urqaj0OAAAAALyvVCqVLFmyJM3Nzdlqq3Vf/yhGJvnd736XlpaWWo8BAAAAAO9rL7/8cnbeeed17hcjk/Ts2TPJn/6wevXqVeNpAAAAAOD9ZfHixWlpaal2tnURI5PqR7N79eolRgIAAADARtrQVyD6ARsAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCImsbIiRMnpq6urt2tqampur9SqWTixIlpbm5Ot27dMmjQoDzzzDPtHqOtrS1jx47N9ttvnx49euSII47IK6+8UvpUAAAAAIANqPmVkXvttVfmzZtXvT311FPVfZdeemmuuOKKXHvttZkzZ06ampoydOjQLFmypLpm3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqFqcDAAAAAKxD55oP0Llzu6sh31KpVHLVVVdlwoQJGTlyZJLkxhtvTGNjY2655ZaceuqpWbRoUaZOnZqbbropQ4YMSZLcfPPNaWlpyf3335/hw4cXPRcAAAAAYN1qfmXkCy+8kObm5vTt2zfHHHNMfvvb3yZJXnzxxbS2tmbYsGHVtfX19Tn44IMze/bsJMncuXOzcuXKdmuam5vTv3//6pq1aWtry+LFi9vdAAAAAIDNq6Yxcr/99sv3vve93Hvvvbn++uvT2tqaAw44IK+99lpaW1uTJI2Nje2OaWxsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smPjMAAAAA4O1qGiNHjBiRz33ucxkwYECGDBmSu+++O8mfPo79lrq6unbHVCqVNba93YbWXHDBBVm0aFH19vLLL7+HswAAAAAA3omaf0z7z/Xo0SMDBgzICy+8UP0eybdf4Th//vzq1ZJNTU1ZsWJFFi5cuM41a1NfX59evXq1uwEAAAAAm9cWFSPb2try3HPPZaeddkrfvn3T1NSU++67r7p/xYoVmTVrVg444IAkycCBA9OlS5d2a+bNm5enn366ugYAAAAA2DLU9Ne0zz333Hz605/Ohz70ocyfPz/f/OY3s3jx4nzhC19IXV1dxo0bl0mTJqVfv37p169fJk2alO7du+e4445LkjQ0NGT06NEZP358+vTpk969e+fcc8+tfuwbAAAAANhy1DRGvvLKKzn22GPz6quvZocddsjf/u3f5pFHHskuu+ySJDnvvPOyfPnyjBkzJgsXLsx+++2XmTNnpmfPntXHuPLKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSpVqcFAEAHc+CUA2s9ArCZPDz24VqPAPCBUlepVCq1HqLWFi9enIaGhixatMj3RwIAsAYxEjouMRJg03infW2L+s5IAAAAAKDjEiMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKCILSZGTp48OXV1dRk3blx1W6VSycSJE9Pc3Jxu3bpl0KBBeeaZZ9od19bWlrFjx2b77bdPjx49csQRR+SVV14pPD0AAAAAsCFbRIycM2dO/vmf/zl77713u+2XXnpprrjiilx77bWZM2dOmpqaMnTo0CxZsqS6Zty4cbn99tszY8aMPPTQQ1m6dGkOP/zwrFq1qvRpAAAAAADrUfMYuXTp0hx//PG5/vrrs91221W3VyqVXHXVVZkwYUJGjhyZ/v3758Ybb8wbb7yRW265JUmyaNGiTJ06NZdffnmGDBmSv/7rv87NN9+cp556Kvfff3+tTgkAAAAAWIuax8gzzjgjf/d3f5chQ4a02/7iiy+mtbU1w4YNq26rr6/PwQcfnNmzZydJ5s6dm5UrV7Zb09zcnP79+1fXAAAAAABbhs61fPIZM2bk5z//eebMmbPGvtbW1iRJY2Nju+2NjY35v//3/1bXdO3atd0VlW+teev4tWlra0tbW1v1/uLFizf6HAAAAACAd6ZmV0a+/PLLOfvss3PzzTdn6623Xue6urq6dvcrlcoa295uQ2smT56choaG6q2lpeXdDQ8AAAAAvGs1i5Fz587N/PnzM3DgwHTu3DmdO3fOrFmzcs0116Rz587VKyLffoXj/Pnzq/uampqyYsWKLFy4cJ1r1uaCCy7IokWLqreXX355E58dAAAAAPB2NYuRgwcPzlNPPZUnnniiett3331z/PHH54knnsiHP/zhNDU15b777qses2LFisyaNSsHHHBAkmTgwIHp0qVLuzXz5s3L008/XV2zNvX19enVq1e7GwAAAACwedXsOyN79uyZ/v37t9vWo0eP9OnTp7p93LhxmTRpUvr165d+/fpl0qRJ6d69e4477rgkSUNDQ0aPHp3x48enT58+6d27d84999wMGDBgjR/EAQAAAABqq6Y/YLMh5513XpYvX54xY8Zk4cKF2W+//TJz5sz07NmzuubKK69M586dM2rUqCxfvjyDBw/O9OnT06lTpxpODgAAAAC8XV2lUqnUeohaW7x4cRoaGrJo0SIf2QYAYA0HTjmw1iMAm8nDYx+u9QgAHcI77Ws1+85IAAAAAOCDRYwEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoIiaxsjrrrsue++9d3r16pVevXpl//33z3/+539W91cqlUycODHNzc3p1q1bBg0alGeeeabdY7S1tWXs2LHZfvvt06NHjxxxxBF55ZVXSp8KAAAAALABNY2RO++8c771rW/l8ccfz+OPP55DDjkkn/nMZ6rB8dJLL80VV1yRa6+9NnPmzElTU1OGDh2aJUuWVB9j3Lhxuf322zNjxow89NBDWbp0aQ4//PCsWrWqVqcFAAAAAKxFXaVSqdR6iD/Xu3fvXHbZZTn55JPT3NyccePG5fzzz0/yp6sgGxsbc8kll+TUU0/NokWLssMOO+Smm27K0UcfnST53e9+l5aWlvzHf/xHhg8f/o6ec/HixWloaMiiRYvSq1evzXZuAAC8Px045cBajwBsJg+PfbjWIwB0CO+0r20x3xm5atWqzJgxI8uWLcv++++fF198Ma2trRk2bFh1TX19fQ4++ODMnj07STJ37tysXLmy3Zrm5ub079+/umZt2trasnjx4nY3AAAAAGDzqnmMfOqpp7LNNtukvr4+p512Wm6//fb81V/9VVpbW5MkjY2N7dY3NjZW97W2tqZr167Zbrvt1rlmbSZPnpyGhobqraWlZROfFQAAAADwdjWPkXvssUeeeOKJPPLIIzn99NPzhS98Ic8++2x1f11dXbv1lUpljW1vt6E1F1xwQRYtWlS9vfzyy+/tJAAAAACADap5jOzatWt222237Lvvvpk8eXL22WefXH311WlqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vr/6C91s3AAAAAGDzqnmMfLtKpZK2trb07ds3TU1Nue+++6r7VqxYkVmzZuWAAw5IkgwcODBdunRpt2bevHl5+umnq2sAAAAAgC1D51o++Ze//OWMGDEiLS0tWbJkSWbMmJEHH3ww99xzT+rq6jJu3LhMmjQp/fr1S79+/TJp0qR07949xx13XJKkoaEho0ePzvjx49OnT5/07t075557bgYMGJAhQ4bU8tQAAAAAgLepaYz8/e9/nxNPPDHz5s1LQ0ND9t5779xzzz0ZOnRokuS8887L8uXLM2bMmCxcuDD77bdfZs6cmZ49e1Yf48orr0znzp0zatSoLF++PIMHD8706dPTqVOnWp0WAAAAALAWdZVKpVLrIWpt8eLFaWhoyKJFi3x/JAAAazhwyoG1HgHYTB4e+3CtRwDoEN5pX9vivjMSAAAAAOiYxEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChio2LkIYccktdff32N7YsXL84hhxzyXmcCAAAAADqgjYqRDz74YFasWLHG9j/+8Y/56U9/+p6HAgAAAAA6ns7vZvGTTz5Z/ednn302ra2t1furVq3KPffck7/4i7/YdNMBAAAAAB3Gu4qRH/3oR1NXV5e6urq1fhy7W7dumTJlyiYbDgAAAADoON5VjHzxxRdTqVTy4Q9/OI899lh22GGH6r6uXbtmxx13TKdOnTb5kAAAAADA+9+7ipG77LJLkmT16tWbZRgAAAAAoON6VzHyz/3qV7/Kgw8+mPnz568RJ7/2ta+958EAAAAAgI5lo2Lk9ddfn9NPPz3bb799mpqaUldXV91XV1cnRgIAAAAAa9ioGPnNb34zF198cc4///xNPQ8AAAAA0EFttTEHLVy4MEcdddSmngUAAAAA6MA2KkYeddRRmTlz5qaeBQAAAADowDbqY9q77bZbvvrVr+aRRx7JgAED0qVLl3b7zzrrrE0yHAAAAADQcdRVKpXKuz2ob9++637Aurr89re/fU9DlbZ48eI0NDRk0aJF6dWrV63HAQBgC3PglANrPQKwmTw89uFajwDQIbzTvrZRV0a++OKLGz0YAAAAAPDBtFHfGQkAAAAA8G5t1JWRJ5988nr3T5s2baOGAQAAAAA6ro2KkQsXLmx3f+XKlXn66afz+uuv55BDDtkkgwEAAAAAHctGxcjbb799jW2rV6/OmDFj8uEPf/g9DwUAAAAAdDyb7Dsjt9pqq/zDP/xDrrzyyk31kAAAAABAB7JJf8DmN7/5Td58881N+ZAAAAAAQAexUR/TPuecc9rdr1QqmTdvXu6+++584Qtf2CSDAQAAAAAdy0bFyF/84hft7m+11VbZYYcdcvnll2/wl7YBAAAAgA+mjYqRP/7xjzf1HAAAAABAB7dRMfItf/jDH/L888+nrq4uu+++e3bYYYdNNRcAAAAA0MFs1A/YLFu2LCeffHJ22mmnHHTQQfnkJz+Z5ubmjB49Om+88camnhEAAAAA6AA2Kkaec845mTVrVv793/89r7/+el5//fXceeedmTVrVsaPH7+pZwQAAAAAOoCN+pj2D37wg3z/+9/PoEGDqtsOO+ywdOvWLaNGjcp11123qeYDAAAAADqIjboy8o033khjY+Ma23fccUcf0wYAAAAA1mqjYuT++++fCy+8MH/84x+r25YvX56vf/3r2X///TfZcAAAAABAx7FRH9O+6qqrMmLEiOy8887ZZ599UldXlyeeeCL19fWZOXPmpp4RAAAAAOgANipGDhgwIC+88EJuvvnm/Nd//VcqlUqOOeaYHH/88enWrdumnhEAAAAA6AA2KkZOnjw5jY2N+eIXv9hu+7Rp0/KHP/wh559//iYZDgAAAADoODbqOyP/6Z/+KXvuueca2/faa69897vffc9DAQAAAAAdz0bFyNbW1uy0005rbN9hhx0yb9689zwUAAAAANDxbFSMbGlpycMPP7zG9ocffjjNzc3veSgAAAAAoOPZqO+MPOWUUzJu3LisXLkyhxxySJLkgQceyHnnnZfx48dv0gEBAAAAgI5ho2LkeeedlwULFmTMmDFZsWJFkmTrrbfO+eefnwsuuGCTDggAAAAAdAwbFSPr6upyySWX5Ktf/Wqee+65dOvWLf369Ut9ff2mng8AAAAA6CA2Kka+ZZtttsnHP/7xTTULAAAAANCBbdQP2AAAAAAAvFtiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAETWNkZMnT87HP/7x9OzZMzvuuGM++9nP5vnnn2+3plKpZOLEiWlubk63bt0yaNCgPPPMM+3WtLW1ZezYsdl+++3To0ePHHHEEXnllVdKngoAAAAAsAGda/nks2bNyhlnnJGPf/zjefPNNzNhwoQMGzYszz77bHr06JEkufTSS3PFFVdk+vTp2X333fPNb34zQ4cOzfPPP5+ePXsmScaNG5d///d/z4wZM9KnT5+MHz8+hx9+eObOnZtOnTrV8hQBPpBeumhArUcANpMPfe2pWo8AAMD7WE1j5D333NPu/g033JAdd9wxc+fOzUEHHZRKpZKrrroqEyZMyMiRI5MkN954YxobG3PLLbfk1FNPzaJFizJ16tTcdNNNGTJkSJLk5ptvTktLS+6///4MHz68+HkBAAAAAGvaor4zctGiRUmS3r17J0lefPHFtLa2ZtiwYdU19fX1OfjggzN79uwkydy5c7Ny5cp2a5qbm9O/f//qmrdra2vL4sWL290AAAAAgM1ri4mRlUol55xzTj7xiU+kf//+SZLW1tYkSWNjY7u1jY2N1X2tra3p2rVrtttuu3WuebvJkyenoaGhemtpadnUpwMAAAAAvM0WEyPPPPPMPPnkk/nXf/3XNfbV1dW1u1+pVNbY9nbrW3PBBRdk0aJF1dvLL7+88YMDAAAAAO/IFhEjx44dm7vuuis//vGPs/POO1e3NzU1JckaVzjOnz+/erVkU1NTVqxYkYULF65zzdvV19enV69e7W4AAAAAwOZV0xhZqVRy5pln5oc//GH+z//5P+nbt2+7/X379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAACg9mr6a9pnnHFGbrnlltx5553p2bNn9QrIhoaGdOvWLXV1dRk3blwmTZqUfv36pV+/fpk0aVK6d++e4447rrp29OjRGT9+fPr06ZPevXvn3HPPzYABA6q/rg0AAAAA1F5NY+R1112XJBk0aFC77TfccENOOumkJMl5552X5cuXZ8yYMVm4cGH222+/zJw5Mz179qyuv/LKK9O5c+eMGjUqy5cvz+DBgzN9+vR06tSp1KkAAAAAABtQV6lUKrUeotYWL16choaGLFq0yPdHAmwCL100oNYjAJvJh772VK1HqIkDpxxY6xGAzeThsQ/XegSADuGd9rUt4gdsAAAAAICOT4wEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoonOtByAZ+KXv1XoEYDOZe9nf13oEAAAA2GK4MhIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAAACgCDESAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAooqYx8ic/+Uk+/elPp7m5OXV1dbnjjjva7a9UKpk4cWKam5vTrVu3DBo0KM8880y7NW1tbRk7dmy233779OjRI0cccUReeeWVgmcBAAAAALwTNY2Ry5Ytyz777JNrr712rfsvvfTSXHHFFbn22mszZ86cNDU1ZejQoVmyZEl1zbhx43L77bdnxowZeeihh7J06dIcfvjhWbVqVanTAAAAAADegc61fPIRI0ZkxIgRa91XqVRy1VVXZcKECRk5cmSS5MYbb0xjY2NuueWWnHrqqVm0aFGmTp2am266KUOGDEmS3HzzzWlpacn999+f4cOHFzsXAAAAAGD9ttjvjHzxxRfT2tqaYcOGVbfV19fn4IMPzuzZs5Mkc+fOzcqVK9utaW5uTv/+/atr1qatrS2LFy9udwMAAAAANq8tNka2trYmSRobG9ttb2xsrO5rbW1N165ds912261zzdpMnjw5DQ0N1VtLS8smnh4AAAAAeLstNka+pa6urt39SqWyxra329CaCy64IIsWLareXn755U0yKwAAAACwbltsjGxqakqSNa5wnD9/fvVqyaampqxYsSILFy5c55q1qa+vT69evdrdAAAAAIDNa4uNkX379k1TU1Puu+++6rYVK1Zk1qxZOeCAA5IkAwcOTJcuXdqtmTdvXp5++unqGgAAAABgy1DTX9NeunRpfv3rX1fvv/jii3niiSfSu3fvfOhDH8q4ceMyadKk9OvXL/369cukSZPSvXv3HHfccUmShoaGjB49OuPHj0+fPn3Su3fvnHvuuRkwYED117UBAAAAgC1DTWPk448/nk996lPV++ecc06S5Atf+EKmT5+e8847L8uXL8+YMWOycOHC7Lfffpk5c2Z69uxZPebKK69M586dM2rUqCxfvjyDBw/O9OnT06lTp+LnAwAAAACsW01j5KBBg1KpVNa5v66uLhMnTszEiRPXuWbrrbfOlClTMmXKlM0wIQAAAACwqWyx3xkJAAAAAHQsYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBGdaz0AAAAAUNasgw6u9QjAZnLwT2bVeoT1cmUkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFCEGAkAAAAAFCFGAgAAAABFiJEAAAAAQBFiJAAAAABQhBgJAAAAABQhRgIAAAAARYiRAAAAAEARYiQAAAAAUIQYCQAAAAAUIUYCAAAAAEWIkQAAAABAEWIkAAAAAFBEh4mR3/nOd9K3b99svfXWGThwYH7605/WeiQAAAAA4M90iBh56623Zty4cZkwYUJ+8Ytf5JOf/GRGjBiRl156qdajAQAAAAD/o0PEyCuuuCKjR4/OKaecko985CO56qqr0tLSkuuuu67WowEAAAAA/+N9HyNXrFiRuXPnZtiwYe22Dxs2LLNnz67RVAAAAADA23Wu9QDv1auvvppVq1alsbGx3fbGxsa0trau9Zi2tra0tbVV7y9atChJsnjx4s036Hqsaltek+cFNr9ava7U2pI/rqr1CMBm8kF9XXtz+Zu1HgHYTD6or2vL3vS6Bh1VrV7X3nreSqWy3nXv+xj5lrq6unb3K5XKGtveMnny5Hz9619fY3tLS8tmmQ344GqYclqtRwDYtCY31HoCgE2q4Xyva0AH01Db17UlS5akYT0zvO9j5Pbbb59OnTqtcRXk/Pnz17ha8i0XXHBBzjnnnOr91atXZ8GCBenTp886AyZsCosXL05LS0tefvnl9OrVq9bjALxnXteAjsbrGtDReF2jlEqlkiVLlqS5uXm96973MbJr164ZOHBg7rvvvhx55JHV7ffdd18+85nPrPWY+vr61NfXt9u27bbbbs4xoZ1evXr5PwGgQ/G6BnQ0XteAjsbrGiWs74rIt7zvY2SSnHPOOTnxxBOz7777Zv/9988///M/56WXXsppp/l4JAAAAABsKTpEjDz66KPz2muv5aKLLsq8efPSv3///Md//Ed22WWXWo8GAAAAAPyPDhEjk2TMmDEZM2ZMrceA9aqvr8+FF164xtcEALxfeV0DOhqva0BH43WNLU1dZUO/tw0AAAAAsAlsVesBAAAAAIAPBjESAAAAAChCjAQAAAAAihAjAQAAAIAixEjYRGbPnp1OnTrl0EMPTZKcdNJJqaurW+/tLbfccks6deqU0047rVbjAyT5/1+7vvWtb7Xbfscdd7R73XrLHnvska5du+b//b//t8a+QYMGVV/v6uvrs/vuu2fSpElZtWrVZpsfYH3e/n7tz/3gBz/Ifvvtl4aGhvTs2TN77bVXxo8fnyT5xje+kZ122ikLFixod8wvf/nLdO3aNXfeeWeR+QHWZkN/7zzppJOqa4cNG5ZOnTrlkUceqd3AfOCJkbCJTJs2LWPHjs1DDz2Ul156KVdffXXmzZtXvSXJDTfcsMa2t44977zzMmPGjLzxxhu1OgWAJMnWW2+dSy65JAsXLlzvuoceeih//OMfc9RRR2X69OlrXfPFL34x8+bNy/PPP5+zzjorX/nKV/Ltb397M0wNsGFvf7/2lvvvvz/HHHNMPv/5z+exxx7L3Llzc/HFF2fFihVJkgsuuCAtLS0544wzqsesXLkyJ510Uo477rh85jOfKX4uAG/5879jXnXVVenVq1e7bVdffXWS5KWXXsrPfvaznHnmmZk6dWqNp+aDTIyETWDZsmW57bbbcvrpp+fwww/P9OnT09DQkKampuotSbbddts1tv33f/93Zs+enf/9v/939txzz3z/+9+v5akAZMiQIWlqasrkyZPXu27q1Kk57rjjcuKJJ2batGmpVCprrOnevXuampqy66675swzz8zgwYNzxx13bKbJAdZtbe/X3vKjH/0on/jEJ/KlL30pe+yxR3bfffd89rOfzZQpU5IknTt3zve+973ceeed1fdqF198cRYsWJBrrrmmFqcDUPXnf8dsaGhIXV3dGtuSP10cc/jhh+f000/PrbfemmXLltV4cj6oxEjYBG699dbsscce2WOPPXLCCSfkhhtuWOtfytdm2rRp+bu/+7s0NDTkhBNO8G+ogJrr1KlTJk2alClTpuSVV15Z65olS5bk3/7t33LCCSdk6NChWbZsWR588MENPna3bt2ycuXKTTwxwIat7/1aU1NTnnnmmTz99NPrPH7PPffMpEmTcvrpp+fee+/N5MmTc8MNN6RXr16lTgFgo1Uqldxwww054YQTsueee2b33XfPbbfdVuux+IASI2ETmDp1ak444YQkyaGHHpqlS5fmgQce2OBxq1evzvTp06vHHnPMMfnZz36WX//615t1XoANOfLII/PRj340F1544Vr3z5gxI/369ctee+2VTp065Zhjjlnvv0xZvXp17rnnntx7770ZPHjw5hobYJ3W935t7Nix+fjHP54BAwZk1113zTHHHJNp06alra2t3WOcffbZ6d+/fw477LCcfvrpOeSQQ4qfB8DGuP/++/PGG29k+PDhSeJCGGpKjIT36Pnnn89jjz2WY445JsmfPsZz9NFHZ9q0aRs8dubMmVm2bFlGjBiRJNl+++0zbNiwd3QswOZ2ySWX5MYbb8yzzz67xr4//0t98qc3tD/84Q/z+uuvt1v3ne98J9tss0223nrrHHHEETnhhBPWGTgBNpcNvV/r0aNH7r777vz617/OV77ylWyzzTYZP358/uZv/qbd93nX1dVlwoQJWb16db7yla/U5FwANsbUqVNz9NFHp3PnzkmSY489No8++mief/75Gk/GB1HnWg8A73dTp07Nm2++mb/4i7+obqtUKunSpUsWLlyY7bbbbp3HTps2LQsWLEj37t2r21avXp1f/OIX+cY3vpFOnTpt1tkB1ueggw7K8OHD8+Uvf7ndrzA+++yzefTRRzNnzpycf/751e2rVq3Kv/7rv+b000+vbjv++OMzYcKE1NfXp7m52esaUBPv9P3aX/7lX+Yv//Ivc8opp2TChAnZfffdc+utt+Z//a//VT3urb/Iv/WfAFu6BQsW5I477sjKlStz3XXXVbevWrUq06ZNyyWXXFLD6fgg8v+g8B68+eab+d73vpfLL788w4YNa7fvc5/7XP7lX/4lZ5555lqPfe2113LnnXdmxowZ2WuvvarbV69enU9+8pP5z//8zxx++OGbdX6ADfnWt76Vj370o9l9992r26ZOnZqDDjoo//iP/9hu7U033ZSpU6e2i5ENDQ3Zbbfdis0L8HYb+35t1113Tffu3f3AA/C+9y//8i/Zeeed1/gRwQceeCCTJ0/OxRdf7F+wUJT/tcF78KMf/SgLFy7M6NGjq79Q9pbPf/7zmTp16jpj5E033ZQ+ffrkqKOOylZbtf/GhMMPPzxTp04VI4GaGzBgQI4//vjqL8quXLkyN910Uy666KL079+/3dpTTjkll156aX75y19mn332qcW4AGt4J+/XXn311bzxxhs57LDDsssuu+T111/PNddck5UrV2bo0KE1mhxg05g6dWo+//nPr/HebZdddsn555+fu+++O5/5zGdqNB0fRL4zEt6DqVOnZsiQIWu8sU3+9G/an3jiifz85z9f67HTpk3LkUceuUaIfOvYH/3oR/n973+/yWcGeLe+8Y1vVH9x9q677sprr72WI488co11/fr1y4ABA3wZOrBFeSfv13r27Jnf/va3+fu///vsueeeGTFiRFpbWzNz5szsscceNZgaYNOYO3dufvnLX+Zzn/vcGvt69uyZYcOGee9GcXWVt/52AQAAAACwGbkyEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKEKMBAAAAACKECMBAAAAgCLESAAAkiR1dXW54447aj3Gu3bSSSfls5/9bK3HAADgHRAjAQA+IFpbWzN27Nh8+MMfTn19fVpaWvLpT386DzzwQJHnX1c0rKurq9569uyZfffdNz/84Q/f8eNeffXVmT59+jta++CDD7Z7vrXd3uljAQDw7nWu9QAAAGx+//3f/50DDzww2267bS699NLsvffeWblyZe69996cccYZ+a//+q+aznfDDTfk0EMPzeuvv57LLrssRx11VB566KHsv//+Gzy2oaHhHT/PAQcckHnz5lXvn3322Vm8eHFuuOGGjXo8AADeHVdGAgB8AIwZMyZ1dXV57LHH8vnPfz6777579tprr5xzzjl55JFHquteffXVHHnkkenevXv69euXu+66q93jPPvssznssMOyzTbbpLGxMSeeeGJeffXV6v7vf//7GTBgQLp165Y+ffpkyJAhWbZsWSZOnJgbb7wxd955Z/UKxAcffLB63Lbbbpumpqbsueee+e53v5utt946d911V1atWpXRo0enb9++6datW/bYY49cffXV7WZ6+xWXgwYNyllnnZXzzjsvvXv3TlNTUyZOnJgk6dq1a5qamqq3bt26pb6+Pk1NTfnjH/+Y5ubmPPPMM+0ef8qUKdlll11SqVSqV1befffd2WeffbL11ltnv/32y1NPPdXumNmzZ+eggw5Kt27d0tLSkrPOOivLli3bmP/qAAA6FDESAKCDW7BgQe65556cccYZ6dGjxxr7t9122+o/f/3rX8+oUaPy5JNP5rDDDsvxxx+fBQsWJEnmzZuXgw8+OB/96Efz+OOP55577snvf//7jBo1qrr/2GOPzcknn5znnnsuDz74YEaOHJlKpZJzzz03o0aNyqGHHpp58+Zl3rx5OeCAA9Y6b5cuXdK5c+esXLkyq1evzs4775zbbrstzz77bL72ta/ly1/+cm677bb1nvONN96YHj165NFHH82ll16aiy66KPfdd996j9l1110zZMiQdldJJn+6avOkk05KXV1ddduXvvSlfPvb386cOXOy44475ogjjsjKlSuTJE899VSGDx+ekSNH5sknn8ytt96ahx56KGeeeeZ6nx8A4IPAx7QBADq4X//616lUKtlzzz03uPakk07KsccemySZNGlSpkyZksceeyyHHnporrvuunzsYx/LpEmTquunTZuWlpaW/OpXv8rSpUvz5ptvZuTIkdlll12SJAMGDKiu7datW9ra2tLU1LTO529ra8tll12WxYsXZ/DgwenSpUu+/vWvV/f37ds3s2fPzm233VaNoGuz995758ILL0yS9OvXL9dee20eeOCBDB06dL3nf8opp+S0007LFVdckfr6+vzyl7/ME088scZ3WF544YXVx7rxxhuz88475/bbb8+oUaNy2WWX5bjjjsu4ceOqz3/NNdfk4IMPznXXXZett956vTMAAHRkrowEAOjgKpVKkrS7sm9d9t577+o/9+jRIz179sz8+fOTJHPnzs2Pf/zjbLPNNtXbW4HzN7/5TfbZZ58MHjw4AwYMyFFHHZXrr78+CxcufEczHnvssdlmm23SvXv3XHHFFfn2t7+dESNGJEm++93vZt99980OO+yQbbbZJtdff31eeumld3weSbLTTjtVz2N9PvvZz6Zz5865/fbbk/wptn7qU5/Krrvu2m7dn3+XZe/evbPHHnvkueeeS/KnP6fp06e3+3MaPnx4Vq9enRdffHGDMwAAdGSujAQA6OD69euXurq6PPfcc2v9Nes/16VLl3b36+rqsnr16iTJ6tWr8+lPfzqXXHLJGsfttNNO6dSpU+67777Mnj07M2fOzJQpUzJhwoQ8+uij6du373qf98orr8yQIUPSq1ev7LjjjtXtt912W/7hH/4hl19+efbff//07Nkzl112WR599NGNPo/16dq1a0488cTccMMNGTlyZG655ZZcddVVGzzuredI/vTndOqpp+ass85aY82HPvShd/RYAAAdlRgJANDB9e7dO8OHD88//uM/5qyzzlrjeyNff/31dt8buS4f+9jH8oMf/CC77rprOnde+9vIurq6HHjggTnwwAPzta99Lbvssktuv/32nHPOOenatWtWrVq11uOampqy2267rbH9pz/9aQ444ICMGTOmuu03v/nNBmd9L0455ZT0798/3/nOd7Jy5cqMHDlyjTWPPPJINSwuXLgwv/rVr6pXiX7sYx/LM888s9bzAQD4oPMxbQCAD4DvfOc7WbVqVf7mb/4mP/jBD/LCCy/kueeeyzXXXNPuI8frc8YZZ2TBggU59thj89hjj+W3v/1tZs6cmZNPPjmrVq3Ko48+mkmTJuXxxx/PSy+9lB/+8If5wx/+kI985CNJ/vQDMU8++WSef/75vPrqq9UffFmf3XbbLY8//njuvffe/OpXv8pXv/rVzJkz5z39WWzIRz7ykfzt3/5tzj///Bx77LHp1q3bGmsuuuiiPPDAA3n66adz0kknZfvtt69edXr++efnZz/7Wc4444w88cQTeeGFF3LXXXdl7Nixm3VuAID3AzESAOADoG/fvvn5z3+eT33qUxk/fnz69++foUOH5oEHHsh11133jh6jubk5Dz/8cFatWpXhw4enf//+Ofvss9PQ0JCtttoqvXr1yk9+8pMcdthh2X333fOVr3wll19+efW7H7/4xS9mjz32qH7/48MPP7zB5zzttNMycuTIHH300dlvv/3y2muvtbtKcnMZPXp0VqxYkZNPPnmt+7/1rW/l7LPPzsCBAzNv3rzcdddd6dq1a5I/fV/lrFmz8sILL+STn/xk/vqv/zpf/epXs9NOO232uQEAtnR1lbe+0RwAAEiSXHzxxZkxY0aeeuqpdtsffPDBfOpTn8rChQvf0UfbAQBoz5WRAADwP5YuXZo5c+ZkypQpa/0BGgAA3hsxEgAA/seZZ56ZT3ziEzn44IPX+RFtAAA2no9pAwAAAABFuDISAAAAAChCjAQAAAAAihAjAQAAAIAixEgAAAAAoAgxEgAAAAAoQowEAAAAAIoQIwEAAACAIsRIAAAAAKAIMRIAAAAAKOL/A2Ow4tgsg6g5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (16,8))\n", + "sns.countplot(data=data, x= 'ChestPainType')" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "d3a464a2-e2ac-49a0-9cfe-13d4bb180afe", + "metadata": {}, + "outputs": [], + "source": [ + "count_me = data['HeartDisease'].groupby(data['ChestPainType']).count()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "89559fe8-36e9-47be-8b3b-b9001e2f6a2e", + "metadata": {}, + "outputs": [], + "source": [ + "sum_me = data['HeartDisease'].groupby(data['ChestPainType']).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b46f0a50-7b75-4fe0-ae83-f8ad5c16d5cc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ChestPainType\n", + "ASY 392\n", + "ATA 24\n", + "NAP 72\n", + "TA 20\n", + "Name: HeartDisease, dtype: int64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sum_me" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "e05b646e-1ce1-45c3-9d68-b9170ca01547", + "metadata": {}, + "outputs": [], + "source": [ + "no_risk = count_me-sum_me" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a59db56a-b94f-40d2-8189-8e0412176a9b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "392 of people who have ASY got heart disease and 104 of people who have ASY doesn't get heart disease.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\prajw\\AppData\\Local\\Temp\\ipykernel_9964\\2156176294.py:1: FutureWarning: Series.__getitem__ treating keys as positions is deprecated. In a future version, integer keys will always be treated as labels (consistent with DataFrame behavior). To access a value by position, use `ser.iloc[pos]`\n", + " print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))\n" + ] + } + ], + "source": [ + "print(\"{} of people who have ASY got heart disease and {} of people who have ASY doesn't get heart disease.\".format(sum_me[0],no_risk[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "ba4f0a8f-de32-43b5-8794-5aa477bdb2ba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AgeSexChestPainTypeRestingBPCholesterolFastingBSRestingECGMaxHRExerciseAnginaOldpeakST_SlopeHeartDisease
040MATA1402890Normal172N0.0Up0
149FNAP1601800Normal156N1.0Flat1
237MATA1302830ST98N0.0Up0
348FASY1382140Normal108Y1.5Flat1
454MNAP1501950Normal122N0.0Up0
\n", + "
" + ], + "text/plain": [ + " Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \\\n", + "0 40 M ATA 140 289 0 Normal 172 \n", + "1 49 F NAP 160 180 0 Normal 156 \n", + "2 37 M ATA 130 283 0 ST 98 \n", + "3 48 F ASY 138 214 0 Normal 108 \n", + "4 54 M NAP 150 195 0 Normal 122 \n", + "\n", + " ExerciseAngina Oldpeak ST_Slope HeartDisease \n", + "0 N 0.0 Up 0 \n", + "1 N 1.0 Flat 1 \n", + "2 N 0.0 Up 0 \n", + "3 Y 1.5 Flat 1 \n", + "4 N 0.0 Up 0 " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.head()" + ] + }, + { + "cell_type": "markdown", + "id": "6d053d6e-60d0-4976-b713-2df3f6034a81", + "metadata": {}, + "source": [ + "## Relation between RestingECG and the HeartDisease\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "beb409a5-332e-4b66-80ed-b16cf13a61bd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RestingECG\n", + "Normal 552\n", + "LVH 188\n", + "ST 178\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data[\"RestingECG\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "5be6b2df-af7e-4ee9-9d8e-1d98a90915a9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([552., 0., 0., 0., 0., 178., 0., 0., 0., 188.]),\n", + " array([0. , 0.2, 0.4, 0.6, 0.8, 1. , 1.2, 1.4, 1.6, 1.8, 2. ]),\n", + " )" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAKTCAYAAABhHyR8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArHUlEQVR4nO3df5BV9Xn48eeWhZUfuyu/src7rpFEzAxZjAZTIraC4VeZIiaaYopjpVJHR2WyI1QHHRVrZlexglVGZ0yNS2UsbWqxTmuM2Oi2DM0M0pCITVs7pRVGttR03QXd7FK83z863m8v+Jgsu2QBX6+Z88c957l3P4dxZ++8PfeeQqlUKgUAAAAAwIf4paFeAAAAAABw4hIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABAqmqoF3As3n///XjrrbeipqYmCoXCUC8HAAAAAE4qpVIpDhw4EA0NDfFLv/TR1xielAHxrbfeisbGxqFeBgAAAACc1Pbs2RNnnHHGR86clAGxpqYmIv73BGtra4d4NQAAAABwcunu7o7GxsZyZ/soJ2VA/OBjy7W1tQIiAAAAAByjn+frAd1EBQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSVUO9AHKFewpDvQQGoHR3aaiXAAAAADBgrkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAXL16dRQKhYqtWCyWj5dKpVi9enU0NDTEyJEjY9asWfH6669XvEZvb28sX748JkyYEKNHj45FixbF3r17B+dsAAAAAIBB1e8rED/72c/Gvn37yttrr71WPrZmzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPjw4ZwQAAAAADJqqfj+hqqriqsMPlEqleOihh+KOO+6Iyy+/PCIiNmzYEPX19fH000/H9ddfH11dXfHEE0/EU089FXPmzImIiI0bN0ZjY2O89NJLMX/+/AGeDgAAAAAwmPp9BeIbb7wRDQ0NMWnSpPja174W//Zv/xYREbt3746Ojo6YN29eeba6ujpmzpwZ27Zti4iIHTt2xKFDhypmGhoaoqmpqTzzYXp7e6O7u7tiAwAAAACOv34FxOnTp8cf//Efx3e/+9345je/GR0dHTFjxoz4yU9+Eh0dHRERUV9fX/Gc+vr68rGOjo4YMWJEjB07Np35MK2trVFXV1feGhsb+7NsAAAAAOAY9SsgLliwIK644oqYOnVqzJkzJ/76r/86Iv73o8ofKBQKFc8plUpH7TvSz5pZtWpVdHV1lbc9e/b0Z9kAAAAAwDHq90eY/6/Ro0fH1KlT44033ih/L+KRVxLu37+/fFVisViMvr6+6OzsTGc+THV1ddTW1lZsAAAAAMDxN6CA2NvbGz/+8Y/jl3/5l2PSpElRLBZjy5Yt5eN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn7dhXnlypVx6aWXxplnnhn79++Pb3zjG9Hd3R3XXHNNFAqFaG5ujpaWlpg8eXJMnjw5WlpaYtSoUbFkyZKIiKirq4tly5bFihUrYvz48TFu3LhYuXJl+SPRAAAAAMCJpV8Bce/evfFbv/Vb8fbbb8fEiRPji1/8Ynz/+9+PT37ykxERceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqyq+xbt26qKqqisWLF0dPT0/Mnj072traYtiwYYN7ZgAAAADAgBVKpVJpqBfRX93d3VFXVxddXV2n9PchFu756JvPcGIr3X3S/WoBAAAAHxP96WsD+g5EAAAAAODUJiACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACA1IACYmtraxQKhWhubi7vK5VKsXr16mhoaIiRI0fGrFmz4vXXX694Xm9vbyxfvjwmTJgQo0ePjkWLFsXevXsHshQAAAAA4Dg45oC4ffv2ePzxx+Pcc8+t2L9mzZpYu3ZtrF+/PrZv3x7FYjHmzp0bBw4cKM80NzfH5s2bY9OmTbF169Y4ePBgLFy4MA4fPnzsZwIAAAAADLpjCogHDx6Mq666Kr75zW/G2LFjy/tLpVI89NBDcccdd8Tll18eTU1NsWHDhnjvvffi6aefjoiIrq6ueOKJJ+LBBx+MOXPmxPnnnx8bN26M1157LV566aXBOSsAAAAAYFAcU0C86aab4jd+4zdizpw5Fft3794dHR0dMW/evPK+6urqmDlzZmzbti0iInbs2BGHDh2qmGloaIimpqbyzJF6e3uju7u7YgMAAAAAjr+q/j5h06ZN8Q//8A+xffv2o451dHRERER9fX3F/vr6+viP//iP8syIESMqrlz8YOaD5x+ptbU17rnnnv4uFQAAAAAYoH5dgbhnz574+te/Hhs3bozTTjstnSsUChWPS6XSUfuO9FEzq1atiq6urvK2Z8+e/iwbAAAAADhG/QqIO3bsiP3798e0adOiqqoqqqqqor29PR5++OGoqqoqX3l45JWE+/fvLx8rFovR19cXnZ2d6cyRqquro7a2tmIDAAAAAI6/fgXE2bNnx2uvvRY7d+4sbxdccEFcddVVsXPnzvjUpz4VxWIxtmzZUn5OX19ftLe3x4wZMyIiYtq0aTF8+PCKmX379sWuXbvKMwAAAADAiaFf34FYU1MTTU1NFftGjx4d48ePL+9vbm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTr1qJuyAAAAAABDq983UflZbr311ujp6Ykbb7wxOjs7Y/r06fHiiy9GTU1NeWbdunVRVVUVixcvjp6enpg9e3a0tbXFsGHDBns5AAAAAMAAFEqlUmmoF9Ff3d3dUVdXF11dXaf09yEW7vnoG89wYivdfdL9agEAAAAfE/3pa/36DkQAAAAA4ONFQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASPUrID722GNx7rnnRm1tbdTW1saFF14Y3/nOd8rHS6VSrF69OhoaGmLkyJExa9aseP311yteo7e3N5YvXx4TJkyI0aNHx6JFi2Lv3r2DczYAAAAAwKDqV0A844wz4r777otXX301Xn311fjSl74Ul112WTkSrlmzJtauXRvr16+P7du3R7FYjLlz58aBAwfKr9Hc3BybN2+OTZs2xdatW+PgwYOxcOHCOHz48OCeGQAAAAAwYIVSqVQayAuMGzcuHnjggbj22mujoaEhmpub47bbbouI/73asL6+Pu6///64/vrro6urKyZOnBhPPfVUXHnllRER8dZbb0VjY2M8//zzMX/+/A/9Gb29vdHb21t+3N3dHY2NjdHV1RW1tbUDWf4JrXBPYaiXwACU7h7QrxYAAADAcdPd3R11dXU/V1875u9APHz4cGzatCnefffduPDCC2P37t3R0dER8+bNK89UV1fHzJkzY9u2bRERsWPHjjh06FDFTENDQzQ1NZVnPkxra2vU1dWVt8bGxmNdNgAAAADQD/0OiK+99lqMGTMmqqur44YbbojNmzfHlClToqOjIyIi6uvrK+br6+vLxzo6OmLEiBExduzYdObDrFq1Krq6usrbnj17+rtsAAAAAOAYVPX3CZ/5zGdi586d8c4778QzzzwT11xzTbS3t5ePFwqVH7stlUpH7TvSz5qprq6O6urq/i4VAAAAABigfl+BOGLEiDj77LPjggsuiNbW1vjc5z4Xf/iHfxjFYjEi4qgrCffv31++KrFYLEZfX190dnamMwAAAADAieOYvwPxA6VSKXp7e2PSpElRLBZjy5Yt5WN9fX3R3t4eM2bMiIiIadOmxfDhwytm9u3bF7t27SrPAAAAAAAnjn59hPn222+PBQsWRGNjYxw4cCA2bdoUr7zySrzwwgtRKBSiubk5WlpaYvLkyTF58uRoaWmJUaNGxZIlSyIioq6uLpYtWxYrVqyI8ePHx7hx42LlypUxderUmDNnznE5QQAAAADg2PUrIP7nf/5nXH311bFv376oq6uLc889N1544YWYO3duRETceuut0dPTEzfeeGN0dnbG9OnT48UXX4yamprya6xbty6qqqpi8eLF0dPTE7Nnz462trYYNmzY4J4ZAAAAADBghVKpVBrqRfRXd3d31NXVRVdXV9TW1g71co6bwj0fffMZTmylu0+6Xy0AAADgY6I/fW3A34EIAAAAAJy6BEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQ6ldAbG1tjS984QtRU1MTn/jEJ+LLX/5y/PM//3PFTKlUitWrV0dDQ0OMHDkyZs2aFa+//nrFTG9vbyxfvjwmTJgQo0ePjkWLFsXevXsHfjYAAAAAwKDqV0Bsb2+Pm266Kb7//e/Hli1b4n/+539i3rx58e6775Zn1qxZE2vXro3169fH9u3bo1gsxty5c+PAgQPlmebm5ti8eXNs2rQptm7dGgcPHoyFCxfG4cOHB+/MAAAAAIABK5RKpdKxPvm//uu/4hOf+ES0t7fHxRdfHKVSKRoaGqK5uTluu+22iPjfqw3r6+vj/vvvj+uvvz66urpi4sSJ8dRTT8WVV14ZERFvvfVWNDY2xvPPPx/z58//mT+3u7s76urqoqurK2pra491+Se8wj2FoV4CA1C6+5h/tQAAAACOq/70tQF9B2JXV1dERIwbNy4iInbv3h0dHR0xb9688kx1dXXMnDkztm3bFhERO3bsiEOHDlXMNDQ0RFNTU3nmSL29vdHd3V2xAQAAAADH3zEHxFKpFLfcckv86q/+ajQ1NUVEREdHR0RE1NfXV8zW19eXj3V0dMSIESNi7Nix6cyRWltbo66urrw1NjYe67IBAAAAgH445oB48803x49+9KP4kz/5k6OOFQqVH70tlUpH7TvSR82sWrUqurq6ytuePXuOddkAAAAAQD8cU0Bcvnx5PPfcc/Hyyy/HGWecUd5fLBYjIo66knD//v3lqxKLxWL09fVFZ2dnOnOk6urqqK2trdgAAAAAgOOvXwGxVCrFzTffHH/xF38R3/ve92LSpEkVxydNmhTFYjG2bNlS3tfX1xft7e0xY8aMiIiYNm1aDB8+vGJm3759sWvXrvIMAAAAAHBiqOrP8E033RRPP/10/OVf/mXU1NSUrzSsq6uLkSNHRqFQiObm5mhpaYnJkyfH5MmTo6WlJUaNGhVLliwpzy5btixWrFgR48ePj3HjxsXKlStj6tSpMWfOnME/QwAAAADgmPUrID722GMRETFr1qyK/U8++WQsXbo0IiJuvfXW6OnpiRtvvDE6Oztj+vTp8eKLL0ZNTU15ft26dVFVVRWLFy+Onp6emD17drS1tcWwYcMGdjYAAAAAwKAqlEql0lAvor+6u7ujrq4uurq6TunvQyzc89E3nuHEVrr7pPvVAgAAAD4m+tPXjvkuzAAAAADAqU9ABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApKqGegEAAAAAp6LCPYWhXgIDVLq7NNRLOCG4AhEAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQKpqqBcAAMCpqXBPYaiXwACV7i4N9RIAgBOAKxABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAECq3wHxb//2b+PSSy+NhoaGKBQK8eyzz1YcL5VKsXr16mhoaIiRI0fGrFmz4vXXX6+Y6e3tjeXLl8eECRNi9OjRsWjRoti7d++ATgQAAAAAGHz9DojvvvtufO5zn4v169d/6PE1a9bE2rVrY/369bF9+/YoFosxd+7cOHDgQHmmubk5Nm/eHJs2bYqtW7fGwYMHY+HChXH48OFjPxMAAAAAYNBV9fcJCxYsiAULFnzosVKpFA899FDccccdcfnll0dExIYNG6K+vj6efvrpuP7666OrqyueeOKJeOqpp2LOnDkREbFx48ZobGyMl156KebPnz+A0wEAAAAABtOgfgfi7t27o6OjI+bNm1feV11dHTNnzoxt27ZFRMSOHTvi0KFDFTMNDQ3R1NRUnjlSb29vdHd3V2wAAAAAwPE3qAGxo6MjIiLq6+sr9tfX15ePdXR0xIgRI2Ls2LHpzJFaW1ujrq6uvDU2Ng7msgEAAACAxHG5C3OhUKh4XCqVjtp3pI+aWbVqVXR1dZW3PXv2DNpaAQAAAIDcoAbEYrEYEXHUlYT79+8vX5VYLBajr68vOjs705kjVVdXR21tbcUGAAAAABx/gxoQJ02aFMViMbZs2VLe19fXF+3t7TFjxoyIiJg2bVoMHz68Ymbfvn2xa9eu8gwAAAAAcGLo912YDx48GP/6r/9afrx79+7YuXNnjBs3Ls4888xobm6OlpaWmDx5ckyePDlaWlpi1KhRsWTJkoiIqKuri2XLlsWKFSti/PjxMW7cuFi5cmVMnTq1fFdmAAAAAODE0O+A+Oqrr8Yll1xSfnzLLbdERMQ111wTbW1tceutt0ZPT0/ceOON0dnZGdOnT48XX3wxampqys9Zt25dVFVVxeLFi6Onpydmz54dbW1tMWzYsEE4JQAAAABgsBRKpVJpqBfRX93d3VFXVxddXV2n9PchFu756BvPcGIr3X3S/WoBwKDyXubk5/0MwMD4W3jyO5X/Fvanrx2XuzADAAAAAKcGAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAACkBEQAAAABICYgAAAAAQEpABAAAAABSAiIAAAAAkBIQAQAAAICUgAgAAAAApAREAAAAACAlIAIAAAAAKQERAAAAAEgJiAAAAABASkAEAAAAAFICIgAAAACQEhABAAAAgJSACAAAAACkBEQAAAAAIDWkAfHRRx+NSZMmxWmnnRbTpk2Lv/u7vxvK5QAAAAAARxiygPinf/qn0dzcHHfccUf84Ac/iF/7tV+LBQsWxJtvvjlUSwIAAAAAjlA1VD947dq1sWzZsvjd3/3diIh46KGH4rvf/W489thj0draWjHb29sbvb295cddXV0REdHd3f2LW/BQ+OlQL4CBOOX/+wSAn8V7mZOe9zMAA+Rv4UnvVP5b+MG5lUqlnzlbKP08U4Osr68vRo0aFd/+9rfjK1/5Snn/17/+9di5c2e0t7dXzK9evTruueeeX/QyAQAAAOCUtmfPnjjjjDM+cmZIrkB8++234/Dhw1FfX1+xv76+Pjo6Oo6aX7VqVdxyyy3lx++//37893//d4wfPz4KhcJxX+9Q6O7ujsbGxtizZ0/U1tYO9XIAAPrFexkA4GR3qr+fKZVKceDAgWhoaPiZs0P2EeaIOCr+lUqlDw2C1dXVUV1dXbHv9NNPP55LO2HU1taekv+RAgAfD97LAAAnu1P5/UxdXd3PNTckN1GZMGFCDBs27KirDffv33/UVYkAAAAAwNAZkoA4YsSImDZtWmzZsqVi/5YtW2LGjBlDsSQAAAAA4EMM2UeYb7nllrj66qvjggsuiAsvvDAef/zxePPNN+OGG24YqiWdUKqrq+Puu+8+6qPbAAAnA+9lAICTnfcz/9+Q3IX5A48++misWbMm9u3bF01NTbFu3bq4+OKLh2o5AAAAAMARhjQgAgAAAAAntiH5DkQAAAAA4OQgIAIAAAAAKQERAAAAAEgJiB8zr7zyShQKhXjnnXeGeikAAAAAnAQExAFYunRpFAqFuO+++yr2P/vss1EoFIZoVQAAv1j79++P66+/Ps4888yorq6OYrEY8+fPj9bW1igUCh+5tbW1DfXyAYCPkaVLl8aXv/zl8uMHH3ww6urq4r333jtq9qc//WmcfvrpsXbt2oiIOOuss+Khhx46am716tVx3nnnHacVnxgExAE67bTT4v7774/Ozs5Be82+vr5Bey0AgOPtiiuuiB/+8IexYcOG+Jd/+Zd47rnnYtasWTFlypTYt29feVu8eHH8+q//esW+K6+8cqiXDwB8jP32b/929PT0xDPPPHPUsWeeeSbee++9uPrqq4dgZScWAXGA5syZE8ViMVpbW9OZZ555Jj772c9GdXV1nHXWWfHggw9WHD/rrLPiG9/4RixdujTq6uriuuuui7a2tjj99NPjr/7qr+Izn/lMjBo1Kr761a/Gu+++Gxs2bIizzjorxo4dG8uXL4/Dhw+XX2vjxo1xwQUXRE1NTRSLxViyZEns37//uJ0/APDx9s4778TWrVvj/vvvj0suuSQ++clPxq/8yq/EqlWr4rLLLotisVjeRo4cWb5C8f/uAwAYKhMnToxLL700vvWtbx117Fvf+lYsWrQoJk6cOAQrO7EIiAM0bNiwaGlpiUceeST27t171PEdO3bE4sWL42tf+1q89tprsXr16rjzzjuP+rjOAw88EE1NTbFjx4648847IyLivffei4cffjg2bdoUL7zwQrzyyitx+eWXx/PPPx/PP/98PPXUU/H444/Hn//5n5dfp6+vL+6999744Q9/GM8++2zs3r07li5dejz/CQCAj7ExY8bEmDFj4tlnn43e3t6hXg4AQL8tW7Ys2tvbY/fu3eV9//7v/x4vv/xyLFu2bAhXduIQEAfBV77ylTjvvPPi7rvvPurY2rVrY/bs2XHnnXfGOeecE0uXLo2bb745HnjggYq5L33pS7Fy5co4++yz4+yzz46IiEOHDsVjjz0W559/flx88cXx1a9+NbZu3RpPPPFETJkyJRYuXBiXXHJJvPzyy+XXufbaa2PBggXxqU99Kr74xS/Gww8/HN/5znfi4MGDx/cfAQD4WKqqqoq2trbYsGFDnH766XHRRRfF7bffHj/60Y+GemkAAD+X+fPnR0NDQ8XFXk8++WQ0NDTEvHnzKmZvu+228v9A/WBraWn5Ba/4F09AHCT3339/bNiwIf7xH/+xYv+Pf/zjuOiiiyr2XXTRRfHGG29UfPT4ggsuOOo1R40aFZ/+9KfLj+vr6+Oss86KMWPGVOz7vx9R/sEPfhCXXXZZfPKTn4yampqYNWtWRES8+eabAzo/AIDMFVdcEW+99VY899xzMX/+/HjllVfi85//vBukAAAnhWHDhsU111wTbW1t8f7770epVIoNGzbE0qVLY9iwYRWzv/d7vxc7d+6s2G644YYhWvkvjoA4SC6++OKYP39+3H777RX7S6XSUXdkLpVKRz1/9OjRR+0bPnx4xeNCofCh+95///2IiHj33Xdj3rx5MWbMmNi4cWNs3749Nm/eHBFuzAIAHF+nnXZazJ07N+66667Ytm1bLF269EM/nQEAcCK69tprY8+ePfG9730v/uZv/ibefPPN+J3f+Z2j5iZMmFD+9OgH27hx44Zgxb9YVUO9gFPJfffdF+edd16cc8455X1TpkyJrVu3Vsxt27YtzjnnnKMq9kD90z/9U7z99ttx3333RWNjY0REvPrqq4P6MwAAfh5TpkyJZ599dqiXAQDwc/n0pz8dM2fOjCeffDJKpVLMmjWr4lOhH3cC4iCaOnVqXHXVVfHII4+U961YsSK+8IUvxL333htXXnll/P3f/32sX78+Hn300UH/+WeeeWaMGDEiHnnkkbjhhhti165dce+99w76zwEA+MBPfvKT+M3f/M249tpr49xzz42ampp49dVXY82aNXHZZZcN9fIAAI7S1dUVO3furNg3bty4WLZsWVx33XUREfFHf/RHQ7CyE5ePMA+ye++9t+Ijyp///Ofjz/7sz2LTpk3R1NQUd911V/z+7//+cbkz8sSJE6OtrS2+/e1vx5QpU+K+++6LP/iDPxj0nwMA8IExY8bE9OnTY926dXHxxRdHU1NT3HnnnXHdddfF+vXrh3p5AABHeeWVV+L888+v2O6666644oororq6Oqqrq+Pyyy8f6mWeUAqlD/tCPgAAAACAcAUiAAAAAPARBEQAAAAAICUgAgAAAAApAREAAAAASAmIAAAAAEBKQAQAAAAAUgIiAAAAAJASEAEAAACAlIAIAAAAAKQERAAAAAAgJSACAAAAAKn/B5J4TZRgS2OaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (16,8))\n", + "plt.hist(data[\"RestingECG\"],color='green')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "77794355-8c15-4af6-a513-6f5f5c09bdbe", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "bc8675d2-03b7-49b7-a80d-99ce2f0ee43e", + "metadata": {}, + "source": [ + "## Unique values to aid backend\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8db5291-fdb5-4520-96c5-6aa4552bfb56", + "metadata": {}, + "outputs": [], + "source": [ + "s = data[\"Sex\"].unique()\n", + "c = data[\"ChestPainType\"].unique()\n", + "r = data[\"RestingECG\"].unique()\n", + "e = data[\"ExerciseAngina\"].unique()\n", + "sl = data[\"ST_Slope\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4fb5831f-8d53-4426-b84a-7eb3aa36b6ac", + "metadata": {}, + "outputs": [], + "source": [ + "print(s)\n", + "print(c)\n", + "print(r)\n", + "print(e)\n", + "print(sl)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f015da99-69f7-4195-9917-710d6f7fe634", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "c4b35ad8-003a-42c3-a75b-c1ec01784ea2", + "metadata": {}, + "source": [ + "## Label Encoding\n" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "fefab506-4a13-4640-aa27-9ee0971a849a", + "metadata": {}, + "outputs": [], + "source": [ + "labelencoder = LabelEncoder()\n", + "data[\"Sex\"] = labelencoder.fit_transform(data[\"Sex\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "6e8dcec9-7c3d-4e80-a4c3-9d4e81dca8a1", + "metadata": {}, + "outputs": [], + "source": [ + "data[\"ChestPainType\"] = labelencoder.fit_transform(data[\"ChestPainType\"])\n", + "data[\"RestingECG\"] = labelencoder.fit_transform(data[\"RestingECG\"])\n", + "data[\"ExerciseAngina\"] = labelencoder.fit_transform(data[\"ExerciseAngina\"])\n", + "data[\"ST_Slope\"] = labelencoder.fit_transform(data[\"ST_Slope\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "08d1ae90-5b55-4e82-acb4-c5ee40bc9b77", + "metadata": {}, + "outputs": [], + "source": [ + "s = data[\"Sex\"].unique()\n", + "c = data[\"ChestPainType\"].unique()\n", + "r = data[\"RestingECG\"].unique()\n", + "e = data[\"ExerciseAngina\"].unique()\n", + "sl = data[\"ST_Slope\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "60195969-f008-430e-a0cc-08ddcfbcc382", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 0]\n", + "[1 2 0 3]\n", + "[1 2 0]\n", + "[0 1]\n", + "[2 1 0]\n" + ] + } + ], + "source": [ + "print(s)\n", + "print(c)\n", + "print(r)\n", + "print(e)\n", + "print(sl)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1f253193-4257-45f9-ab18-0d23978847f5", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "23306642-b970-4271-bc46-484b4f286be6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([40, 49, 37, 48, 54, 39, 45, 58, 42, 38, 43, 60, 36, 44, 53, 52, 51,\n", + " 56, 41, 32, 65, 35, 59, 50, 47, 31, 46, 57, 55, 63, 66, 34, 33, 61,\n", + " 29, 62, 28, 30, 74, 68, 72, 64, 69, 67, 73, 70, 77, 75, 76, 71],\n", + " dtype=int64)" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#label = data[\"HeartDisease\"].copy()\n", + "\n", + "data[\"Age\"].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "507b778b-2cea-4e41-af16-2a4cadf41fac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkqUlEQVR4nO3dfXBU1f3H8c8lIbuBJltDSDaRTZp20DoGKc8aqwbRYCpYwJaH2ArVMlqRGgPFUkdF7ZDWjlGmVGurgg+JMJ0KUoVqUAGdqBODtIKORRubpCSmZnA3wWQTkvv7w2F/rknQhQ33ZPN+zZyZ3HPO3f3eYcJ+cu7dey3btm0BAAAYZJjTBQAAAHwRAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYJx4pws4ET09PTp06JCSkpJkWZbT5QAAgK/Atm21trYqMzNTw4Ydf41kUAaUQ4cOyefzOV0GAAA4AfX19RozZsxx5wzKgJKUlCTpswNMTk52uBoAAPBVBAIB+Xy+0Of48QzKgHLstE5ycjIBBQCAQearXJ7BRbIAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKACMcuONNyo/P1833nij06UAcFBEAaW0tFRTpkxRUlKS0tLSNGfOHL333nthc2zb1po1a5SZmanExETl5+frwIEDYXOCwaCWL1+u1NRUjRw5UldccYUaGhpO/mgADGp1dXXav3+/JGn//v2qq6tzuCIATokooOzevVvLli3T66+/rsrKSh09elQFBQU6cuRIaM4999yjsrIyrV+/XtXV1fJ6vbr00kvV2toamlNcXKwtW7Zo06ZNevXVV9XW1qZZs2apu7s7ekcGYNC5/vrrj7sNYOiwbNu2T3Tn//3vf0pLS9Pu3bt14YUXyrZtZWZmqri4WLfccoukz1ZL0tPT9dvf/lbXXXed/H6/Ro8erSeeeEILFiyQ9P9PJ96+fbtmzpz5pe8bCATk8Xjk9/t5Fg8QI5566ik99NBDvfqvu+46LVq0yIGKAERbJJ/fJ3UNit/vlySlpKRIkmpra9XU1KSCgoLQHJfLpYsuukhVVVWSpJqaGnV1dYXNyczMVG5ubmjOFwWDQQUCgbAGIHYcPXq0z3AiSQ899JCOHj16iisC4LQTDii2baukpETf/e53lZubK0lqamqSJKWnp4fNTU9PD401NTUpISFBp512Wr9zvqi0tFQejyfUfD7fiZYNwECPP/74SY0DiD0nHFBuvPFG/fOf/9RTTz3Va+yLj1G2bftLH618vDmrV6+W3+8Ptfr6+hMtG4CBrr766pMaBxB7TiigLF++XNu2bdPLL7+sMWPGhPq9Xq8k9VoJaW5uDq2qeL1edXZ26vDhw/3O+SKXy6Xk5OSwBiB2xMfH67rrrutz7Gc/+5ni4+NPcUUAnBZRQLFtWzfeeKOefvppvfTSS8rJyQkbz8nJkdfrVWVlZaivs7NTu3fvVl5eniRp0qRJGj58eNicxsZG7d+/PzQHwNCzaNEijRgxIqxvxIgRoYvpAQwtEf1ZsmzZMlVUVOiZZ55RUlJSaKXE4/EoMTFRlmWpuLhYa9eu1dixYzV27FitXbtWI0aMUFFRUWjutddeqxUrVmjUqFFKSUnRypUrNW7cOF1yySXRP0IAg8Yf//jHsNM5f/zjHx2sBoCTIgooDz74oCQpPz8/rH/Dhg1asmSJJGnVqlVqb2/XDTfcoMOHD2vatGl64YUXlJSUFJp/3333KT4+XvPnz1d7e7tmzJihjRs3Ki4u7uSOBsCglpWVpdzcXO3fv1+5ubnKyspyuiQADjmp+6A4hfugAAAw+Jyy+6AAAAAMBAIKAAAwDgEFgFGqqqq0YMGCfu8sDWBoIKAAMEZHR4fKysr00UcfqaysTB0dHU6XBMAhBBQAxigvL1dLS4skqaWlRRUVFQ5XBMApBBQARmhoaFBFRYWOfbHQtm1VVFSooaHB4coAOIGAAsBxtm1r3bp1+uJdD3p6evrsBxD7CCgAHFdXV6fq6mr19PSE9ff09Ki6ulp1dXUOVQbAKQQUAI7LysrSGWec0efYmWeeyR1lgSGIgALAcbZt69ChQ32O/fe//+UUDzAEEVAAOO6NN95QW1tbn2NtbW164403TnFFAJxGQAHguGnTpvX7XA6Px6Np06ad4ooAOI2AAsBxw4YN0+23397n2B133KFhw/ivChhq+K0HYITJkydr3LhxYX3nnHOOJk6c6FBFAJxEQAFgjLvvvluWZUmSLMvSXXfd5XBFAJxCQAFgDLfbLbfb3etnAEMPAQWAMcrLy0MPCOzo6OBZPMAQRkABYASexQPg8wgoABx37Fk8/fVzozZg6CGgAHDcsWfxdHd3h/V3d3fzLB5giCKgAHBcVlaWpkyZori4uLD+uLg4TZ06lWfxAEMQAQWA4yzL0k033dRv/7GvHgMYOggoAIwwZswYFRUVhfUVFRXp9NNPd6giAE4ioAAwxte//vWwbY/H40whABxHQAFgjN///vfH3QYwdBBQABjhRz/6UUT9AGIbAQWA49ra2vq9IVtDQ4Pa2tpOcUUAnEZAAeC4n/zkJyc1DiD2EFAAOG7Dhg0nNQ4g9hBQADguMTHxpMYBxB4CCgDHPfvssyc1DiD2RBxQ9uzZo9mzZyszM1OWZWnr1q1h45Zl9dl+97vfhebk5+f3Gl+4cOFJHwyAwWnWrFm9bnN/THx8vGbNmnWKKwLgtIgDypEjRzR+/HitX7++z/HGxsaw9uijj8qyLF155ZVh85YuXRo276GHHjqxIwAw6MXFxekXv/hFn2OrVq3qN7wAiF3xke5QWFiowsLCfse9Xm/Y9jPPPKPp06frm9/8Zlj/iBEjes0FMHRddtllevjhh/Xxxx+H+kaPHq2CggIHqwLglAG9BuWjjz7Sc889p2uvvbbXWHl5uVJTU3X22Wdr5cqVam1t7fd1gsGgAoFAWAMQey644ILjbgMYOgY0oDz22GNKSkrSvHnzwvqvuuoqPfXUU9q1a5duu+02/fWvf+015/NKS0vl8XhCzefzDWTZABzQ0NCgbdu2hfVt27at3xu4AYhtlm3b9gnvbFnasmWL5syZ0+f4t7/9bV166aVf+jyNmpoaTZ48WTU1NZo4cWKv8WAwqGAwGNoOBALy+Xzy+/1KTk4+0fIBGMK2ba1atUp79+5Vd3d3qD8uLk4TJ07UPffcI8uyHKwQQDQEAgF5PJ6v9Pk9YCsor7zyit577z399Kc//dK5EydO1PDhw3Xw4ME+x10ul5KTk8MagNhRV1en6urqsHAiSd3d3aqurlZdXZ1DlQFwyoAFlEceeUSTJk3S+PHjv3TugQMH1NXVpYyMjIEqB4DBsrKyNGXKlD7Hpk6dqqysrFNcEQCnRfwtnra2Nr3//vuh7draWu3bt08pKSmh/0QCgYD+8pe/6N577+21/wcffKDy8nJ973vfU2pqqt555x2tWLFCEyZM0Pnnn38ShwJgsLIsSzNmzFB1dXWvsRkzZnB6BxiCIl5BefPNNzVhwgRNmDBBklRSUqIJEybo9ttvD83ZtGmTbNvWokWLeu2fkJCgF198UTNnztSZZ56pn//85yooKNDOnTu51wEwRPX09OiBBx7oc+wPf/iDenp6TnFFAJx2UhfJOiWSi2wAmO+1117T6tWr+x0vLS3VeeeddworAjAQIvn8jvgUDxBrbNtWR0eH02UMaeecc46Sk5P7vMdRcnKyzjnnHLW3tztQGY5xu92casMpRUDBkNfR0XHcuyPDWYFAQJdffrnTZQx5O3bs4KnSOKV4mjEAADAOKygY8txut3bs2OF0GZDU3NysxYsXS5KGDRumiooKeTweh6uC9NnvCXAqEVAw5FmWxdK1IdLS0kI/z58/nweKAkMYp3gAGOnYSgqAoYmAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjBNxQNmzZ49mz56tzMxMWZalrVu3ho0vWbJElmWFtXPPPTdsTjAY1PLly5WamqqRI0fqiiuuUENDw0kdCAAAiB0RB5QjR45o/PjxWr9+fb9zLrvsMjU2Noba9u3bw8aLi4u1ZcsWbdq0Sa+++qra2to0a9YsdXd3R34EAAAg5sRHukNhYaEKCwuPO8flcsnr9fY55vf79cgjj+iJJ57QJZdcIkl68skn5fP5tHPnTs2cOTPSkgAAQIwZkGtQdu3apbS0NJ1xxhlaunSpmpubQ2M1NTXq6upSQUFBqC8zM1O5ubmqqqrq8/WCwaACgUBYAwAAsSvqAaWwsFDl5eV66aWXdO+996q6uloXX3yxgsGgJKmpqUkJCQk67bTTwvZLT09XU1NTn69ZWloqj8cTaj6fL9plAwAAg0R8iufLLFiwIPRzbm6uJk+erOzsbD333HOaN29ev/vZti3LsvocW716tUpKSkLbgUCAkAIAQAwb8K8ZZ2RkKDs7WwcPHpQkeb1edXZ26vDhw2HzmpublZ6e3udruFwuJScnhzUAABC7BjygtLS0qL6+XhkZGZKkSZMmafjw4aqsrAzNaWxs1P79+5WXlzfQ5QAAgEEg4lM8bW1tev/990PbtbW12rdvn1JSUpSSkqI1a9boyiuvVEZGhj788EP96le/UmpqqubOnStJ8ng8uvbaa7VixQqNGjVKKSkpWrlypcaNGxf6Vg8AABjaIg4ob775pqZPnx7aPnZtyOLFi/Xggw/q7bff1uOPP65PPvlEGRkZmj59ujZv3qykpKTQPvfdd5/i4+M1f/58tbe3a8aMGdq4caPi4uKicEgAAGCws2zbtp0uIlKBQEAej0d+v5/rUYAY0t7eHrrP0o4dO5SYmOhwRQCiKZLPb57FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYJ+pPM8ZXY9u2Ojo6nC4DMMrnfyf4/QD65na7ZVmW02UMOAKKQzo6OkJ3zATQ27HndwEIN1TusswpHgAAYBxWUAzQ9p1FsofxTwHItqWeo5/9PCxeGgLL2MBXYfUc1df2PeV0GacUn4oGsIfFS3HDnS4DMESC0wUAxhl0T/WNAk7xAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcHhZogu4upysAAJhsCH5OEFAMkPSPTU6XAACAUTjFAwAAjMMKigFaxy+U4oY7XQYAwFTdXUNutZ2AYoK44QQUAAA+h1M8AADAOBEHlD179mj27NnKzMyUZVnaunVraKyrq0u33HKLxo0bp5EjRyozM1NXX321Dh06FPYa+fn5siwrrC1cuPCkDwYAAMSGiAPKkSNHNH78eK1fv77X2Keffqq9e/fqtttu0969e/X000/rX//6l6644opec5cuXarGxsZQe+ihh07sCAAAQMyJ+BqUwsJCFRYW9jnm8XhUWVkZ1vf73/9eU6dOVV1dnbKyskL9I0aMkNfrjfTtAQDAEDDg16D4/X5ZlqWvf/3rYf3l5eVKTU3V2WefrZUrV6q1tbXf1wgGgwoEAmENAADErgH9Fk9HR4d++ctfqqioSMnJyaH+q666Sjk5OfJ6vdq/f79Wr16tf/zjH71WX44pLS3VnXfeOZClAgAAgwxYQOnq6tLChQvV09OjBx54IGxs6dKloZ9zc3M1duxYTZ48WXv37tXEiRN7vdbq1atVUlIS2g4EAvL5fANVOgAAcNiABJSuri7Nnz9ftbW1eumll8JWT/oyceJEDR8+XAcPHuwzoLhcLrlcroEoFQAAGCjqAeVYODl48KBefvlljRo16kv3OXDggLq6upSRkRHtcgAAwCAUcUBpa2vT+++/H9qura3Vvn37lJKSoszMTP3gBz/Q3r179eyzz6q7u1tNTU2SpJSUFCUkJOiDDz5QeXm5vve97yk1NVXvvPOOVqxYoQkTJuj888+P3pEBAIBBK+KA8uabb2r69Omh7WPXhixevFhr1qzRtm3bJEnf+c53wvZ7+eWXlZ+fr4SEBL344otat26d2tra5PP5dPnll+uOO+5QXFzcSRwKAACIFREHlPz8fNm23e/48cYkyefzaffu3ZG+LQAAGEJ4WKABrJ6jOn6sA4YI25Z6jn7287B4ybKcrQcwhHXs92IIIaAY4Gv7nnK6BAAAjMLTjAEAgHFYQXGI2+3Wjh07nC4DMEpHR4fmzp0rSdqyZYvcbrfDFQHmGSq/FwQUh1iWpcTERKfLAIzldrv5HQGGME7xAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcSIOKHv27NHs2bOVmZkpy7K0devWsHHbtrVmzRplZmYqMTFR+fn5OnDgQNicYDCo5cuXKzU1VSNHjtQVV1yhhoaGkzoQAAAQOyIOKEeOHNH48eO1fv36PsfvuecelZWVaf369aqurpbX69Wll16q1tbW0Jzi4mJt2bJFmzZt0quvvqq2tjbNmjVL3d3dJ34kAAAgZsRHukNhYaEKCwv7HLNtW/fff79uvfVWzZs3T5L02GOPKT09XRUVFbruuuvk9/v1yCOP6IknntAll1wiSXryySfl8/m0c+dOzZw58yQOBwAAxIKoXoNSW1urpqYmFRQUhPpcLpcuuugiVVVVSZJqamrU1dUVNiczM1O5ubmhOV8UDAYVCATCGgAAiF1RDShNTU2SpPT09LD+9PT00FhTU5MSEhJ02mmn9Tvni0pLS+XxeELN5/NFs2wAAGCYAfkWj2VZYdu2bffq+6LjzVm9erX8fn+o1dfXR61WAABgnqgGFK/XK0m9VkKam5tDqyper1ednZ06fPhwv3O+yOVyKTk5OawBAIDYFdWAkpOTI6/Xq8rKylBfZ2endu/erby8PEnSpEmTNHz48LA5jY2N2r9/f2gOAAAY2iL+Fk9bW5vef//90HZtba327dunlJQUZWVlqbi4WGvXrtXYsWM1duxYrV27ViNGjFBRUZEkyePx6Nprr9WKFSs0atQopaSkaOXKlRo3blzoWz0AAGBoizigvPnmm5o+fXpou6SkRJK0ePFibdy4UatWrVJ7e7tuuOEGHT58WNOmTdMLL7ygpKSk0D733Xef4uPjNX/+fLW3t2vGjBnauHGj4uLionBIAABgsLNs27adLiJSgUBAHo9Hfr+f61GAGNLe3h66z9KOHTuUmJjocEUAoimSz2+exQMAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgRf80YiDW2baujo8PpMiCF/Tvwb2IWt9v9pY8sAaKJgIIhr6OjI/TVVphj7ty5TpeAz+Fr3zjVOMUDAACMwwoKhjy3260dO3Y4XQb02em2YDAo6bOHhHJKwRxut9vpEjDEEFAw5FmWxdK1QUaMGOF0CQAMwCkeAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAFglKqqKi1YsEBVVVVOlwLAQQQUAMbo6OhQWVmZPvroI5WVlamjo8PpkgA4hIACwBjl5eVqaWmRJLW0tKiiosLhigA4hYACwAgNDQ2qqKiQbduSJNu2VVFRoYaGBocrA+AEAgoAx9m2rXXr1vXbfyy0ABg6CCgAHFdXV6fq6mp1d3eH9Xd3d6u6ulp1dXUOVQbAKQQUAI7LysrSlClTFBcXF9YfFxenqVOnKisry6HKADiFgALAcZZl6aabbuq337IsB6oC4CQCCgAjjBkzRkVFRaEwYlmWioqKdPrppztcGQAnRD2gfOMb35BlWb3asmXLJElLlizpNXbuuedGuwwAg9BVV12lUaNGSZJSU1NVVFTkcEUAnBL1gFJdXa3GxsZQq6yslCT98Ic/DM257LLLwuZs37492mUAGITcbrdKSkqUnp6um2++WW632+mSADgkPtovOHr06LDt3/zmN/rWt76liy66KNTncrnk9Xqj/dYAYkBeXp7y8vKcLgOAwwb0GpTOzk49+eSTuuaaa8Iuctu1a5fS0tJ0xhlnaOnSpWpubj7u6wSDQQUCgbAGAABi14AGlK1bt+qTTz7RkiVLQn2FhYUqLy/XSy+9pHvvvVfV1dW6+OKLFQwG+32d0tJSeTyeUPP5fANZNgAAcJhlD+AtGmfOnKmEhAT97W9/63dOY2OjsrOztWnTJs2bN6/POcFgMCzABAIB+Xw++f1+JScnR71uAAAQfYFAQB6P5yt9fkf9GpRj/vOf/2jnzp16+umnjzsvIyND2dnZOnjwYL9zXC6XXC5XtEsEAACGGrBTPBs2bFBaWpouv/zy485raWlRfX29MjIyBqoUAAAwyAxIQOnp6dGGDRu0ePFixcf//yJNW1ubVq5cqddee00ffvihdu3apdmzZys1NVVz584diFIAAMAgNCCneHbu3Km6ujpdc801Yf1xcXF6++239fjjj+uTTz5RRkaGpk+frs2bNyspKWkgSgEAAIPQgF4kO1AiucgGAACYIZLPb57FAwAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwTtQDypo1a2RZVljzer2hcdu2tWbNGmVmZioxMVH5+fk6cOBAtMsAAACD2ICsoJx99tlqbGwMtbfffjs0ds8996isrEzr169XdXW1vF6vLr30UrW2tg5EKQAAYBAakIASHx8vr9cbaqNHj5b02erJ/fffr1tvvVXz5s1Tbm6uHnvsMX366aeqqKgYiFIAAMAgNCAB5eDBg8rMzFROTo4WLlyof//735Kk2tpaNTU1qaCgIDTX5XLpoosuUlVVVb+vFwwGFQgEwhoAAIhdUQ8o06ZN0+OPP67nn39ef/7zn9XU1KS8vDy1tLSoqalJkpSenh62T3p6emisL6WlpfJ4PKHm8/miXTYAADBI1ANKYWGhrrzySo0bN06XXHKJnnvuOUnSY489FppjWVbYPrZt9+r7vNWrV8vv94dafX19tMsGAAAGGfCvGY8cOVLjxo3TwYMHQ9/m+eJqSXNzc69Vlc9zuVxKTk4OawAAIHYNeEAJBoN69913lZGRoZycHHm9XlVWVobGOzs7tXv3buXl5Q10KQAAYJCIj/YLrly5UrNnz1ZWVpaam5v161//WoFAQIsXL5ZlWSouLtbatWs1duxYjR07VmvXrtWIESNUVFQU7VIAAMAgFfWA0tDQoEWLFunjjz/W6NGjde655+r1119Xdna2JGnVqlVqb2/XDTfcoMOHD2vatGl64YUXlJSUFO1SAADAIGXZtm07XUSkAoGAPB6P/H4/16MAADBIRPL5zbN4AACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGiXpAKS0t1ZQpU5SUlKS0tDTNmTNH7733XticJUuWyLKssHbuuedGuxQAADBIRT2g7N69W8uWLdPrr7+uyspKHT16VAUFBTpy5EjYvMsuu0yNjY2htn379miXAgAABqn4aL/g3//+97DtDRs2KC0tTTU1NbrwwgtD/S6XS16vN9pvDwAAYsCAX4Pi9/slSSkpKWH9u3btUlpams444wwtXbpUzc3N/b5GMBhUIBAIawAAIHZZtm3bA/Xitm3r+9//vg4fPqxXXnkl1L9582Z97WtfU3Z2tmpra3Xbbbfp6NGjqqmpkcvl6vU6a9as0Z133tmr3+/3Kzk5eaDKBwAAURQIBOTxeL7S5/eABpRly5bpueee06uvvqoxY8b0O6+xsVHZ2dnatGmT5s2b12s8GAwqGAyGtgOBgHw+HwEFAIBBJJKAEvVrUI5Zvny5tm3bpj179hw3nEhSRkaGsrOzdfDgwT7HXS5XnysrAAAgNkU9oNi2reXLl2vLli3atWuXcnJyvnSflpYW1dfXKyMjI9rlAACAQSjqF8kuW7ZMTz75pCoqKpSUlKSmpiY1NTWpvb1dktTW1qaVK1fqtdde04cffqhdu3Zp9uzZSk1N1dy5c6NdDgAAGISifg2KZVl99m/YsEFLlixRe3u75syZo7feekuffPKJMjIyNH36dN19993y+Xxf6T0iOYcFAADM4Og1KF+WdxITE/X8889H+20BAEAM4Vk8AADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMYhoAAAAOMQUAAAgHEIKAAAwDgEFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACMQ0ABAADGIaAAMEpVVZUWLFigqqoqp0sB4CBHA8oDDzygnJwcud1uTZo0Sa+88oqT5QBwWEdHh8rKyvTRRx+prKxMHR0dTpcEwCGOBZTNmzeruLhYt956q9566y1dcMEFKiwsVF1dnVMlAXBYeXm5WlpaJEktLS2qqKhwuCIATrFs27adeONp06Zp4sSJevDBB0N9Z511lubMmaPS0tLj7hsIBOTxeOT3+5WcnDzQpQI4BRoaGrR48WJ1d3eH+uLj47Vx40aNGTPGwcoAREskn9+OrKB0dnaqpqZGBQUFYf0FBQV9nncOBoMKBAJhDUDssG1b69at67ffob+jADjIkYDy8ccfq7u7W+np6WH96enpampq6jW/tLRUHo8n1Hw+36kqFcApUFdXp+rq6rDVE0nq7u5WdXU1p36BIcjRi2Qtywrbtm27V58krV69Wn6/P9Tq6+tPVYkAToGsrCxNmTJFcXFxYf1xcXGaOnWqsrKyHKoMgFMcCSipqamKi4vrtVrS3Nzca1VFklwul5KTk8MagNhhWZZuuummfvv7+sMFQGxzJKAkJCRo0qRJqqysDOuvrKxUXl6eEyUBcNiYMWNUVFQUCiOWZamoqEinn366w5UBcIJjp3hKSkr08MMP69FHH9W7776rm2++WXV1dbr++uudKgmAw6666iqNGjVK0mcrrUVFRQ5XBMAp8U698YIFC9TS0qK77rpLjY2Nys3N1fbt25Wdne1USQAc5na7VVJSonXr1ummm26S2+12uiQADnHsPigng/ugAAAw+Bh/HxQAAIDjIaAAAADjEFAAAIBxCCgAAMA4BBQAAGAcAgoAADAOAQUAABiHgAIAAIxDQAEAAMZx7Fb3J+PYzW8DgYDDlQAAgK/q2Of2V7mJ/aAMKK2trZIkn8/ncCUAACBSra2t8ng8x50zKJ/F09PTo0OHDikpKSn0aHYAsSEQCMjn86m+vp5nbQExxrZttba2KjMzU8OGHf8qk0EZUADELh4GCkDiIlkAAGAgAgoAADAOAQWAUVwul+644w65XC6nSwHgIK5BAQAAxmEFBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQABjlgQceUE5OjtxutyZNmqRXXnnF6ZIAOICAAsAYmzdvVnFxsW699Va99dZbuuCCC1RYWKi6ujqnSwNwivE1YwDGmDZtmiZOnKgHH3ww1HfWWWdpzpw5Ki0tdbAyAKcaKygAjNDZ2amamhoVFBSE9RcUFKiqqsqhqgA4hYACwAgff/yxuru7lZ6eHtafnp6upqYmh6oC4BQCCgCjWJYVtm3bdq8+ALGPgALACKmpqYqLi+u1WtLc3NxrVQVA7COgADBCQkKCJk2apMrKyrD+yspK5eXlOVQVAKfEO10AABxTUlKiH//4x5o8ebLOO+88/elPf1JdXZ2uv/56p0sDcIoRUAAYY8GCBWppadFdd92lxsZG5ebmavv27crOzna6NACnGPdBAQAAxuEaFAAAYBwCCgAAMA4BBQAAGIeAAgAAjENAAQAAxiGgAAAA4xBQAACAcQgoAADAOAQUAABgHAIKAAAwDgEFAAAYh4ACAACM8397658wDRSk/AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(data[\"RestingBP\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "6f549d13-c001-4e9f-b08a-f6ca16225a23", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkaElEQVR4nO3df2xV933/8dfJ9Y9rqH0HdnJvL75GXmtNSW2SYogbdx2sgJFVypKsw+2lEdXQRkbKuBhERvljLKrswTQDEwsSVVQI4eJI07xVGqQ42+KFWdlunPAd0KnrVBTbwxcrlnWviXxtYs73D8RRLsYkFwifj+3nQzpSfM7H5n0V4fvk3HPPdVzXdQUAAGCRh0wPAAAAcCsCBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB18kwPcDeuX7+uy5cvq7i4WI7jmB4HAAB8Bq7ramRkROFwWA89dOdzJNMyUC5fvqxIJGJ6DAAAcBf6+vpUXl5+xzXTMlCKi4sl3XiAJSUlhqcBAACfRTqdViQS8Z7H72RaBsrNl3VKSkoIFAAAppnPcnkGF8kCAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgALBKd3e3mpqa1N3dbXoUAAYRKACskclk1NbWpitXrqitrU2ZTMb0SAAMIVAAWOPEiRMaGhqSJA0NDSkejxueCIApOQfK//3f/+n73/++SktLNWfOHD3xxBPq6enxjruuqz179igcDquoqEjLly/XxYsXs37G2NiYtmzZorKyMs2dO1dr165Vf3//vT8aANNWf3+/4vG4XNeVdON3STwe53cDMEvlFCjDw8P6+te/rvz8fJ0+fVq/+MUv9Nd//df6jd/4DW/Nvn371NbWpkOHDimRSCgUCmnVqlUaGRnx1sRiMXV0dKi9vV1nz57V1atXtWbNGk1MTNy3BwZg+nBdVwcPHpxy/81oATB7OG4Of/P/7M/+TP/+7/+ut99++7bHXddVOBxWLBbTiy++KOnG2ZJgMKi9e/dq06ZNSqVSevjhh3X8+HE1NTVJki5fvqxIJKJTp05p9erVnzpHOp1WIBBQKpXi04yBGeCDDz7Qhg0bpjx+7NgxLVy48AFOBODzkMvzd05nUH72s59pyZIl+oM/+AM98sgj+upXv6qf/OQn3vFLly4pmUyqoaHB21dYWKhly5Z5V+T39PTo2rVrWWvC4bCqq6unvGp/bGxM6XQ6awMwc1RUVGjp0qXy+XxZ+30+n5588klVVFQYmgyAKTkFyq9//WsdPnxYVVVV+vnPf67nn39ef/qnf6pXX31VkpRMJiVJwWAw6/uCwaB3LJlMqqCgQPPmzZtyza1aW1sVCAS8LRKJ5DI2AMs5jqOtW7dOud9xHANTATApp0C5fv26Fi9erJaWFn31q1/Vpk2b9Ed/9Ec6fPhw1rpbf5m4rvupv2DutGbXrl1KpVLe1tfXl8vYAKaB8vJyRaNR7/eA4ziKRqNasGCB4ckAmJBToHzxi1/UY489lrXv0UcfVW9vryQpFApJ0qQzIYODg95ZlVAopPHxcQ0PD0+55laFhYUqKSnJ2gDMPOvXr1dpaakkqaysTNFo1PBEAEzJKVC+/vWv65e//GXWvv/5n//xLl6rrKxUKBRSZ2end3x8fFxdXV2qr6+XJNXW1io/Pz9rzcDAgC5cuOCtATA7+f1+NTc3KxgMatu2bfL7/aZHAmBIXi6Lt23bpvr6erW0tGjdunX6z//8Tx05ckRHjhyRdOOUbCwWU0tLi6qqqlRVVaWWlhbNmTPH+5dQIBDQxo0btX37dpWWlmr+/PnasWOHampqtHLlyvv/CAFMK/X19fxjBUBugbJ06VJ1dHRo165deumll1RZWakDBw5o/fr13pqdO3dqdHRUmzdv1vDwsOrq6nTmzBkVFxd7a/bv36+8vDytW7dOo6OjWrFihY4ePTrpCn4AADA75XQfFFtwHxQAAKafz+0+KAAAAA8CgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAKt0d3erqalJ3d3dpkcBYBCBAsAamUxGbW1tunLlitra2pTJZEyPBMAQAgWANU6cOKGhoSFJ0tDQkOLxuOGJAJhCoACwQn9/v+LxuG5+PJjruorH4+rv7zc8GQATCBQAxrmuq4MHD065fxp+pimAe0SgADCut7dXiURCExMTWfsnJiaUSCTU29traDIAphAoAIyrqKjQ0qVL5fP5svb7fD49+eSTqqioMDQZAFMIFADGOY6jrVu3TrnfcRwDUwEwiUABYIXy8nJFo1EvRhzHUTQa1YIFCwxPBsAEAgWANdavX6/S0lJJUllZmaLRqOGJAJhCoACwht/vV3Nzs4LBoLZt2ya/3296JACG5JkeAAA+qb6+XvX19abHAGAYZ1AAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAFilu7tbTU1N6u7uNj0KAIMIFADWyGQyamtr05UrV9TW1qZMJmN6JACGECgArHHixAkNDQ1JkoaGhhSPxw1PBMAUAgWAFfr7+xWPx+W6riTJdV3F43H19/cbngyACQQKAONc19XBgwen3H8zWgDMHgQKAON6e3uVSCQ0MTGRtX9iYkKJREK9vb2GJgNgCoECwLiKigotXbpUPp8va7/P59OTTz6piooKQ5MBMIVAAWCc4zjaunXrlPsdxzEwFQCTCBQAVigvL9djjz2Wte+xxx7TggULDE0EwCQCBYAV+vv7dfHixax9Fy9e5F08wCxFoAAw7ua7dW73Ug7v4gFmJwIFgHG8iwfArQgUAMbxLh4AtyJQABjHu3gA3IpAAWCF8vJyRaNRL0Ycx1E0GuVdPMAsRaAAsMb69etVWloqSSorK1M0GjU8EQBTCBQA1vD7/WpublYwGNS2bdvk9/tNjwTAkJwCZc+ePXIcJ2sLhULecdd1tWfPHoXDYRUVFWn58uWT7mswNjamLVu2qKysTHPnztXatWu5zwEAT319vV5//XXV19ebHgWAQTmfQfnKV76igYEBbzt//rx3bN++fWpra9OhQ4eUSCQUCoW0atUqjYyMeGtisZg6OjrU3t6us2fP6urVq1qzZs2ktxcCAIDZKy/nb8jLyzprcpPrujpw4IB2796tZ599VpJ07NgxBYNBxeNxbdq0SalUSq+88oqOHz+ulStXSpJee+01RSIRvfnmm1q9evU9PhwAADAT5HwG5Ve/+pXC4bAqKyv13e9+V7/+9a8lSZcuXVIymVRDQ4O3trCwUMuWLVN3d7ckqaenR9euXctaEw6HVV1d7a25nbGxMaXT6awNAADMXDkFSl1dnV599VX9/Oc/109+8hMlk0nV19draGhIyWRSkhQMBrO+JxgMeseSyaQKCgo0b968KdfcTmtrqwKBgLdFIpFcxgYwjXR3d6upqemO/2gBMPPlFCiNjY36/d//fdXU1GjlypX6p3/6J0k3Xsq56dYbKrmu+6k3Wfq0Nbt27VIqlfK2vr6+XMYGME1kMhm1tbXpypUramtrUyaTMT0SAEPu6W3Gc+fOVU1NjX71q19516XceiZkcHDQO6sSCoU0Pj6u4eHhKdfcTmFhoUpKSrI2ADPPiRMnNDQ0JEkaGhpSPB43PBEAU+4pUMbGxvTf//3f+uIXv6jKykqFQiF1dnZ6x8fHx9XV1eW9XbC2tlb5+flZawYGBnThwgXeUgjMcv39/YrH494nF7uuq3g8zm0IgFkqp0DZsWOHurq6dOnSJf3Hf/yHvvOd7yidTmvDhg1yHEexWEwtLS3q6OjQhQsX9IMf/EBz5szx7gYZCAS0ceNGbd++Xf/8z/+s999/X9///ve9l4wAzE6u6+rgwYNT7r8ZLQBmj5zeZtzf36/vfe97+vDDD/Xwww/ra1/7mt555x0tXLhQkrRz506Njo5q8+bNGh4eVl1dnc6cOaPi4mLvZ+zfv195eXlat26dRkdHtWLFCh09enTSp5gCmD16e3uVSCQm7Z+YmFAikVBvb6/3ewbA7OC40/CfJul0WoFAQKlUiutRgBnAdV3t3LlT7733XtZNG30+n2pra7V3714+0RiYAXJ5/uazeAAY5ziOtm7dOuV+4gSYfQgUAFYoLy9XNBr1YsRxHEWjUS1YsMDwZABMIFAAWGP9+vUqLS2VJJWVlXkX2AOYfQgUANbw+/1qbm5WMBjUtm3b5Pf7TY8EwJCcPywQAD5P9fX13BcJAGdQAACAfQgUAFbhwwIBSAQKAItkMhm1trbqypUram1t5cMCgVmMQAFgjWPHjmlkZESSNDIyoldffdXwRABMIVAAWKG/v1/t7e1Z+06ePMmHBQKzFIECwDjXdbV3795JHwo41X4AMx+BAsC4Dz74QOfPn7/tsfPnz+uDDz54wBMBMI1AAQAA1iFQABi3cOFC1dTU3PbYokWLtHDhwgc8EQDTCBQAxjmOow0bNtz22IYNG/g0Y2AWIlAAGOe6rl5//fVJIeI4jtrb27lIFpiFCBQAxvX29iqRSNz2XTyJREK9vb2GJgNgCoECwLiKigotXbpUPp8va7/P59OTTz6piooKQ5MBMIVAAWCc4zjaunXrlPu5BgWYfQgUAFYoLy9XNBr1YsRxHEWjUS1YsMDwZABMIFAAWGP9+vUqLS2VJJWVlSkajRqeCIApBAoAa/j9fjU3NysYDGrbtm3y+/2mRwJgSJ7pAQDgk+rr61VfX296DACGcQYFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAFbp7u5WU1OTuru7TY8CwCACBYA1MpmM2tradOXKFbW1tSmTyZgeCYAhBAoAa5w4cUJDQ0OSpKGhIcXjccMTATCFQAFghf7+fsXjcbmuK0lyXVfxeFz9/f2GJwNgAoECwDjXdXXw4MEp99+MFgCzB4ECwLje3l4lEglNTExk7Z+YmFAikVBvb6+hyQCYQqAAMK6iokI1NTW3PbZo0SJVVFQ84IkAmEagALAaL+8AsxOBAsC43t5enT9//rbHzp8/z0s8wCyUZ3oAwDTXdbnfhmFlZWUqKSlROp2edKykpERlZWUaHR01MBlu8vv9chzH9BiYRe4pUFpbW/WjH/1IW7du1YEDByTd+GX/F3/xFzpy5IiGh4dVV1env/3bv9VXvvIV7/vGxsa0Y8cOnTx5UqOjo1qxYoVefvlllZeX39ODAe5GJpNRY2Oj6TEwhXQ6rW9961umx5j1Tp8+raKiItNjYBa565d4EomEjhw5okWLFmXt37dvn9ra2nTo0CElEgmFQiGtWrVKIyMj3ppYLKaOjg61t7fr7Nmzunr1qtasWTPpCn4AADA7Oe5dXIF29epVLV68WC+//LJ+/OMf64knntCBAwfkuq7C4bBisZhefPFFSTfOlgSDQe3du1ebNm1SKpXSww8/rOPHj6upqUmSdPnyZUUiEZ06dUqrV6/+1D8/nU4rEAgolUqppKQk1/GBLLzEY4fLly/rj//4j7P+oeLz+XTkyBGFw2GDk0HiJR7cH7k8f9/VSzwvvPCCvvWtb2nlypX68Y9/7O2/dOmSksmkGhoavH2FhYVatmyZuru7tWnTJvX09OjatWtZa8LhsKqrq9Xd3f2ZAgW4nxzH4dS1Bb70pS9p3bp1OnnypKQb/1/Wr1+vL33pS4YnA2BCzoHS3t6u9957T4lEYtKxZDIpSQoGg1n7g8GgPvjgA29NQUGB5s2bN2nNze+/1djYmMbGxryvb3chHYDp75OBUlpaqmg0angiAKbkdA1KX1+ftm7dqtdee01+v3/KdbeeBnRd91NPDd5pTWtrqwKBgLdFIpFcxgYwTXzy98oLL7xwx98zAGa2nAKlp6dHg4ODqq2tVV5envLy8tTV1aW/+Zu/UV5ennfm5NYzIYODg96xUCik8fFxDQ8PT7nmVrt27VIqlfK2vr6+XMYGMA197WtfMz0CAINyCpQVK1bo/PnzOnfunLctWbJE69ev17lz5/Sbv/mbCoVC6uzs9L5nfHxcXV1dqq+vlyTV1tYqPz8/a83AwIAuXLjgrblVYWGhSkpKsjYAADBz5XQNSnFxsaqrq7P2zZ07V6Wlpd7+WCymlpYWVVVVqaqqSi0tLZozZ473WnIgENDGjRu1fft2lZaWav78+dqxY4dqamq0cuXK+/SwAADAdHbf7yS7c+dOjY6OavPmzd6N2s6cOaPi4mJvzf79+5WXl6d169Z5N2o7evSofD7f/R4HAABMQ3d1HxTTuA8KMDONjo56d/XlzqXAzJPL8zcfFggAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsk1OgHD58WIsWLVJJSYlKSkr01FNP6fTp095x13W1Z88ehcNhFRUVafny5bp48WLWzxgbG9OWLVtUVlamuXPnau3aterv778/jwYAAMwIOQVKeXm5/vIv/1Lvvvuu3n33XX3zm9/U7/3e73kRsm/fPrW1tenQoUNKJBIKhUJatWqVRkZGvJ8Ri8XU0dGh9vZ2nT17VlevXtWaNWs0MTFxfx8ZAACYthzXdd17+QHz58/XX/3VX+kP//APFQ6HFYvF9OKLL0q6cbYkGAxq79692rRpk1KplB5++GEdP35cTU1NkqTLly8rEono1KlTWr169Wf6M9PptAKBgFKplEpKSu5lfAAWGR0dVWNjoyTp9OnTKioqMjwRgPspl+fvu74GZWJiQu3t7froo4/01FNP6dKlS0omk2poaPDWFBYWatmyZeru7pYk9fT06Nq1a1lrwuGwqqurvTW3MzY2pnQ6nbUBAICZK+dAOX/+vL7whS+osLBQzz//vDo6OvTYY48pmUxKkoLBYNb6YDDoHUsmkyooKNC8efOmXHM7ra2tCgQC3haJRHIdGwAATCM5B8pv/dZv6dy5c3rnnXf0J3/yJ9qwYYN+8YtfeMcdx8la77rupH23+rQ1u3btUiqV8ra+vr5cxwYAANNIzoFSUFCgL3/5y1qyZIlaW1v1+OOP6+DBgwqFQpI06UzI4OCgd1YlFAppfHxcw8PDU665ncLCQu+dQzc3AAAwc93zfVBc19XY2JgqKysVCoXU2dnpHRsfH1dXV5fq6+slSbW1tcrPz89aMzAwoAsXLnhrAAAA8nJZ/KMf/UiNjY2KRCIaGRlRe3u73nrrLb3xxhtyHEexWEwtLS2qqqpSVVWVWlpaNGfOHEWjUUlSIBDQxo0btX37dpWWlmr+/PnasWOHampqtHLlys/lAQIAgOknp0C5cuWKnnvuOQ0MDCgQCGjRokV64403tGrVKknSzp07NTo6qs2bN2t4eFh1dXU6c+aMiouLvZ+xf/9+5eXlad26dRodHdWKFSt09OhR+Xy++/vIAADAtHXP90ExgfugADMT90EBZrYHch8UAACAzwuBAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKyT02fx4P5xXVeZTMb0GIBVPvl3gr8fwO35/X45jmN6jM8dgWJIJpPxPnMEwGTPPPOM6REAK82Wz6niJR4AAGAdzqBY4OoT35P7EP8rALmudP3jG//9UJ40C05jA5+Fc/1jfeHcSdNjPFA8K1rAfShP8uWbHgOwRIHpAQDruKYHMICXeAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1iFQAACAdQgUAABgHQIFAABYJ8/0AJA0cc30BAAAm83C5wkCxQLF/6/d9AgAAFiFl3gAAIB1OINigZHHvyv58k2PAQCw1cS1WXe2nUCxgS+fQAEA4BN4iQcAAFiHQAEAANYhUAAAgHUIFAAAYB0CBQAAWIdAAQAA1skpUFpbW7V06VIVFxfrkUce0dNPP61f/vKXWWtc19WePXsUDodVVFSk5cuX6+LFi1lrxsbGtGXLFpWVlWnu3Llau3at+vv77/3RAACAGSGnQOnq6tILL7ygd955R52dnfr444/V0NCgjz76yFuzb98+tbW16dChQ0okEgqFQlq1apVGRka8NbFYTB0dHWpvb9fZs2d19epVrVmzRhMTE/fvkQEAgGkrpxu1vfHGG1lf//SnP9Ujjzyinp4e/c7v/I5c19WBAwe0e/duPfvss5KkY8eOKRgMKh6Pa9OmTUqlUnrllVd0/PhxrVy5UpL02muvKRKJ6M0339Tq1avv00MDAADT1T1dg5JKpSRJ8+fPlyRdunRJyWRSDQ0N3prCwkItW7ZM3d3dkqSenh5du3Yta004HFZ1dbW35lZjY2NKp9NZGwAAmLnuOlBc11Vzc7N++7d/W9XV1ZKkZDIpSQoGg1lrg8GgdyyZTKqgoEDz5s2bcs2tWltbFQgEvC0Sidzt2AAAYBq460D54Q9/qP/6r//SyZMnJx1zHCfra9d1J+271Z3W7Nq1S6lUytv6+vrudmwAADAN3FWgbNmyRT/72c/0r//6ryovL/f2h0IhSZp0JmRwcNA7qxIKhTQ+Pq7h4eEp19yqsLBQJSUlWRsAAJi5cgoU13X1wx/+UH//93+vf/mXf1FlZWXW8crKSoVCIXV2dnr7xsfH1dXVpfr6eklSbW2t8vPzs9YMDAzowoUL3hoAADC75fQunhdeeEHxeFz/+I//qOLiYu9MSSAQUFFRkRzHUSwWU0tLi6qqqlRVVaWWlhbNmTNH0WjUW7tx40Zt375dpaWlmj9/vnbs2KGamhrvXT0AAGB2yylQDh8+LElavnx51v6f/vSn+sEPfiBJ2rlzp0ZHR7V582YNDw+rrq5OZ86cUXFxsbd+//79ysvL07p16zQ6OqoVK1bo6NGj8vl89/ZoAADAjOC4ruuaHiJX6XRagUBAqVRq2l6PMjo6qsbGRknSyOLnJF++4YkAANaauKbi945Lkk6fPq2ioiLDA92dXJ6/+SweAABgHQIFAABYh0ABAADWIVAAAIB1CBQAAGAdAgUAAFgnp/ug4PPhXP9Y0+693sDnwXWl6x/f+O+H8qRP+QwvYLZwbv69mEUIFAt84dzkD1wEAGA24yUeAABgHc6gGOL3+3X69GnTYwBWyWQyeuaZZyRJHR0d8vv9hicC7DNb/l4QKIY4jjNtb1UMPAh+v5+/I8Asxks8AADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsE7OgfJv//Zv+va3v61wOCzHcfQP//APWcdd19WePXsUDodVVFSk5cuX6+LFi1lrxsbGtGXLFpWVlWnu3Llau3at+vv77+mBAACAmSPnQPnoo4/0+OOP69ChQ7c9vm/fPrW1tenQoUNKJBIKhUJatWqVRkZGvDWxWEwdHR1qb2/X2bNndfXqVa1Zs0YTExN3/0gAAMCMkZfrNzQ2NqqxsfG2x1zX1YEDB7R79249++yzkqRjx44pGAwqHo9r06ZNSqVSeuWVV3T8+HGtXLlSkvTaa68pEonozTff1OrVq+/h4QAAgJngvl6DcunSJSWTSTU0NHj7CgsLtWzZMnV3d0uSenp6dO3ataw14XBY1dXV3ppbjY2NKZ1OZ20AAGDmuq+BkkwmJUnBYDBrfzAY9I4lk0kVFBRo3rx5U665VWtrqwKBgLdFIpH7OTYAALDM5/IuHsdxsr52XXfSvlvdac2uXbuUSqW8ra+v777NCgAA7HNfAyUUCknSpDMhg4OD3lmVUCik8fFxDQ8PT7nmVoWFhSopKcnaAADAzHVfA6WyslKhUEidnZ3evvHxcXV1dam+vl6SVFtbq/z8/Kw1AwMDunDhgrcGAADMbjm/i+fq1av63//9X+/rS5cu6dy5c5o/f74qKioUi8XU0tKiqqoqVVVVqaWlRXPmzFE0GpUkBQIBbdy4Udu3b1dpaanmz5+vHTt2qKamxntXDwAAmN1yDpR3331Xv/u7v+t93dzcLEnasGGDjh49qp07d2p0dFSbN2/W8PCw6urqdObMGRUXF3vfs3//fuXl5WndunUaHR3VihUrdPToUfl8vvvwkAAAwHTnuK7rmh4iV+l0WoFAQKlUiutRcM9c11UmkzE9BiRlMhk988wzkqSOjg75/X7DE+Emv9//qW92AD5NLs/fOZ9BAWaaTCYz5c0HYc7NUIEdTp8+raKiItNjYBbhwwIBAIB1OIOCWc/v9+v06dOmx4BuvNw2NjYm6cbtBXhJwR683IYHjUDBrOc4DqeuLTJnzhzTIwCwAC/xAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwTp7pAQDgk5YvX+7991tvvWVsDgBmGT2D8vLLL6uyslJ+v1+1tbV6++23TY4DwLBPxsntvgYwexgLlNdff12xWEy7d+/W+++/r2984xtqbGxUb2+vqZEAAIAlHNd1XRN/cF1dnRYvXqzDhw97+x599FE9/fTTam1tveP3ptNpBQIBpVIplZSUfN6jAngA7nS2hJd6gJkhl+dvI2dQxsfH1dPTo4aGhqz9DQ0N6u7unrR+bGxM6XQ6awMwc3znO9+5p+MAZh4jgfLhhx9qYmJCwWAwa38wGFQymZy0vrW1VYFAwNsikciDGhXAA/Dhhx/e03EAM4/Ri2Qdx8n62nXdSfskadeuXUqlUt7W19f3oEYE8ACUlZXd03EAM4+RQCkrK5PP55t0tmRwcHDSWRVJKiwsVElJSdYGYOb4u7/7u3s6DmDmMRIoBQUFqq2tVWdnZ9b+zs5O1dfXmxgJgGFTXQjLBbLA7GTsRm3Nzc167rnntGTJEj311FM6cuSIent79fzzz5saCQAAWMJYoDQ1NWloaEgvvfSSBgYGVF1drVOnTmnhwoWmRgJg2FtvvcWdZAFIMngflHvBfVAAAJh+rL8PCgAAwJ0QKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOgQKAACwDoECAACsQ6AAAADrGLvV/b24efPbdDpteBIAAPBZ3Xze/iw3sZ+WgTIyMiJJikQihicBAAC5GhkZUSAQuOOaaflZPNevX9fly5dVXFwsx3FMjwPgPkqn04pEIurr6+OztoAZxnVdjYyMKBwO66GH7nyVybQMFAAzFx8GCkDiIlkAAGAhAgUAAFiHQAFglcLCQv35n/+5CgsLTY8CwCCuQQEAANbhDAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgCrvPzyy6qsrJTf71dtba3efvtt0yMBMIBAAWCN119/XbFYTLt379b777+vb3zjG2psbFRvb6/p0QA8YLzNGIA16urqtHjxYh0+fNjb9+ijj+rpp59Wa2urwckAPGicQQFghfHxcfX09KihoSFrf0NDg7q7uw1NBcAUAgWAFT788ENNTEwoGAxm7Q8Gg0omk4amAmAKgQLAKo7jZH3tuu6kfQBmPgIFgBXKysrk8/kmnS0ZHBycdFYFwMxHoACwQkFBgWpra9XZ2Zm1v7OzU/X19YamAmBKnukBAOCm5uZmPffcc1qyZImeeuopHTlyRL29vXr++edNjwbgASNQAFijqalJQ0NDeumllzQwMKDq6mqdOnVKCxcuND0agAeM+6AAAADrcA0KAACwDoECAACsQ6AAAADrECgAAMA6BAoAALAOgQIAAKxDoAAAAOsQKAAAwDoECgAAsA6BAgAArEOgAAAA6xAoAADAOv8fk1n5z2sAns0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(data[\"Cholesterol\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "e18b333b-6651-48f1-9ec8-b18d44e923f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh70lEQVR4nO3df3RT9f3H8Vdo2jTwbSMtMzEjRTwHFS1DrchWmcAByqqAw+OKwzHcOA4PghbKr465oWe2o9OC2olz46wIq/jHLOJmlTIRZNUdKOIO6mRsPdIKWTfXk1BM09re7x8c7ln4NYPRfNo+H+fcc8j9Ed85PZgnN/emDsuyLAEAABhkQLIHAAAAOB2BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4zmQPcCF6enp09OhRZWRkyOFwJHscAADwKViWpePHj8vv92vAgPOfI+mVgXL06FEFAoFkjwEAAC5Ac3Ozhg4det59emWgZGRkSDr5AjMzM5M8DQAA+DTC4bACgYD9Pn4+vTJQTn2sk5mZSaAAANDLfJrLM7hIFgAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHF65e/iARLJsix1dHQkewzo5M8iGo1Kklwu16f6fR34YqSnp/PzwBeKQEG/19HRocLCwmSPARitrq5Obrc72WOgH+EjHgAAYJy4zqCUl5fr+eef11//+le53W7l5+drzZo1uuKKK+x9LMvSgw8+qKefflptbW0aO3asfvGLX+jqq6+294lGo1q6dKmeffZZRSIRTZo0SU8++aSGDh2auFcGfErp6emqq6tL9hjQybNZM2fOlCTV1tYqPT09yRPhFH4W+KLFFSi7du3SvffeqzFjxuiTTz7RqlWrVFBQoHfffVeDBg2SJFVUVKiyslLV1dW6/PLL9dOf/lRTpkzR+++/r4yMDElScXGxXnzxRW3ZskXZ2dkqKSnRtGnT1NjYqJSUlMS/SuA8HA4Hp64NlJ6ezs8F6McclmVZF3rwv/71L1188cXatWuXbrrpJlmWJb/fr+LiYq1YsULSybMlXq9Xa9as0fz58xUKhfSlL31JmzZt0qxZsyRJR48eVSAQ0EsvvaSpU6f+z/9uOByWx+NRKBRSZmbmhY4PwDCRSMS+HohrHoC+J5737890DUooFJIkZWVlSZKampoUDAZVUFBg7+NyuTR+/Hg1NDRIkhobG9XV1RWzj9/vV25urr3P6aLRqMLhcMwCAAD6rgsOFMuytGTJEo0bN065ubmSpGAwKEnyer0x+3q9XntbMBhUWlqaBg8efM59TldeXi6Px2MvgUDgQscGAAC9wAUHysKFC/WXv/xFzz777BnbTr9X3rKs/3n//Pn2KS0tVSgUspfm5uYLHRsAAPQCFxQoixYt0rZt27Rz586YO298Pp8knXEmpLW11T6r4vP51NnZqba2tnPuczqXy6XMzMyYBQAA9F1xBYplWVq4cKGef/55vfrqqxo+fHjM9uHDh8vn86m+vt5e19nZqV27dik/P1+SlJeXp9TU1Jh9jh07poMHD9r7AACA/i2u24zvvfde1dTU6IUXXlBGRoZ9psTj8cjtdsvhcKi4uFhlZWUaMWKERowYobKyMg0cOFCzZ8+29503b55KSkqUnZ2trKwsLV26VKNGjdLkyZMT/woBAECvE1egrF+/XpI0YcKEmPW/+c1vdNddd0mSli9frkgkogULFthf1LZ9+3b7O1Akae3atXI6nSoqKrK/qK26uprvQAEAAJI+4/egJAvfgwL0TXwPCtC3fWHfgwIAAPB5IFAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYJ+5A2b17t6ZPny6/3y+Hw6GtW7fGbG9vb9fChQs1dOhQud1ujRw5UuvXr4/ZJxqNatGiRRoyZIgGDRqkGTNmqKWl5TO9EAAA0HfEHSgnTpzQ6NGjVVVVddbtixcv1ssvv6zNmzfrvffe0+LFi7Vo0SK98MIL9j7FxcWqra3Vli1btGfPHrW3t2vatGnq7u6+8FcCAAD6DGe8BxQWFqqwsPCc29944w3NnTtXEyZMkCT94Ac/0C9/+Uvt27dPt956q0KhkDZs2KBNmzZp8uTJkqTNmzcrEAhox44dmjp16oW9EgAA0Gck/BqUcePGadu2bfrwww9lWZZ27typQ4cO2eHR2Niorq4uFRQU2Mf4/X7l5uaqoaEh0eMAAIBeKO4zKP/L448/rrvvvltDhw6V0+nUgAED9Otf/1rjxo2TJAWDQaWlpWnw4MExx3m9XgWDwbM+ZzQaVTQatR+Hw+FEjw0AAAyS8DMojz/+uN58801t27ZNjY2NevTRR7VgwQLt2LHjvMdZliWHw3HWbeXl5fJ4PPYSCAQSPTYAADBIQgMlEonohz/8oSorKzV9+nR95Stf0cKFCzVr1iw98sgjkiSfz6fOzk61tbXFHNva2iqv13vW5y0tLVUoFLKX5ubmRI4NAAAMk9BA6erqUldXlwYMiH3alJQU9fT0SJLy8vKUmpqq+vp6e/uxY8d08OBB5efnn/V5XS6XMjMzYxYAANB3xX0NSnt7uw4fPmw/bmpq0oEDB5SVlaWcnByNHz9ey5Ytk9vt1rBhw7Rr1y4988wzqqyslCR5PB7NmzdPJSUlys7OVlZWlpYuXapRo0bZd/UAAID+Le5A2bdvnyZOnGg/XrJkiSRp7ty5qq6u1pYtW1RaWqo777xT//nPfzRs2DA9/PDDuueee+xj1q5dK6fTqaKiIkUiEU2aNEnV1dVKSUlJwEsCAAC9ncOyLCvZQ8QrHA7L4/EoFArxcQ/Qh0QiEft7lurq6uR2u5M8EYBEiuf9m9/FAwAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjBN3oOzevVvTp0+X3++Xw+HQ1q1bz9jnvffe04wZM+TxeJSRkaGvfvWrOnLkiL09Go1q0aJFGjJkiAYNGqQZM2aopaXlM70QAADQd8QdKCdOnNDo0aNVVVV11u1///vfNW7cOF155ZV67bXX9Pbbb+uBBx5Qenq6vU9xcbFqa2u1ZcsW7dmzR+3t7Zo2bZq6u7sv/JUAAIA+wxnvAYWFhSosLDzn9lWrVunmm29WRUWFve6yyy6z/xwKhbRhwwZt2rRJkydPliRt3rxZgUBAO3bs0NSpU+MdCQAA9DEJvQalp6dHf/jDH3T55Zdr6tSpuvjiizV27NiYj4EaGxvV1dWlgoICe53f71dubq4aGhrO+rzRaFThcDhmAQAAfVdCA6W1tVXt7e362c9+pm984xvavn27Zs6cqdtuu027du2SJAWDQaWlpWnw4MExx3q9XgWDwbM+b3l5uTwej70EAoFEjg0AAAyT8DMoknTrrbdq8eLFuuaaa7Ry5UpNmzZNTz311HmPtSxLDofjrNtKS0sVCoXspbm5OZFjAwAAwyQ0UIYMGSKn06mrrroqZv3IkSPtu3h8Pp86OzvV1tYWs09ra6u8Xu9Zn9flcikzMzNmAQAAfVdCAyUtLU1jxozR+++/H7P+0KFDGjZsmCQpLy9Pqampqq+vt7cfO3ZMBw8eVH5+fiLHAQAAvVTcd/G0t7fr8OHD9uOmpiYdOHBAWVlZysnJ0bJlyzRr1izddNNNmjhxol5++WW9+OKLeu211yRJHo9H8+bNU0lJibKzs5WVlaWlS5dq1KhR9l09AACgf4s7UPbt26eJEyfaj5csWSJJmjt3rqqrqzVz5kw99dRTKi8v13333acrrrhCv/vd7zRu3Dj7mLVr18rpdKqoqEiRSESTJk1SdXW1UlJSEvCSAABAb+ewLMtK9hDxCofD8ng8CoVCXI8C9CGRSMT+nqW6ujq53e4kTwQgkeJ5/477DAoSw7IsdXR0JHsMwCj//XeCvx/A2aWnp5/zrte+hEBJko6OjvN+Iy/Q382cOTPZIwBG6i9nF/ltxgAAwDicQTFA+zXfljWAHwUgy5J6Pjn55wFOqR+cxgY+DUfPJ/q/A88me4wvFO+KBrAGOKWU1GSPARgiLdkDAMbpdXezJAAf8QAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTtyBsnv3bk2fPl1+v18Oh0Nbt249577z58+Xw+HQunXrYtZHo1EtWrRIQ4YM0aBBgzRjxgy1tLTEOwoAAOij4g6UEydOaPTo0aqqqjrvflu3btWf//xn+f3+M7YVFxertrZWW7Zs0Z49e9Te3q5p06apu7s73nEAAEAf5Iz3gMLCQhUWFp53nw8//FALFy7UK6+8oltuuSVmWygU0oYNG7Rp0yZNnjxZkrR582YFAgHt2LFDU6dOjXckAADQxyT8GpSenh7NmTNHy5Yt09VXX33G9sbGRnV1damgoMBe5/f7lZubq4aGhrM+ZzQaVTgcjlkAAEDflfBAWbNmjZxOp+67776zbg8Gg0pLS9PgwYNj1nu9XgWDwbMeU15eLo/HYy+BQCDRYwMAAIMkNFAaGxv12GOPqbq6Wg6HI65jLcs65zGlpaUKhUL20tzcnIhxAQCAoRIaKK+//rpaW1uVk5Mjp9Mpp9OpDz74QCUlJbr00kslST6fT52dnWpra4s5trW1VV6v96zP63K5lJmZGbMAAIC+K+6LZM9nzpw59oWvp0ydOlVz5szR9773PUlSXl6eUlNTVV9fr6KiIknSsWPHdPDgQVVUVCRynN6juyvZEwAATNYP3yfiDpT29nYdPnzYftzU1KQDBw4oKytLOTk5ys7Ojtk/NTVVPp9PV1xxhSTJ4/Fo3rx5KikpUXZ2trKysrR06VKNGjXqjLjpLzLe3pLsEQAAMErcgbJv3z5NnDjRfrxkyRJJ0ty5c1VdXf2pnmPt2rVyOp0qKipSJBLRpEmTVF1drZSUlHjHAQAAfZDDsiwr2UPEKxwOy+PxKBQK9drrUSKRiP19MsdH3yGlpCZ5IgCAsbq77LPtdXV1crvdSR7owsTz/p3Qa1BwgVJSCRQAAP4LvywQAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAceIOlN27d2v69Ony+/1yOBzaunWrva2rq0srVqzQqFGjNGjQIPn9fn33u9/V0aNHY54jGo1q0aJFGjJkiAYNGqQZM2aopaXlM78YAADQN8QdKCdOnNDo0aNVVVV1xraPP/5Y+/fv1wMPPKD9+/fr+eef16FDhzRjxoyY/YqLi1VbW6stW7Zoz549am9v17Rp09Td3X3hrwQAAPQZzngPKCwsVGFh4Vm3eTwe1dfXx6x74okndMMNN+jIkSPKyclRKBTShg0btGnTJk2ePFmStHnzZgUCAe3YsUNTp069gJcBAAD6krgDJV6hUEgOh0MXXXSRJKmxsVFdXV0qKCiw9/H7/crNzVVDQ0O/DBRHzyeykj0EYALLkno+OfnnAU7J4UjuPIAhHKf+XvQjn2ugdHR0aOXKlZo9e7YyMzMlScFgUGlpaRo8eHDMvl6vV8Fg8KzPE41GFY1G7cfhcPjzGzoJ/u/As8keAQAAo3xud/F0dXXpjjvuUE9Pj5588sn/ub9lWXKc419L5eXl8ng89hIIBBI9LgAAMMjncgalq6tLRUVFampq0quvvmqfPZEkn8+nzs5OtbW1xZxFaW1tVX5+/lmfr7S0VEuWLLEfh8PhXh8p6enpqqurS/YYgFE6Ojo0c+ZMSVJtba3S09OTPBFgnv7y9yLhgXIqTv72t79p586dys7Ojtmel5en1NRU1dfXq6ioSJJ07NgxHTx4UBUVFWd9TpfLJZfLlehRk8rhcMjtdid7DMBY6enp/B0B+rG4A6W9vV2HDx+2Hzc1NenAgQPKysqS3+/X7bffrv379+v3v/+9uru77etKsrKylJaWJo/Ho3nz5qmkpETZ2dnKysrS0qVLNWrUKPuuHgAA0L/FHSj79u3TxIkT7cenPnqZO3euVq9erW3btkmSrrnmmpjjdu7cqQkTJkiS1q5dK6fTqaKiIkUiEU2aNEnV1dVKSUm5wJcBAAD6EodlWb3uDtdwOCyPx6NQKBRzfQuA3i0Sidjfs1RXV8dHPEAfE8/7N7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfuQNm9e7emT58uv98vh8OhrVu3xmy3LEurV6+W3++X2+3WhAkT9M4778TsE41GtWjRIg0ZMkSDBg3SjBkz1NLS8pleCAAA6DviDpQTJ05o9OjRqqqqOuv2iooKVVZWqqqqSnv37pXP59OUKVN0/Phxe5/i4mLV1tZqy5Yt2rNnj9rb2zVt2jR1d3df+CsBAAB9hjPeAwoLC1VYWHjWbZZlad26dVq1apVuu+02SdLGjRvl9XpVU1Oj+fPnKxQKacOGDdq0aZMmT54sSdq8ebMCgYB27NihqVOnfoaXAwAA+oKEXoPS1NSkYDCogoICe53L5dL48ePV0NAgSWpsbFRXV1fMPn6/X7m5ufY+p4tGowqHwzELAADouxIaKMFgUJLk9Xpj1nu9XntbMBhUWlqaBg8efM59TldeXi6Px2MvgUAgkWMDAADDfC538TgcjpjHlmWdse5059untLRUoVDIXpqbmxM2KwAAME9CA8Xn80nSGWdCWltb7bMqPp9PnZ2damtrO+c+p3O5XMrMzIxZAABA35XQQBk+fLh8Pp/q6+vtdZ2dndq1a5fy8/MlSXl5eUpNTY3Z59ixYzp48KC9DwAA6N/ivounvb1dhw8fth83NTXpwIEDysrKUk5OjoqLi1VWVqYRI0ZoxIgRKisr08CBAzV79mxJksfj0bx581RSUqLs7GxlZWVp6dKlGjVqlH1XDwAA6N/iDpR9+/Zp4sSJ9uMlS5ZIkubOnavq6motX75ckUhECxYsUFtbm8aOHavt27crIyPDPmbt2rVyOp0qKipSJBLRpEmTVF1drZSUlAS8JAAA0Ns5LMuykj1EvMLhsDwej0KhENejAH1IJBKxv2eprq5Obrc7yRMBSKR43r/5XTwAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjJDxQPvnkE/3oRz/S8OHD5Xa7ddlll+mhhx5ST0+PvY9lWVq9erX8fr/cbrcmTJigd955J9GjAACAXirhgbJmzRo99dRTqqqq0nvvvaeKigr9/Oc/1xNPPGHvU1FRocrKSlVVVWnv3r3y+XyaMmWKjh8/nuhxAABAL5TwQHnjjTd066236pZbbtGll16q22+/XQUFBdq3b5+kk2dP1q1bp1WrVum2225Tbm6uNm7cqI8//lg1NTWJHgcAAPRCCQ+UcePG6Y9//KMOHTokSXr77be1Z88e3XzzzZKkpqYmBYNBFRQU2Me4XC6NHz9eDQ0NZ33OaDSqcDgcswAAgL7LmegnXLFihUKhkK688kqlpKSou7tbDz/8sL797W9LkoLBoCTJ6/XGHOf1evXBBx+c9TnLy8v14IMPJnpUAABgqISfQXnuuee0efNm1dTUaP/+/dq4caMeeeQRbdy4MWY/h8MR89iyrDPWnVJaWqpQKGQvzc3NiR4bAAAYJOFnUJYtW6aVK1fqjjvukCSNGjVKH3zwgcrLyzV37lz5fD5JJ8+kXHLJJfZxra2tZ5xVOcXlcsnlciV6VAAAYKiEn0H5+OOPNWBA7NOmpKTYtxkPHz5cPp9P9fX19vbOzk7t2rVL+fn5iR4HAAD0Qgk/gzJ9+nQ9/PDDysnJ0dVXX6233npLlZWV+v73vy/p5Ec7xcXFKisr04gRIzRixAiVlZVp4MCBmj17dqLHAQAAvVDCA+WJJ57QAw88oAULFqi1tVV+v1/z58/Xj3/8Y3uf5cuXKxKJaMGCBWpra9PYsWO1fft2ZWRkJHocAADQCzksy7KSPUS8wuGwPB6PQqGQMjMzkz0OgASJRCIqLCyUJNXV1cntdid5IgCJFM/7N7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMZxJnsAINksy1JHR0eyx4AU83PgZ2KW9PR0ORyOZI+BfoRAQb/X0dGhwsLCZI+B08ycOTPZI+C/1NXVye12J3sM9CN8xAMAAIzDGRT0e+np6aqrq0v2GNDJj9ui0agkyeVy8ZGCQdLT05M9AvoZAgX9nsPh4NS1QQYOHJjsEQAYgI94AACAcQgUAEZpaGjQrFmz1NDQkOxRACQRgQLAGB0dHaqsrNQ///lPVVZWcqsx0I8RKACM8dvf/lYfffSRJOmjjz5STU1NkicCkCwECgAjtLS0qKamRpZlSTp5R09NTY1aWlqSPBmAZCBQACSdZVl67LHHzrn+VLQA6D8IFABJd+TIEe3du1fd3d0x67u7u7V3714dOXIkSZMBSBYCBUDS5eTkaMyYMUpJSYlZn5KSohtuuEE5OTlJmgxAshAoAJLO4XDo/vvvP+d6vlEW6H8+l0D58MMP9Z3vfEfZ2dkaOHCgrrnmGjU2NtrbLcvS6tWr5ff75Xa7NWHCBL3zzjufxygAeomhQ4eqqKgoZl1RUZG+/OUvJ2kiAMmU8EBpa2vTjTfeqNTUVNXV1endd9/Vo48+qosuusjep6KiQpWVlaqqqtLevXvl8/k0ZcoUHT9+PNHjAACAXshhJfjy+JUrV+pPf/qTXn/99bNutyxLfr9fxcXFWrFihSQpGo3K6/VqzZo1mj9//v/8b4TDYXk8HoVCIWVmZiZyfABJ0tLSorlz58ZcKOt0OlVdXa2hQ4cmcTIAiRLP+3fCz6Bs27ZN119/vb71rW/p4osv1rXXXqtf/epX9vampiYFg0EVFBTY61wul8aPH3/Or7aORqMKh8MxC4C+g9uMAZwu4YHyj3/8Q+vXr9eIESP0yiuv6J577tF9992nZ555RpIUDAYlSV6vN+Y4r9drbztdeXm5PB6PvQQCgUSPDSCJuM0YwOkSHig9PT267rrrVFZWpmuvvVbz58/X3XffrfXr18fsd/pV+ZZlnfNK/dLSUoVCIXtpbm5O9NgAkojbjAGcLuGBcskll+iqq66KWTdy5Ej7X0A+n0+Szjhb0traesZZlVNcLpcyMzNjFgB9B7cZAzhdwgPlxhtv1Pvvvx+z7tChQxo2bJgkafjw4fL5fKqvr7e3d3Z2ateuXcrPz0/0OAB6iaFDh2r27Nl2jDgcDs2ePZvbjIF+KuGBsnjxYr355psqKyvT4cOHVVNTo6efflr33nuvpJP/0ykuLlZZWZlqa2t18OBB3XXXXRo4cKBmz56d6HEA9CJ33nmnsrOzJUlDhgzh/wlAP+ZM9BOOGTNGtbW1Ki0t1UMPPaThw4dr3bp1uvPOO+19li9frkgkogULFqitrU1jx47V9u3blZGRkehxAPQi6enpWrJkiR577DHdf//9Sk9PT/ZIAJIk4d+D8kXge1AAAOh9kvo9KAAAAJ8VgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTsK/6v6LcOrLb8PhcJInAQAAn9ap9+1P8yX2vTJQjh8/LkkKBAJJngQAAMTr+PHj8ng8592nV/4unp6eHh09elQZGRn2r2YH0DeEw2EFAgE1Nzfzu7aAPsayLB0/flx+v18DBpz/KpNeGSgA+i5+GSgAiYtkAQCAgQgUAABgHAIFgFFcLpd+8pOfyOVyJXsUAEnENSgAAMA4nEEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAFglCeffFLDhw9Xenq68vLy9Prrryd7JABJQKAAMMZzzz2n4uJirVq1Sm+99Za+/vWvq7CwUEeOHEn2aAC+YNxmDMAYY8eO1XXXXaf169fb60aOHKlvfvObKi8vT+JkAL5onEEBYITOzk41NjaqoKAgZn1BQYEaGhqSNBWAZCFQABjh3//+t7q7u+X1emPWe71eBYPBJE0FIFkIFABGcTgcMY8tyzpjHYC+j0ABYIQhQ4YoJSXljLMlra2tZ5xVAdD3ESgAjJCWlqa8vDzV19fHrK+vr1d+fn6SpgKQLM5kDwAApyxZskRz5szR9ddfr6997Wt6+umndeTIEd1zzz3JHg3AF4xAAWCMWbNm6aOPPtJDDz2kY8eOKTc3Vy+99JKGDRuW7NEAfMH4HhQAAGAcrkEBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAY5/8B3Id3ni9D9jEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(data[\"MaxHR\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "0a92e979-1c5c-4cf1-991b-5f89c9082a69", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Age 13.00\n", + "Sex 0.00\n", + "ChestPainType 2.00\n", + "RestingBP 20.00\n", + "Cholesterol 93.75\n", + "FastingBS 0.00\n", + "RestingECG 0.00\n", + "MaxHR 36.00\n", + "ExerciseAngina 1.00\n", + "Oldpeak 1.50\n", + "ST_Slope 1.00\n", + "HeartDisease 1.00\n", + "dtype: float64" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#### Remove the outlier\n", + "Q1 = data.quantile(0.25)\n", + "Q3 = data.quantile(0.75)\n", + "IQR = Q3-Q1\n", + "IQR" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "ecc614ef-39c9-43f3-bc46-8b1763721b20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(278, 12)" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = data[~((data < (Q1 - 1.5 * IQR)) | (data > (Q3 + 1.5 * IQR))).any(axis = 1)]\n", + "data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b6e0e66c-3014-4d13-a7b8-e29eca3c03f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh40lEQVR4nO3dfUyd9f3/8dclNwfK4IwD89CznXZu1uqEYIeuim6WgeCZFNs6qevSdUu3uJjVMGh1zLjVGUVdJm4l2rhg6Gj2xSwT5h2rdJttCUln6ZjWbCoLTcFyxnTsnJ6OHpBevz9Mr9+Opeqp0PMBno/kSnrdnb5PSHueuc51DpZt27YAAAAMcl6iBwAAAHgvAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcZITPcDZOHnypI4eParMzExZlpXocQAAwIdg27aOHTsmn8+n8857/2skszJQjh49Kr/fn+gxAADAWRgcHNSnPvWp9z1mVgZKZmampHefYFZWVoKnAQAAH0Y4HJbf73dex9/PrAyUU2/rZGVlESgAAMwyH+b2DG6SBQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMaJO1D27t2rlStXyufzybIsdXR0xOy3LGvK5ac//alzTDQa1aZNm5Sbm6uMjAxVVVVpaGjoIz8ZAAAwN8QdKMePH1dhYaGampqm3D88PByzPPHEE7IsSzfddJNzTE1Njdrb29XW1qbu7m5FIhFVVlZqcnLy7J8JAACYMyzbtu2zPtmy1N7erlWrVp3xmFWrVunYsWP6wx/+IEkKhUL6xCc+odbWVq1du1bS///txM8//7wqKio+8O8Nh8Nyu90KhUL8Lh58ZLZt68SJE4keA3r3ZxGNRiVJLpfrQ/2+DpwbaWlp/DzwkcXz+j2jvyzwn//8p5577jnt2LHD2dbb26uJiQmVl5c723w+n/Lz89XT0zNloESjUec/LendJwhMlxMnTigQCCR6DMBonZ2dSk9PT/QYmEdm9CbZHTt2KDMzU2vWrHG2BYNBpaamKjs7O+ZYr9erYDA45eM0NDTI7XY7i9/vn8mxAQBAgs3oFZQnnnhCX//615WWlvaBx9q2fcbLh/X19aqtrXXWw+EwkYJpk5aWps7OzkSPAb17NWv16tWSpPb29g/1fwfODX4WONdmLFD27dun1157TU8++WTM9ry8PI2Pj2t0dDTmKsrIyIiKi4unfCyXyyWXyzVTo2KesyyLS9cGSktL4+cCzGMz9hZPc3OzioqKVFhYGLO9qKhIKSkp6urqcrYNDw/r0KFDZwwUAAAwv8R9BSUSiai/v99ZHxgYUF9fnzwejxYtWiTp3bdgfvOb3+hnP/vZaee73W5t3LhRdXV1ysnJkcfj0ebNm1VQUKCysrKP8FQAAMBcEXegHDhwQCUlJc76qXtDNmzYoJaWFklSW1ubbNvW1772tSkfo7GxUcnJyaqurtbY2JhKS0vV0tKipKSks3gKAABgrvlI34OSKHwPCjA3jY2NOR/55mOtwNwTz+s3v4sHAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJy4A2Xv3r1auXKlfD6fLMtSR0fHacf87W9/U1VVldxutzIzM3XllVfqyJEjzv5oNKpNmzYpNzdXGRkZqqqq0tDQ0Ed6IgAAYO6IO1COHz+uwsJCNTU1Tbn/H//4h6655hpdfPHFevHFF/XXv/5Vd999t9LS0pxjampq1N7erra2NnV3dysSiaiyslKTk5Nn/0wAAMCckRzvCYFAQIFA4Iz777rrLn3lK1/RQw895Gz7zGc+4/w5FAqpublZra2tKisrkyTt3LlTfr9fu3fvVkVFRbwjAQCAOWZa70E5efKknnvuOV100UWqqKjQ+eefr+XLl8e8DdTb26uJiQmVl5c723w+n/Lz89XT0zOd4wAAgFlqWgNlZGREkUhEDzzwgK6//nq98MILWr16tdasWaM9e/ZIkoLBoFJTU5WdnR1zrtfrVTAYnPJxo9GowuFwzAIAAOauuN/ieT8nT56UJN144436/ve/L0m67LLL1NPTo+3bt+vaa68947m2bcuyrCn3NTQ06J577pnOUQEAgMGm9QpKbm6ukpOT9bnPfS5m+yWXXOJ8iicvL0/j4+MaHR2NOWZkZERer3fKx62vr1coFHKWwcHB6RwbAAAYZloDJTU1VVdccYVee+21mO2vv/66Fi9eLEkqKipSSkqKurq6nP3Dw8M6dOiQiouLp3xcl8ulrKysmAUAAMxdcb/FE4lE1N/f76wPDAyor69PHo9HixYt0pYtW7R27Vp96UtfUklJiX7/+9/rmWee0YsvvihJcrvd2rhxo+rq6pSTkyOPx6PNmzeroKDA+VQPAACY3+IOlAMHDqikpMRZr62tlSRt2LBBLS0tWr16tbZv366GhgbdfvvtWrp0qX7729/qmmuucc5pbGxUcnKyqqurNTY2ptLSUrW0tCgpKWkanhIAAJjtLNu27UQPEa9wOCy3261QKMTbPcAcMjY25nzPUmdnp9LT0xM8EYDpFM/rN7+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcuANl7969WrlypXw+nyzLUkdHR8z+b37zm7IsK2a58sorY46JRqPatGmTcnNzlZGRoaqqKg0NDX2kJwIAAOaOuAPl+PHjKiwsVFNT0xmPuf766zU8POwszz//fMz+mpoatbe3q62tTd3d3YpEIqqsrNTk5GT8zwAAAMw5yfGeEAgEFAgE3vcYl8ulvLy8KfeFQiE1NzertbVVZWVlkqSdO3fK7/dr9+7dqqioiHckAAAwx8zIPSgvvviizj//fF100UX6zne+o5GREWdfb2+vJiYmVF5e7mzz+XzKz89XT0/PTIwDAABmmbivoHyQQCCgm2++WYsXL9bAwIDuvvtuffnLX1Zvb69cLpeCwaBSU1OVnZ0dc57X61UwGJzyMaPRqKLRqLMeDoene2wAAGCQaQ+UtWvXOn/Oz8/X5ZdfrsWLF+u5557TmjVrzniebduyLGvKfQ0NDbrnnnume1QAAGCoGf+Y8cKFC7V48WK98cYbkqS8vDyNj49rdHQ05riRkRF5vd4pH6O+vl6hUMhZBgcHZ3psAACQQDMeKG+//bYGBwe1cOFCSVJRUZFSUlLU1dXlHDM8PKxDhw6puLh4ysdwuVzKysqKWQAAwNwV91s8kUhE/f39zvrAwID6+vrk8Xjk8Xi0detW3XTTTVq4cKEOHz6sH/7wh8rNzdXq1aslSW63Wxs3blRdXZ1ycnLk8Xi0efNmFRQUOJ/qAQAA81vcgXLgwAGVlJQ467W1tZKkDRs26LHHHtMrr7yiX/3qV/rPf/6jhQsXqqSkRE8++aQyMzOdcxobG5WcnKzq6mqNjY2ptLRULS0tSkpKmoanBAAAZjvLtm070UPEKxwOy+12KxQK8XYPMIeMjY0537PU2dmp9PT0BE8EYDrF8/rN7+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxok7UPbu3auVK1fK5/PJsix1dHSc8dhbb71VlmXpkUceidkejUa1adMm5ebmKiMjQ1VVVRoaGop3FAAAMEfFHSjHjx9XYWGhmpqa3ve4jo4O7d+/Xz6f77R9NTU1am9vV1tbm7q7uxWJRFRZWanJycl4xwEAAHNQcrwnBAIBBQKB9z3mzTff1Pe+9z3t2rVLN9xwQ8y+UCik5uZmtba2qqysTJK0c+dO+f1+7d69WxUVFfGONCvZtq0TJ04kegzAKP/7b4J/H8DU0tLSZFlWoseYcXEHygc5efKk1q9fry1btujSSy89bX9vb68mJiZUXl7ubPP5fMrPz1dPT8+UgRKNRhWNRp31cDg83WOfcydOnPjA0APms9WrVyd6BMBInZ2dSk9PT/QYM27ab5J98MEHlZycrNtvv33K/cFgUKmpqcrOzo7Z7vV6FQwGpzynoaFBbrfbWfx+/3SPDQAADDKtV1B6e3v185//XAcPHoz78pNt22c8p76+XrW1tc56OByeU5ESuexrss+b9otZwOxj29LJd97983nJ0jy4jA18GNbJd/Sxvv9L9Bjn1LS+Ku7bt08jIyNatGiRs21yclJ1dXV65JFHdPjwYeXl5Wl8fFyjo6MxV1FGRkZUXFw85eO6XC65XK7pHNUo9nnJUlJKoscADJGa6AEA49iJHiABpvUtnvXr1+vll19WX1+fs/h8Pm3ZskW7du2SJBUVFSklJUVdXV3OecPDwzp06NAZAwUAAMwvcV9BiUQi6u/vd9YHBgbU19cnj8ejRYsWKScnJ+b4lJQU5eXlaenSpZIkt9utjRs3qq6uTjk5OfJ4PNq8ebMKCgqcT/UAAID5Le5AOXDggEpKSpz1U/eGbNiwQS0tLR/qMRobG5WcnKzq6mqNjY2ptLRULS0tSkpKinccAAAwB8UdKCtWrJBtf/h3ww4fPnzatrS0NG3btk3btm2L968HAADzAL+LBwAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcuANl7969WrlypXw+nyzLUkdHR8z+rVu36uKLL1ZGRoays7NVVlam/fv3xxwTjUa1adMm5ebmKiMjQ1VVVRoaGvpITwQAAMwdcQfK8ePHVVhYqKampin3X3TRRWpqatIrr7yi7u5uffrTn1Z5ebn+9a9/OcfU1NSovb1dbW1t6u7uViQSUWVlpSYnJ8/+mQAAgDkjOd4TAoGAAoHAGfevW7cuZv3hhx9Wc3OzXn75ZZWWlioUCqm5uVmtra0qKyuTJO3cuVN+v1+7d+9WRUVFvCPNfpMTiZ4AAGCyefg6EXegxGN8fFyPP/643G63CgsLJUm9vb2amJhQeXm5c5zP51N+fr56enqmDJRoNKpoNOqsh8PhmRz7nMv8a1uiRwAAwCgzcpPss88+q4997GNKS0tTY2Ojurq6lJubK0kKBoNKTU1VdnZ2zDler1fBYHDKx2toaJDb7XYWv98/E2MDAABDzMgVlJKSEvX19emtt97SL3/5S1VXV2v//v06//zzz3iObduyLGvKffX19aqtrXXWw+HwnIqUY4W3SEkpiR4DAGCqyYl5d7V9RgIlIyNDF154oS688EJdeeWVWrJkiZqbm1VfX6+8vDyNj49rdHQ05irKyMiIiouLp3w8l8sll8s1E6OaISmFQAEA4H+ck+9BsW3buYekqKhIKSkp6urqcvYPDw/r0KFDZwwUAAAwv8R9BSUSiai/v99ZHxgYUF9fnzwej3JycnTfffepqqpKCxcu1Ntvv61HH31UQ0NDuvnmmyVJbrdbGzduVF1dnXJycuTxeLR582YVFBQ4n+oBAADzW9yBcuDAAZWUlDjrp+4N2bBhg7Zv366///3v2rFjh9566y3l5OToiiuu0L59+3TppZc65zQ2Nio5OVnV1dUaGxtTaWmpWlpalJSUNA1PCQAAzHZxB8qKFStk2/YZ9z/11FMf+BhpaWnatm2btm3bFu9fDwAA5gF+Fw8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOHEHyt69e7Vy5Ur5fD5ZlqWOjg5n38TEhO68804VFBQoIyNDPp9P3/jGN3T06NGYx4hGo9q0aZNyc3OVkZGhqqoqDQ0NfeQnAwAA5oa4A+X48eMqLCxUU1PTafv++9//6uDBg7r77rt18OBBPfXUU3r99ddVVVUVc1xNTY3a29vV1tam7u5uRSIRVVZWanJy8uyfCQAAmDOS4z0hEAgoEAhMuc/tdqurqytm27Zt2/SFL3xBR44c0aJFixQKhdTc3KzW1laVlZVJknbu3Cm/36/du3eroqLiLJ7G7GadfEd2oocATGDb0sl33v3zecmSZSV2HsAQ1ql/F/NI3IESr1AoJMuy9PGPf1yS1Nvbq4mJCZWXlzvH+Hw+5efnq6enZ8pAiUajikajzno4HJ7psc+pj/X9X6JHAADAKDN6k+yJEyf0gx/8QOvWrVNWVpYkKRgMKjU1VdnZ2THHer1eBYPBKR+noaFBbrfbWfx+/0yODQAAEmzGrqBMTEzolltu0cmTJ/Xoo49+4PG2bcs6w+Xc+vp61dbWOuvhcHjWR0paWpo6OzsTPQZglBMnTmj16tWSpPb2dqWlpSV4IsA88+XfxYwEysTEhKqrqzUwMKA//vGPztUTScrLy9P4+LhGR0djrqKMjIyouLh4ysdzuVxyuVwzMWrCWJal9PT0RI8BGCstLY1/I8A8Nu1v8ZyKkzfeeEO7d+9WTk5OzP6ioiKlpKTE3Ew7PDysQ4cOnTFQAADA/BL3FZRIJKL+/n5nfWBgQH19ffJ4PPL5fPrqV7+qgwcP6tlnn9Xk5KRzX4nH41Fqaqrcbrc2btyouro65eTkyOPxaPPmzSooKHA+1QMAAOa3uAPlwIEDKikpcdZP3RuyYcMGbd26VU8//bQk6bLLLos5709/+pNWrFghSWpsbFRycrKqq6s1Njam0tJStbS0KCkp6SyfBgAAmEss27Zn3VdwhMNhud1uhUKhmPtbAMxuY2NjzvcsdXZ2cg8KMMfE8/rN7+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGCfuQNm7d69Wrlwpn88ny7LU0dERs/+pp55SRUWFcnNzZVmW+vr6TnuMaDSqTZs2KTc3VxkZGaqqqtLQ0NDZPgcAADDHxB0ox48fV2FhoZqams64/+qrr9YDDzxwxseoqalRe3u72tra1N3drUgkosrKSk1OTsY7DgAAmIOS4z0hEAgoEAiccf/69eslSYcPH55yfygUUnNzs1pbW1VWViZJ2rlzp/x+v3bv3q2Kiop4RwIAAHPMOb8Hpbe3VxMTEyovL3e2+Xw+5efnq6enZ8pzotGowuFwzAIAAOaucx4owWBQqampys7Ojtnu9XoVDAanPKehoUFut9tZ/H7/uRgVAAAkiDGf4rFtW5ZlTbmvvr5eoVDIWQYHB8/xdAAA4Fw654GSl5en8fFxjY6OxmwfGRmR1+ud8hyXy6WsrKyYBQAAzF3nPFCKioqUkpKirq4uZ9vw8LAOHTqk4uLicz0OAAAwUNyf4olEIurv73fWBwYG1NfXJ4/Ho0WLFunf//63jhw5oqNHj0qSXnvtNUnvXjnJy8uT2+3Wxo0bVVdXp5ycHHk8Hm3evFkFBQXOp3oAAMD8FvcVlAMHDmjZsmVatmyZJKm2tlbLli3Tj370I0nS008/rWXLlumGG26QJN1yyy1atmyZtm/f7jxGY2OjVq1aperqal199dVasGCBnnnmGSUlJU3HcwIAALOcZdu2negh4hUOh+V2uxUKhbgfBZhDxsbGnO9Z6uzsVHp6eoInAjCd4nn9NuZTPAAAAKcQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACME3eg7N27VytXrpTP55NlWero6IjZb9u2tm7dKp/Pp/T0dK1YsUKvvvpqzDHRaFSbNm1Sbm6uMjIyVFVVpaGhoY/0RAAAwNwRd6AcP35chYWFampqmnL/Qw89pIcfflhNTU166aWXlJeXp+uuu07Hjh1zjqmpqVF7e7va2trU3d2tSCSiyspKTU5Onv0zAQAAc0ZyvCcEAgEFAoEp99m2rUceeUR33XWX1qxZI0nasWOHvF6vfv3rX+vWW29VKBRSc3OzWltbVVZWJknauXOn/H6/du/erYqKio/wdAAAwFwwrfegDAwMKBgMqry83Nnmcrl07bXXqqenR5LU29uriYmJmGN8Pp/y8/OdY94rGo0qHA7HLAAAYO6a1kAJBoOSJK/XG7Pd6/U6+4LBoFJTU5WdnX3GY96roaFBbrfbWfx+/3SODQAADDMjn+KxLCtm3bbt07a91/sdU19fr1Ao5CyDg4PTNisAADDPtAZKXl6eJJ12JWRkZMS5qpKXl6fx8XGNjo6e8Zj3crlcysrKilkAAMDcNa2BcsEFFygvL09dXV3OtvHxce3Zs0fFxcWSpKKiIqWkpMQcMzw8rEOHDjnHAACA+S3uT/FEIhH19/c76wMDA+rr65PH49GiRYtUU1Oj+++/X0uWLNGSJUt0//33a8GCBVq3bp0kye12a+PGjaqrq1NOTo48Ho82b96sgoIC51M9AABgfos7UA4cOKCSkhJnvba2VpK0YcMGtbS06I477tDY2Jhuu+02jY6Oavny5XrhhReUmZnpnNPY2Kjk5GRVV1drbGxMpaWlamlpUVJS0jQ8JQAAMNtZtm3biR4iXuFwWG63W6FQiPtRgDlkbGzM+Z6lzs5OpaenJ3giANMpntdvfhcPAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTnKiBwASzbZtnThxItFjQIr5OfAzMUtaWposy0r0GJhHCBTMeydOnFAgEEj0GHiP1atXJ3oE/I/Ozk6lp6cnegzMI7zFAwAAjMMVFMx7aWlp6uzsTPQY0Ltvt0WjUUmSy+XiLQWDpKWlJXoEzDMECuY9y7K4dG2QBQsWJHoEAAbgLR4AAGAcAgUAABhnRgLl2LFjqqmp0eLFi5Wenq7i4mK99NJLzn7btrV161b5fD6lp6drxYoVevXVV2diFAAAMAvNSKB8+9vfVldXl1pbW/XKK6+ovLxcZWVlevPNNyVJDz30kB5++GE1NTXppZdeUl5enq677jodO3ZsJsYBAACzjGXbtj2dDzg2NqbMzEz97ne/0w033OBsv+yyy1RZWal7771XPp9PNTU1uvPOOyVJ0WhUXq9XDz74oG699dYP/DvC4bDcbrdCoZCysrKmc3wAADBD4nn9nvYrKO+8844mJydP+0haenq6uru7NTAwoGAwqPLycmefy+XStddeq56enikfMxqNKhwOxywAAGDumvZAyczM1FVXXaV7771XR48e1eTkpHbu3Kn9+/dreHhYwWBQkuT1emPO83q9zr73amhokNvtdha/3z/dYwMAAIPMyD0ora2tsm1bn/zkJ+VyufSLX/xC69atU1JSknPMe7+AybbtM34pU319vUKhkLMMDg7OxNgAAMAQMxIon/3sZ7Vnzx5FIhENDg7qz3/+syYmJnTBBRcoLy9Pkk67WjIyMnLaVZVTXC6XsrKyYhYAADB3zej3oGRkZGjhwoUaHR3Vrl27dOONNzqR0tXV5Rw3Pj6uPXv2qLi4eCbHAQAAs8SMfNX9rl27ZNu2li5dqv7+fm3ZskVLly7Vt771LVmWpZqaGt1///1asmSJlixZovvvv18LFizQunXrZmIcAAAwy8xIoIRCIdXX12toaEgej0c33XST7rvvPqWkpEiS7rjjDo2Njem2227T6Oioli9frhdeeEGZmZkzMQ4AAJhlpv17UM4FvgcFAIDZJ57X71n524xPNRXfhwIAwOxx6nX7w1wbmZWBcuor8fk+FAAAZp9jx47J7Xa/7zGz8i2ekydP6ujRo8rMzDzjd6cAmJ3C4bD8fr8GBwd5CxeYY2zb1rFjx+Tz+XTeee//QeJZGSgA5i7uMQMgzfD3oAAAAJwNAgUAABiHQAFgFJfLpR//+MdyuVyJHgVAAnEPCgAAMA5XUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQABjl0Ucf1QUXXKC0tDQVFRVp3759iR4JQAIQKACM8eSTT6qmpkZ33XWX/vKXv+iLX/yiAoGAjhw5kujRAJxjfMwYgDGWL1+uz3/+83rsscecbZdccolWrVqlhoaGBE4G4FzjCgoAI4yPj6u3t1fl5eUx28vLy9XT05OgqQAkCoECwAhvvfWWJicn5fV6Y7Z7vV4Fg8EETQUgUQgUAEaxLCtm3bbt07YBmPsIFABGyM3NVVJS0mlXS0ZGRk67qgJg7iNQABghNTVVRUVF6urqitne1dWl4uLiBE0FIFGSEz0AAJxSW1ur9evX6/LLL9dVV12lxx9/XEeOHNF3v/vdRI8G4BwjUAAYY+3atXr77bf1k5/8RMPDw8rPz9fzzz+vxYsXJ3o0AOcY34MCAACMwz0oAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4/w/w8c1Ytd0U/EAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.boxplot(data[\"RestingBP\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "d5482366-f3d5-4c7a-b3e0-01daaf022efc", + "metadata": {}, + "outputs": [], + "source": [ + "label = data[\"HeartDisease\"].copy()\n", + "data = data.drop(\"HeartDisease\",axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b54c2525-5e46-4dfb-9eea-07186ec88519", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "35e25dfd-4b17-4049-8bd8-d9db61c43574", + "metadata": {}, + "source": [ + "## Train Test Split\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "e68d6405-3820-4eb6-bb2b-8b0b7cf5b9a9", + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(data, label, test_size = 0.2, random_state = 42)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c117be1c-dc30-4ea8-b48b-fd5f25fdd4ac", + "metadata": {}, + "outputs": [], + "source": [ + "scale = StandardScaler()\n", + "X_train = scale.fit_transform(X_train)\n", + "X_test = scale.fit_transform(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "7eb74d73-76ea-4225-a245-30245b9e2217", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.84 0.90 0.87 29\n", + " 1 0.88 0.81 0.85 27\n", + "\n", + " accuracy 0.86 56\n", + " macro avg 0.86 0.86 0.86 56\n", + "weighted avg 0.86 0.86 0.86 56\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\prajw\\anaconda3\\Lib\\site-packages\\sklearn\\linear_model\\_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):\n", + "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n", + "\n", + "Increase the number of iterations (max_iter) or scale the data as shown in:\n", + " https://scikit-learn.org/stable/modules/preprocessing.html\n", + "Please also refer to the documentation for alternative solver options:\n", + " https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n", + " n_iter_i = _check_optimize_result(\n" + ] + } + ], + "source": [ + "lor = LogisticRegression()\n", + "lor.fit(X_train, y_train)\n", + "y_pred = lor.predict(X_test)\n", + "print(classification_report(y_test, y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64875722-03a3-42a5-a0c6-0efe349442df", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "75a96873-9c98-48a1-9c22-b2a9c52a688a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsZElEQVR4nO3de3QU9f3/8deGJJsASTBCbhJCQG4KIhKE4AWwgkTlEGktiG3BgpaCUr5RsUrRaAsRWxGVQpF+C+hXKv5sQauI4gVQEUsiiAKlIAGCkHIRCAkkIbvz+yOydQVhN7Ob3dl5Ps6ZIzM7l3diTt55vz+fmXEYhmEIAABYUlSoAwAAAA1HIgcAwMJI5AAAWBiJHAAACyORAwBgYSRyAAAsjEQOAICFRYc6ADPcbrf27dunhIQEORyOUIcDAPCTYRg6fvy4MjIyFBUVvNqyurpatbW1ps8TGxuruLi4AEQUOJZO5Pv27VNmZmaowwAAmFRWVqbWrVsH5dzV1dXKzmqu8gMu0+dKS0tTaWlpWCVzSyfyhIQESdLuT9sqsTmjBIhMt3TsFuoQgKCp0yl9qOWe3+fBUFtbq/IDLu0uaavEhIbniorjbmX13KXa2loSeaCcbqcnNo8y9T8HCGfRjphQhwAEzzcPCW+M4dHmCQ41T2j4ddwKzyFcSydyAAB85TLccpl4u4jLcAcumAAikQMAbMEtQ241PJObOTaY6EcDAGBhVOQAAFtwyy0zzXFzRwcPiRwAYAsuw5DLaHh73MyxwURrHQAAC6MiBwDYQqROdiORAwBswS1DrghM5LTWAQCwMCpyAIAtRGprnYocAGALp2etm1n8UVRUpF69eikhIUEpKSnKz8/Xtm3bvPYZPXq0HA6H19KnTx+/rkMiBwAgCFavXq0JEyZo3bp1Wrlyperq6jRo0CBVVVV57Td48GDt37/fsyxfvtyv69BaBwDYgvubxczxklRRUeG13el0yul0nrH/ihUrvNYXLFiglJQUlZSU6Nprr/U6Pi0trcFxUZEDAGzB9c2sdTOLJGVmZiopKcmzFBUV+XT9Y8eOSZKSk5O9tq9atUopKSnq2LGj7rzzTh04cMCvr4uKHABgCy5DJt9+Vv/fsrIyJSYmerafrRr/LsMwVFBQoKuvvlpdu3b1bM/Ly9Ott96qrKwslZaWaurUqbruuutUUlLi03klEjkAAH5JTEz0SuS+uPvuu7Vp0yZ9+OGHXtuHDx/u+XfXrl2Vk5OjrKwsvfHGGxo2bJhP5yaRAwBsIVBj5P6655579Nprr2nNmjVq3br1OfdNT09XVlaWtm/f7vP5SeQAAFtwyyGXHKaO94dhGLrnnnu0dOlSrVq1StnZ2ec95vDhwyorK1N6errP12GyGwAAQTBhwgT93//9nxYvXqyEhASVl5ervLxcJ0+elCRVVlbqvvvu08cff6xdu3Zp1apVGjJkiFq2bKlbbrnF5+tQkQMAbMFt1C9mjvfH3LlzJUn9+/f32r5gwQKNHj1aTZo00eeff67nn39eR48eVXp6ugYMGKAlS5YoISHB5+uQyAEAtuAy2Vr391jjPE+Ci4+P11tvvdXgeE6jtQ4AgIVRkQMAbKGxK/LGQiIHANiC23DIbZiYtW7i2GCitQ4AgIVRkQMAbIHWOgAAFuZSlFwmGtGuAMYSSCRyAIAtGCbHyA3GyAEAQKBRkQMAbIExcgAALMxlRMllmBgjN/F412CitQ4AgIVRkQMAbMEth9wm6le3wrMkJ5EDAGwhUsfIaa0DAGBhVOQAAFswP9mN1joAACFTP0Zu4qUptNYBAECgUZEDAGzBbfJZ68xaBwAghBgjBwDAwtyKisj7yBkjBwDAwqjIAQC24DIccpl4FamZY4OJRA4AsAWXycluLlrrAAAg0KjIAQC24Dai5DYxa93NrHUAAEKH1joAAAg7VOQAAFtwy9zMc3fgQgkoEjkAwBbMPxAmPJvY4RkVAADwCRU5AMAWzD9rPTxrXxI5AMAWIvV95CRyAIAtRGpFHp5RAQAAn1CRAwBswfwDYcKz9iWRAwBswW045DZzH3mYvv0sPP+8AAAAPqEiBwDYgttkaz1cHwhDIgcA2IL5t5+FZyIPz6gAAIBPqMgBALbgkkMuEw91MXNsMJHIAQC2QGsdAACEHSpyAIAtuGSuPe4KXCgBRSIHANhCpLbWSeQAAFvgpSkAACDsUJEDAGzBMPk+coPbzwAACB1a6wAAIOxQkQMAbCFSX2NKIgcA2ILL5NvPzBwbTOEZFQAA8AkVOQDAFmitAwBgYW5FyW2iEW3m2GAKz6gAAIBPqMgBALbgMhxymWiPmzk2mEjkAABbYIwcAAALM0y+/czgyW4AACDQqMgBALbgkkMuEy8+MXNsMJHIAQC24DbMjXO7jQAGE0C01gEAsDAqcpzhpWdT9NHyFirb4VRsnFuX5JzQmCn7lHlxjdd+e7Y79b+/y9Cmdc1luKWsTtWa8qddSml9KkSRAw1z888O6aafHVZqZq0kafe2OL34VKqK308McWQIJLfJyW5mjg0mEjnOsOnj5hoy+pA6Xn5Crjpp4Yx0PXRbe81f/S/FNXVLkvbtilVBfgcNHnFYP72vXM0SXdqzPU6xcWHaewLO4eD+GP1lerr27XJKkgbe+rUKF+zShEEdtfvfcSGODoHilkNuE+PcZo4NppD/eTFnzhxlZ2crLi5OPXv21AcffBDqkGxv+uKdGjT8a7XtVK32l1br3qf26MBXsdq+Kd6zz8LH03XldRUaO3W/Lu52UulZtep9fYVatKwLYeRAw3yyMknr30vUVzud+mqnUwtnpKu6Kkqde1aFOjTgvEKayJcsWaJJkyZpypQp2rBhg6655hrl5eVpz549oQwL31FV0USSlNDCJUlyu6V/vpuoi9rV6KHb2unH3S7VxJs6aO2bSaEMEwiIqChD/YYekbOpW1uLm4U6HATQ6Se7mVnCUUgT+cyZMzVmzBiNHTtWXbp00axZs5SZmam5c+eGMix8i2FIzxVepEuvrFTbztWSpKOHonWyqomWzE5RzoDjKvrrTl01+JgeG9tWmz7mFx+sqW3nk1q2/XO9vmuTJj6+V4+Naas922mrR5LTY+RmlnAUsjHy2tpalZSU6Ne//rXX9kGDBmnt2rVnPaampkY1Nf+dcFVRURHUGCH98aGLVLo1Xk8u2+7ZZtQPkyv3hgoNu+ugJKl915PaUtxMbzzfUpfl0o6E9ez90qnxAzuqWaJLV990TPc9vUf3D7uYZI6wF7I/Lw4dOiSXy6XU1FSv7ampqSovLz/rMUVFRUpKSvIsmZmZjRGqbf1xykX6+O0kPfHKDrXK+O9M9MRkl5pEG8rqWO21f2aHah34KqaxwwQCou5UlPbtcmr7pqZaUJSu0i3xyh97MNRhIYDccniet96gxc/JbkVFRerVq5cSEhKUkpKi/Px8bdu2zWsfwzBUWFiojIwMxcfHq3///tq8ebNf1wl5n8Dh8P7GGIZxxrbTHnzwQR07dsyzlJWVNUaItmMY0uyHLtJHbybpif+3Q2ltar0+j4k11LH7Ce390um1/audTm49Q0SJieUujEhifDNrvaGL4WciX716tSZMmKB169Zp5cqVqqur06BBg1RV9d+u5RNPPKGZM2dq9uzZWr9+vdLS0jRw4EAdP37c5+uErLXesmVLNWnS5Izq+8CBA2dU6ac5nU45nc6zfobAmf1Qa72/9AIVLtip+OZufX2g/sekWYJLzvj6X2y3jj+g6eOy1LVPpbr3rVTx+4latzJJv39lRyhDBxrkjl/v1/r3EnRwX6zim7vUf+hRXda3Ur+5vV2oQ0MANfbbz1asWOG1vmDBAqWkpKikpETXXnutDMPQrFmzNGXKFA0bNkyStGjRIqWmpmrx4sX6xS9+4dN1QpbIY2Nj1bNnT61cuVK33HKLZ/vKlSs1dOjQUIUFSa8vailJuv+HHby23/vUHg0a/rUk6aq8Y5r4+F69NDtVc6e2Vut2NZo6v1RdezM+Dutp0apO9z+7R8kpdTpxvIlKt8bpN7e306drEkIdGsLQd+dn+VpkHjt2TJKUnJwsSSotLVV5ebkGDRrkda5+/fpp7dq14Z/IJamgoEA//elPlZOTo9zcXD333HPas2ePxo0bF8qwbO+tfRt92u+G277WDbd9HdxggEbw1L3Mt7GDQD3Z7bvzsx555BEVFhae81jDMFRQUKCrr75aXbt2lSRPR/psc8V2797tc1whTeTDhw/X4cOH9dhjj2n//v3q2rWrli9frqysrFCGBQCIQIFqrZeVlSkx8b+P7/WlGr/77ru1adMmffjhh2d85s9csbMJ+SNax48fr/Hjx4c6DAAAfJKYmOiVyM/nnnvu0WuvvaY1a9aodevWnu1paWmS6ivz9PR0z/ZzzRU7m5DPWgcAoDGYmbHekOe0G4ahu+++W3//+9/13nvvKTs72+vz7OxspaWlaeXKlZ5ttbW1Wr16tfr27evzdUJekQMA0Bgae9b6hAkTtHjxYr366qtKSEjwjIknJSUpPj5eDodDkyZN0vTp09WhQwd16NBB06dPV9OmTTVy5Eifr0MiBwAgCE4/brx///5e2xcsWKDRo0dLkiZPnqyTJ09q/PjxOnLkiHr37q23335bCQm+3zFBIgcA2EJjV+SGcf4HCjkcDhUWFp531vu5kMgBALbQ2Im8sTDZDQAAC6MiBwDYQqRW5CRyAIAtGJLft5B99/hwRCIHANhCpFbkjJEDAGBhVOQAAFuI1IqcRA4AsIVITeS01gEAsDAqcgCALURqRU4iBwDYgmE4ZJhIxmaODSZa6wAAWBgVOQDAFhryTvHvHh+OSOQAAFuI1DFyWusAAFgYFTkAwBYidbIbiRwAYAuR2lonkQMAbCFSK3LGyAEAsDAqcgCALRgmW+vhWpGTyAEAtmBIMgxzx4cjWusAAFgYFTkAwBbccsjBk90AALAmZq0DAICwQ0UOALAFt+GQgwfCAABgTYZhctZ6mE5bp7UOAICFUZEDAGwhUie7kcgBALZAIgcAwMIidbIbY+QAAFgYFTkAwBYiddY6iRwAYAv1idzMGHkAgwkgWusAAFgYFTkAwBaYtQ4AgIUZMvdO8TDtrNNaBwDAyqjIAQC2QGsdAAAri9DeOokcAGAPJityhWlFzhg5AAAWRkUOALAFnuwGAICFRepkN1rrAABYGBU5AMAeDIe5CWthWpGTyAEAthCpY+S01gEAsDAqcgCAPfBAGAAArCtSZ637lMifeeYZn084ceLEBgcDAAD841Mif+qpp3w6mcPhIJEDAMJXmLbHzfApkZeWlgY7DgAAgipSW+sNnrVeW1urbdu2qa6uLpDxAAAQHEYAljDkdyI/ceKExowZo6ZNm+rSSy/Vnj17JNWPjT/++OMBDxAAAHw/vxP5gw8+qM8++0yrVq1SXFycZ/v111+vJUuWBDQ4AAACxxGAJfz4ffvZsmXLtGTJEvXp00cOx3+/qEsuuURffvllQIMDACBgIvQ+cr8r8oMHDyolJeWM7VVVVV6JHQAABJ/fibxXr1564403POunk/f8+fOVm5sbuMgAAAikCJ3s5ndrvaioSIMHD9aWLVtUV1enp59+Wps3b9bHH3+s1atXByNGAADMi9C3n/ldkfft21cfffSRTpw4ofbt2+vtt99WamqqPv74Y/Xs2TMYMQIAgO/RoGetd+vWTYsWLQp0LAAABE2kvsa0QYnc5XJp6dKl2rp1qxwOh7p06aKhQ4cqOpp3sAAAwlSEzlr3O/N+8cUXGjp0qMrLy9WpUydJ0r///W+1atVKr732mrp16xbwIAEAwNn5PUY+duxYXXrppdq7d68+/fRTffrppyorK9Nll12mu+66KxgxAgBg3unJbmaWMOR3Rf7ZZ5+puLhYF1xwgWfbBRdcoGnTpqlXr14BDQ4AgEBxGPWLmePDkd8VeadOnfSf//znjO0HDhzQxRdfHJCgAAAIuAi9j9ynRF5RUeFZpk+frokTJ+qVV17R3r17tXfvXr3yyiuaNGmSZsyYEex4AQDAt/jUWm/RooXX41cNw9CPf/xjzzbjmzn5Q4YMkcvlCkKYAACYFKEPhPEpkb///vvBjgMAgOBq5NvP1qxZo9///vcqKSnR/v37tXTpUuXn53s+Hz169BnPZOndu7fWrVvn13V8SuT9+vXz66QAANhdVVWVunfvrjvuuEM//OEPz7rP4MGDtWDBAs96bGys39dp8BNcTpw4oT179qi2ttZr+2WXXdbQUwIAEDyNXJHn5eUpLy/vnPs4nU6lpaWZCKoBifzgwYO644479Oabb571c8bIAQBhKUCJvKKiwmuz0+mU0+ls0ClXrVqllJQUtWjRQv369dO0adPO+qrwc/H79rNJkybpyJEjWrduneLj47VixQotWrRIHTp00Guvvebv6QAAsJTMzEwlJSV5lqKiogadJy8vTy+++KLee+89Pfnkk1q/fr2uu+461dTU+HUevyvy9957T6+++qp69eqlqKgoZWVlaeDAgUpMTFRRUZFuuukmf08JAEDwBWjWellZmRITEz2bG1qNDx8+3PPvrl27KicnR1lZWXrjjTc0bNgwn8/jdyKvqqrylP3Jyck6ePCgOnbsqG7duunTTz/193QAADSKQD3ZLTEx0SuRB0p6erqysrK0fft2v45r0JPdtm3bJkm6/PLLNW/ePH311Vf605/+pPT0dH9PBwAAJB0+fFhlZWV+51K/K/JJkyZp//79kqRHHnlEN9xwg1588UXFxsZq4cKF/p4OAIDG0ciz1isrK7Vjxw7PemlpqTZu3Kjk5GQlJyersLBQP/zhD5Wenq5du3bpoYceUsuWLXXLLbf4dR2/E/ntt9/u+XePHj20a9cu/etf/1KbNm3UsmVLf08HAEBEKi4u1oABAzzrBQUFkqRRo0Zp7ty5+vzzz/X888/r6NGjSk9P14ABA7RkyRIlJCT4dZ0G30d+WtOmTXXFFVeYPQ0AAEHlkMkxcj/379+/v+cR5mfz1ltvNTyYb/EpkZ/+K8IXM2fObHAwAADAPz4l8g0bNvh0sm+/WKUx3Xr9YEVHNWz6PxDubvhic6hDAIKmurJOq3o30sV4aQoAABbWyJPdGovft58BAIDwYXqyGwAAlhChFTmJHABgC4F6slu4obUOAICFUZEDAOwhQlvrDarIX3jhBV111VXKyMjQ7t27JUmzZs3Sq6++GtDgAAAIGCMASxjyO5HPnTtXBQUFuvHGG3X06FG5XC5JUosWLTRr1qxAxwcAAM7B70T+7LPPav78+ZoyZYqaNGni2Z6Tk6PPP/88oMEBABAopye7mVnCkd9j5KWlperRo8cZ251Op6qqqgISFAAAARehT3bzuyLPzs7Wxo0bz9j+5ptv6pJLLglETAAABF6EjpH7XZHff//9mjBhgqqrq2UYhv75z3/qr3/9q4qKivTnP/85GDECAIDv4Xciv+OOO1RXV6fJkyfrxIkTGjlypC666CI9/fTTGjFiRDBiBADAtEh9IEyD7iO/8847deedd+rQoUNyu91KSUkJdFwAAARWhN5HbuqBMC1btgxUHAAAoAH8TuTZ2dnnfO/4zp07TQUEAEBQmL2FLFIq8kmTJnmtnzp1Shs2bNCKFSt0//33ByouAAACi9Z6vV/96ldn3f7HP/5RxcXFpgMCAAC+C9jbz/Ly8vS3v/0tUKcDACCwuI/83F555RUlJycH6nQAAAQUt599o0ePHl6T3QzDUHl5uQ4ePKg5c+YENDgAAHBufify/Px8r/WoqCi1atVK/fv3V+fOnQMVFwAA8IFfibyurk5t27bVDTfcoLS0tGDFBABA4EXorHW/JrtFR0frl7/8pWpqaoIVDwAAQRGprzH1e9Z67969tWHDhmDEAgAA/OT3GPn48eN17733au/everZs6eaNWvm9flll10WsOAAAAioMK2qzfA5kf/85z/XrFmzNHz4cEnSxIkTPZ85HA4ZhiGHwyGXyxX4KAEAMCtCx8h9TuSLFi3S448/rtLS0mDGAwAA/OBzIjeM+j9FsrKyghYMAADBwgNhpHO+9QwAgLBm99a6JHXs2PG8yfzrr782FRAAAPCdX4n80UcfVVJSUrBiAQAgaGitSxoxYoRSUlKCFQsAAMEToa11nx8Iw/g4AADhx+9Z6wAAWFKEVuQ+J3K32x3MOAAACCrGyAEAsLIIrcj9fmkKAAAIH1TkAAB7iNCKnEQOALCFSB0jp7UOAICFUZEDAOyB1joAANZFax0AAIQdKnIAgD3QWgcAwMIiNJHTWgcAwMKoyAEAtuD4ZjFzfDgikQMA7CFCW+skcgCALXD7GQAACDtU5AAAe6C1DgCAxYVpMjaD1joAABZGRQ4AsIVInexGIgcA2EOEjpHTWgcAwMKoyAEAtkBrHQAAK6O1DgAAwg0VOQDAFmitAwBgZRHaWieRAwDsIUITOWPkAABYGBU5AMAWGCMHAMDKaK0DAIBwQ0UOALAFh2HIYTS8rDZzbDBRkQMA7MEIwOKHNWvWaMiQIcrIyJDD4dCyZcu8wzEMFRYWKiMjQ/Hx8erfv782b97s95dFIgcAIAiqqqrUvXt3zZ49+6yfP/HEE5o5c6Zmz56t9evXKy0tTQMHDtTx48f9ug6tdQCALQRq1npFRYXXdqfTKafTecb+eXl5ysvLO+u5DMPQrFmzNGXKFA0bNkyStGjRIqWmpmrx4sX6xS9+4XNcVOQAAHsIUGs9MzNTSUlJnqWoqMjvUEpLS1VeXq5BgwZ5tjmdTvXr109r167161xU5AAA+KGsrEyJiYme9bNV4+dTXl4uSUpNTfXanpqaqt27d/t1LhI5AMAWAtVaT0xM9ErkpmJyOLzWDcM4Y9v50FoHANhDI89aP5e0tDRJ/63MTztw4MAZVfr5kMgBALZwuiI3swRKdna20tLStHLlSs+22tparV69Wn379vXrXLTWAQAIgsrKSu3YscOzXlpaqo0bNyo5OVlt2rTRpEmTNH36dHXo0EEdOnTQ9OnT1bRpU40cOdKv65DIAQD20MjPWi8uLtaAAQM86wUFBZKkUaNGaeHChZo8ebJOnjyp8ePH68iRI+rdu7fefvttJSQk+HUdEjkAwDYa8w1m/fv3l3GOx7o6HA4VFhaqsLDQ1HUYIwcAwMKoyAEA9mAY9YuZ48MQiRwAYAuBuo883NBaBwDAwqjIAQD20Miz1hsLiRwAYAsOd/1i5vhwRGsdAAALoyLHeY0cs023j93ute3IYad+cvPAEEUENNzO+bH6zzsxqiqNUpM4Qy0ud6nj/9SoWXZ9ueU+JW1/1qlDH0Tr5N4oRTc3dGGfOnX4nxrFpYRpbxW+obUOO9v1ZYJ+M7G3Z93l9u/tPEC4+Lo4Wm1uq1VSV5fcddKOZ5wqvquprnq1UtFNJVe1dHxLE7X/RY0SOrl1qsKhf81wasPdTZX7clWow4cJzFoPgjVr1mjIkCHKyMiQw+HQsmXLQhkOzsHtcujI13GepeKo/+/fBcJBzrwTuij/lJpf7FZiZ7e6/q5a1fujVLGliSQpJkHK+fMJpQ2uU7Nst1p0d6nLg9Wq2NJEJ/fzB6ylnb6P3MwShkKayKuqqtS9e3fNnj07lGHABxmZVXr+tZX637+9q8mPfaq0DCoTRIZTlfX/jUn6/l/SdZUOyWEoJiE8f5HD3kLaWs/Ly1NeXp7P+9fU1KimpsazXlFREYyw8B3bNl+gJx+7XF+VNdMFyTUaPnq7/vDcWv1yZD8dr4gNdXhAgxmGtO2JOLW4ok4JHc4+JdlVI/37qTil33hK0c0bOUAEFK31MFBUVKSkpCTPkpmZGeqQbKFkXYrWrkrX7i8TtXF9KxXee6Uk6Qc37g1xZIA5W6fF6fi/m6j7EyfP+rn7lLTp/ngZhnTJ1OpGjg4BZwRgCUOWSuQPPvigjh075lnKyspCHZIt1VRHa9eXCcrIpL0O69o6PU4H349Wr79UKS7tzN/Q7lPSZ/fG68TeKOXMP0E1jrBlqVnrTqdTTieTrEItOsalzLaV2vxZcqhDAfxmGPVJ/MC70eq14ISatj5HEt8TpV5/OaHYFmFaisEvkdpat1QiR2iMuWeLPvkwVQfL49XighoNv2O7mjar0zvLW4c6NMBvW38Xp/3LY9TjmROKbmao5lD9TPTo5oaaxEnuOmljQbyOb2miHn88IcMtzz4xSYaiYkIZPUzh7WewqwtbVWvyo58qsUWtjh2N1bYvLlDB2Kt0sLxpqEMD/Fa2pH6C5vo7mnlt7/q7k7oo/5Rq/uPQwffrs/XHP/Lup/f6S5WSr3Q1TqCAj0KayCsrK7Vjxw7PemlpqTZu3Kjk5GS1adMmhJHh2554+IpQhwAEzA1fnPtul/iLjPPuA2uitR4ExcXFGjBggGe9oKBAkjRq1CgtXLgwRFEBACISj2gNvP79+8sI0zEHAACsgDFyAIAt0FoHAMDK3Eb9Yub4MEQiBwDYQ4SOkVvqyW4AAMAbFTkAwBYcMjlGHrBIAotEDgCwhwh9shutdQAALIyKHABgC9x+BgCAlTFrHQAAhBsqcgCALTgMQw4TE9bMHBtMJHIAgD24v1nMHB+GaK0DAGBhVOQAAFugtQ4AgJVF6Kx1EjkAwB54shsAAAg3VOQAAFvgyW4AAFgZrXUAABBuqMgBALbgcNcvZo4PRyRyAIA90FoHAADhhoocAGAPPBAGAADritRHtNJaBwDAwqjIAQD2EKGT3UjkAAB7MGTuneLhmcdJ5AAAe2CMHAAAhB0qcgCAPRgyOUYesEgCikQOALCHCJ3sRmsdAAALoyIHANiDW5LD5PFhiEQOALAFZq0DAICwQ0UOALCHCJ3sRiIHANhDhCZyWusAAFgYFTkAwB4itCInkQMA7IHbzwAAsC5uPwMAAGGHihwAYA+MkQMAYGFuQ3KYSMbu8EzktNYBALAwKnIAgD3QWgcAwMpMJnKFZyKntQ4AgIWRyAEA9nC6tW5m8UNhYaEcDofXkpaWFvAvi9Y6AMAe3IZMtccbMGv90ksv1TvvvONZb9KkScOv/z1I5AAABEl0dHRQqvBvo7UOALAHw21+kVRRUeG11NTUfO8lt2/froyMDGVnZ2vEiBHauXNnwL8sEjkAwB4CNEaemZmppKQkz1JUVHTWy/Xu3VvPP/+83nrrLc2fP1/l5eXq27evDh8+HNAvi9Y6AMAeAjRGXlZWpsTERM9mp9N51t3z8vI8/+7WrZtyc3PVvn17LVq0SAUFBQ2P4ztI5AAA+CExMdErkfuqWbNm6tatm7Zv3x7QeGitAwDsoZFvP/uumpoabd26Venp6QH6guqRyAEA9mDIZCL373L33XefVq9erdLSUn3yySf60Y9+pIqKCo0aNSqgXxatdQAAgmDv3r267bbbdOjQIbVq1Up9+vTRunXrlJWVFdDrkMgBAPbQyC9Neemllxp+LT+QyAEA9uB2S3KbPD78MEYOAICFUZEDAOyB95EDAGBhEZrIaa0DAGBhVOQAAHsIwWtMGwOJHABgC4bhlmE0fOa5mWODiUQOALAHwzBXVTNGDgAAAo2KHABgD4bJMfIwrchJ5AAAe3C7JYeJce4wHSOntQ4AgIVRkQMA7IHWOgAA1mW43TJMtNbD9fYzWusAAFgYFTkAwB5orQMAYGFuQ3JEXiKntQ4AgIVRkQMA7MEwJJm5jzw8K3ISOQDAFgy3IcNEa90gkQMAEEKGW+Yqcm4/AwAAAUZFDgCwBVrrAABYWYS21i2dyE//dVTnrg1xJEDwVFfWhToEIGhO/3w3RrVbp1OmngdTp1OBCyaAHEa49gp8sHfvXmVmZoY6DACASWVlZWrdunVQzl1dXa3s7GyVl5ebPldaWppKS0sVFxcXgMgCw9KJ3O12a9++fUpISJDD4Qh1OLZQUVGhzMxMlZWVKTExMdThAAHFz3fjMwxDx48fV0ZGhqKigjf/urq6WrW15ru3sbGxYZXEJYu31qOiooL2FxzOLTExkV90iFj8fDeupKSkoF8jLi4u7BJwoHD7GQAAFkYiBwDAwkjk8IvT6dQjjzwip9MZ6lCAgOPnG1Zk6cluAADYHRU5AAAWRiIHAMDCSOQAAFgYiRwAAAsjkcNnc+bMUXZ2tuLi4tSzZ0998MEHoQ4JCIg1a9ZoyJAhysjIkMPh0LJly0IdEuAzEjl8smTJEk2aNElTpkzRhg0bdM011ygvL0979uwJdWiAaVVVVerevbtmz54d6lAAv3H7GXzSu3dvXXHFFZo7d65nW5cuXZSfn6+ioqIQRgYElsPh0NKlS5Wfnx/qUACfUJHjvGpra1VSUqJBgwZ5bR80aJDWrl0boqgAABKJHD44dOiQXC6XUlNTvbanpqYG5LWAAICGI5HDZ999VaxhGLw+FgBCjESO82rZsqWaNGlyRvV94MCBM6p0AEDjIpHjvGJjY9WzZ0+tXLnSa/vKlSvVt2/fEEUFAJCk6FAHAGsoKCjQT3/6U+Xk5Cg3N1fPPfec9uzZo3HjxoU6NMC0yspK7dixw7NeWlqqjRs3Kjk5WW3atAlhZMD5cfsZfDZnzhw98cQT2r9/v7p27aqnnnpK1157bajDAkxbtWqVBgwYcMb2UaNGaeHChY0fEOAHEjkAABbGGDkAABZGIgcAwMJI5AAAWBiJHAAACyORAwBgYSRyAAAsjEQOAICFkcgBALAwEjlgUmFhoS6//HLP+ujRo5Wfn9/ocezatUsOh0MbN2783n3atm2rWbNm+XzOhQsXqkWLFqZjczgcWrZsmenzADgTiRwRafTo0XI4HHI4HIqJiVG7du103333qaqqKujXfvrpp31+rKcvyRcAzoWXpiBiDR48WAsWLNCpU6f0wQcfaOzYsaqqqtLcuXPP2PfUqVOKiYkJyHWTkpICch4A8AUVOSKW0+lUWlqaMjMzNXLkSN1+++2e9u7pdvhf/vIXtWvXTk6nU4Zh6NixY7rrrruUkpKixMREXXfddfrss8+8zvv4448rNTVVCQkJGjNmjKqrq70+/25r3e12a8aMGbr44ovldDrVpk0bTZs2TZKUnZ0tSerRo4ccDof69+/vOW7BggXq0qWL4uLi1LlzZ82ZM8frOv/85z/Vo0cPxcXFKScnRxs2bPD7ezRz5kx169ZNzZo1U2ZmpsaPH6/Kysoz9lu2bJk6duyouLg4DRw4UGVlZV6f/+Mf/1DPnj0VFxendu3a6dFHH1VdXZ3f8QDwH4kcthEfH69Tp0551nfs2KGXX35Zf/vb3zyt7Ztuuknl5eVavny5SkpKdMUVV+gHP/iBvv76a0nSyy+/rEceeUTTpk1TcXGx0tPTz0iw3/Xggw9qxowZmjp1qrZs2aLFixcrNTVVUn0ylqR33nlH+/fv19///ndJ0vz58zVlyhRNmzZNW7du1fTp0zV16lQtWrRIklRVVaWbb75ZnTp1UklJiQoLC3Xffff5/T2JiorSM888oy+++EKLFi3Se++9p8mTJ3vtc+LECU2bNk2LFi3SRx99pIqKCo0YMcLz+VtvvaWf/OQnmjhxorZs2aJ58+Zp4cKFnj9WAASZAUSgUaNGGUOHDvWsf/LJJ8aFF15o/PjHPzYMwzAeeeQRIyYmxjhw4IBnn3fffddITEw0qqurvc7Vvn17Y968eYZhGEZubq4xbtw4r8979+5tdO/e/azXrqioMJxOpzF//vyzxllaWmpIMjZs2OC1PTMz01i8eLHXtt/+9rdGbm6uYRiGMW/ePCM5OdmoqqryfD537tyznuvbsrKyjKeeeup7P3/55ZeNCy+80LO+YMECQ5Kxbt06z7atW7cakoxPPvnEMAzDuOaaa4zp06d7neeFF14w0tPTPeuSjKVLl37vdQE0HGPkiFivv/66mjdvrrq6Op06dUpDhw7Vs88+6/k8KytLrVq18qyXlJSosrJSF154odd5Tp48qS+//FKStHXrVo0bN87r89zcXL3//vtnjWHr1q2qqanRD37wA5/jPnjwoMrKyjRmzBjdeeednu11dXWe8fetW7eqe/fuatq0qVcc/nr//fc1ffp0bdmyRRUVFaqrq1N1dbWqqqrUrFkzSVJ0dLRycnI8x3Tu3FktWrTQ1q1bdeWVV6qkpETr16/3qsBdLpeqq6t14sQJrxgBBB6JHBFrwIABmjt3rmJiYpSRkXHGZLbTieo0t9ut9PR0rVq16oxzNfQWrPj4eL+Pcbvdkurb67179/b6rEmTJpIkwzAaFM+37d69WzfeeKPGjRun3/72t0pOTtaHH36oMWPGeA1BSPW3j33X6W1ut1uPPvqohg0bdsY+cXFxpuMEcG4kckSsZs2a6eKLL/Z5/yuuuELl5eWKjo5W27Ztz7pPly5dtG7dOv3sZz/zbFu3bt33nrNDhw6Kj4/Xu+++q7Fjx57xeWxsrKT6Cva01NRUXXTRRdq5c6duv/32s573kksu0QsvvKCTJ096/lg4VxxnU1xcrLq6Oj355JOKiqqfLvPyyy+fsV9dXZ2Ki4t15ZVXSpK2bdumo0ePqnPnzpLqv2/btm3z63sNIHBI5MA3rr/+euXm5io/P18zZsxQp06dtG/fPi1fvlz5+fnKycnRr371K40aNUo5OTm6+uqr9eKLL2rz5s1q167dWc8ZFxenBx54QJMnT1ZsbKyuuuoqHTx4UJs3b9aYMWOUkpKi+Ph4rVixQq1bt1ZcXJySkpJUWFioiRMnKjExUXl5eaqpqVFxcbGOHDmigoICjRw5UlOmTNGYMWP0m9/8Rrt27dIf/vAHv77e9u3bq66uTs8++6yGDBmijz76SH/605/O2C8mJkb33HOPnnnmGcXExOjuu+9Wnz59PIn94Ycf1s0336zMzEzdeuutioqK0qZNm/T555/rd7/7nf//IwD4hVnrwDccDoeWL1+ua6+9Vj//+c/VsWNHjRgxQrt27fLMMh8+fLgefvhhPfDAA+rZs6d2796tX/7yl+c879SpU3Xvvffq4YcfVpcuXTR8+HAdOHBAUv348zPPPKN58+YpIyNDQ4cOlSSNHTtWf/7zn7Vw4UJ169ZN/fr108KFCz23qzVv3lz/+Mc/tGXLFvXo0UNTpkzRjBkz/Pp6L7/8cs2cOVMzZsxQ165d9eKLL6qoqOiM/Zo2baoHHnhAI0eOVG5uruLj4/XSSy95Pr/hhhv0+uuva+XKlerVq5f69OmjmTNnKisry694ADSMwwjEYBsAAAgJKnIAACyMRA4AgIWRyAEAsDASOQAAFkYiBwDAwkjkAABYGIkcAAALI5EDAGBhJHIAACyMRA4AgIWRyAEAsLD/DzJe5+GUrL9qAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cm = confusion_matrix(y_test, y_pred, labels=lor.classes_)\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=lor.classes_)\n", + "disp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "5bf01287-c2cc-49a5-afe0-dc48a6ccf9bc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of Logistic Regression model is 85.71428571428571\n" + ] + } + ], + "source": [ + "#printing the accuracy for test set\n", + "print('Accuracy of Logistic Regression model is {}'.format(accuracy_score(y_test,y_pred)*100))" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "67ffcb57-1ecc-4898-9dd3-7b2684b4109f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQzUlEQVR4nO3dd1RU1/o38O9QhiYlSkdELNgr2OD1Go0Vry0xauxETFAjIjcaveaKmkRuGqJRrATUWIiKmnstkSQq1qu0WDDRKAIqRLEAAoIM+/3D5fwyUpw5DIwM389asxazzz77POcMMo+7nCMTQggQERER6QkDXQdAREREpE1MboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9YqTrAGpbWVkZ7ty5A0tLS8hkMl2HQ0RERGoQQiA/Px/Ozs4wMKi6b6beJTd37tyBq6urrsMgIiIiCTIzM9G4ceMq69S75MbS0hLAs4tjZWWl42iIiIhIHXl5eXB1dVV+j1el3iU3z4eirKysmNwQERHVMepMKeGEYiIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK/oNLmJj4/HsGHD4OzsDJlMhn379r10n+PHj8PT0xOmpqZo1qwZ1q1bV/OBEhERUZ2h0+SmoKAAnTp1wurVq9Wqn5aWBl9fX/Tu3RvJycn45z//icDAQOzZs6eGIyUiIqK6QqcPzhwyZAiGDBmidv1169ahSZMmCA8PBwC0adMGCQkJ+Oqrr/DWW2/VUJRERESaE0Kg6KlC12HojJmxoVoPuawJdeqp4GfOnMHAgQNVygYNGoTIyEg8ffoUxsbG5fYpLi5GcXGx8n1eXl6Nx0lERPWbEAKj151BYvpDXYeiM6nLBsFcrps0o05NKM7OzoaDg4NKmYODA0pLS5GTk1PhPqGhobC2tla+XF1dayNUIiKqx4qeKup1YqNrdarnBkC5Li4hRIXlzy1cuBDBwcHK93l5eUxwiIio1iR83B/mckNdh1HrzIx1d851KrlxdHREdna2Stndu3dhZGSERo0aVbiPiYkJTExMaiM8IiKicszlhjobnqmv6tSwVK9evRAXF6dSduTIEXh5eVU434aIiIjqH50mN48fP0ZKSgpSUlIAPFvqnZKSgoyMDADPhpQmT56srB8QEID09HQEBwfjypUr+PbbbxEZGYkPP/xQF+ETERHRK0in/WQJCQno27ev8v3zuTFTpkxBdHQ0srKylIkOALi7u+PgwYOYO3cu1qxZA2dnZ6xatYrLwImIiEhJp8nN66+/rpwQXJHo6OhyZX369EFSUlINRkVERER1WZ2ac0NERET0MkxuiIiISK8wuSEiIiK9woX3RHVQfX9mDdGrrrCE/z51ickNUR3DZ9YQEVWNw1JEdQyfWUNUd3i5vabTxxDUV+y5IarD6usza4jqCjNjw0qffUg1h8kNUR3GZ9YQEZXHYSkiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0ipGuAyASQqDoqULXYdQZhSW8VkREVWFyQzolhMDodWeQmP5Q16EQEZGe4LAU6VTRUwUTG4m83F6DmbGhrsMgInrlsOeGXhkJH/eHuZxf1uoyMzaETCbTdRhERK8cJjf0yjCXG8Jczl9JIiKqHg5LERERkV5hckNERER6hckNERER6RUmN0RERKRXmNwQERGRXmFyQ0RERHpF43W3ubm52Lt3L06cOIGbN2+isLAQdnZ26NKlCwYNGgRvb++aiJOIiIhILWr33GRlZWH69OlwcnLCsmXLUFBQgM6dO+ONN95A48aNcfToUQwYMABt27ZFTExMTcZMREREVCm1e246deqEyZMn49y5c2jfvn2FdYqKirBv3z6EhYUhMzMTH374odYCJSIiIlKH2snN5cuXYWdnV2UdMzMzvPPOO3jnnXdw7969agdHREREpCm1h6VelthUtz4RERGRNmh1tdTDhw+xZcsWbTZJREREpBGtJjcZGRnw8/PTZpNEREREGtFoKXheXl6V2/Pz86sVDBEREVF1aZTc2NjYQCaTVbpdCFHldiIiIqKaplFyY2lpiUWLFqFHjx4Vbr927Rref/99rQRGREREJIVGyU3Xrl0BAH369Klwu42NDYQQ1Y+KiIiISCKNJhSPHz8epqamlW53dHRESEhItYMiIiIikkqjnpvp06dXud3BwYHJDREREekUnwpOREREekXjp4KTfhJCoOipotaPW1hS+8ckIiL9xuSGIITA6HVnkJj+UNehEBERVRuHpQhFTxU6T2y83F6DmbGhTmMgIiL9wJ4bUpHwcX+Yy2s/yTAzNuQNIImISCt03nMTEREBd3d3mJqawtPTEydOnKiy/rZt29CpUyeYm5vDyckJfn5+uH//fi1Fq//M5YYwlxvV+ouJDRERaYvk5KZv376YOnWqStmUKVPQr18/tduIiYlBUFAQFi1ahOTkZPTu3RtDhgxBRkZGhfVPnjyJyZMnY9q0abh8+TJ27dqF8+fPw9/fX+ppEBERkZ6RnNw0bdoUzs7OKmUuLi5wc3NTu42wsDBMmzYN/v7+aNOmDcLDw+Hq6oq1a9dWWP/s2bNo2rQpAgMD4e7ujv/3//4f3n//fSQkJFR6jOLiYuTl5am8iIiISH9JTm6ioqKwfPlylbLly5cjKipKrf1LSkqQmJiIgQMHqpQPHDgQp0+frnAfb29v3Lp1CwcPHoQQAn/++Sd2796NoUOHVnqc0NBQWFtbK1+urq5qxUdERER1k87m3OTk5EChUMDBwUGl3MHBAdnZ2RXu4+3tjW3btmHs2LGQy+VwdHSEjY0Nvvnmm0qPs3DhQuTm5ipfmZmZWj0PIiIierWovVpq1apVajcaGBiodt0XJ5IKISqdXJqamorAwEAsXrwYgwYNQlZWFubNm4eAgABERkZWuI+JiQlMTEzUjoeIiIjqNrWTmxUrVqhVTyaTqZXc2NrawtDQsFwvzd27d8v15jwXGhoKHx8fzJs3DwDQsWNHWFhYoHfv3vj000/h5OSkVoxERESkv9RObtLS0rR6YLlcDk9PT8TFxWHUqFHK8ri4OIwYMaLCfQoLC2FkpBqyoeGze7IIIbQaHxEREdVN1ZpzU1JSgt9//x2lpaWS9g8ODsamTZvw7bff4sqVK5g7dy4yMjIQEBAA4Nl8mcmTJyvrDxs2DLGxsVi7di1u3LiBU6dOITAwEN27dy+3couIiIjqJ0l3KC4sLMTs2bOxefNmAMDVq1fRrFkzBAYGwtnZGQsWLFCrnbFjx+L+/ftYtmwZsrKy0L59exw8eFC5nDwrK0vlnjdTp05Ffn4+Vq9ejX/84x+wsbFBv3798Pnnn0s5Db1SnQdf8uGVRESkT2RCwnjOnDlzcOrUKYSHh2Pw4MG4cOECmjVrhh9++AEhISFITk6uiVi1Ii8vD9bW1sjNzYWVlZWuw9EKbT74MnXZIJjL+VQOIiJ6tWjy/S3pW2zfvn2IiYlBz549VVY2tW3bFtevX5fSJFWDth58yYdXEhGRPpCU3Ny7dw/29vblygsKCviMIB2rzoMv+fBKIiLSB5ImFHfr1g0HDhxQvn/+hbhx40b06tVLO5GRJNV58CUTGyIi0geSem5CQ0MxePBgpKamorS0FCtXrsTly5dx5swZHD9+XNsxEhEREalNUs+Nt7c3Tp06hcLCQjRv3hxHjhyBg4MDzpw5A09PT23HSERERKQ2yctiOnTooFwKTkRERPSqkJzcKBQK7N27F1euXIFMJkObNm0wYsSIcncQJiIiIqpNkjKRS5cuYcSIEcjOzkarVq0APLuRn52dHX744Qd06NBBq0ESERERqUvSnBt/f3+0a9cOt27dQlJSEpKSkpCZmYmOHTvivffe03aMRERERGqT1HPz66+/IiEhAa+99pqy7LXXXsNnn32Gbt26aS04IiIiIk1J6rlp1aoV/vzzz3Lld+/eRYsWLaodFBEREZFUaic3eXl5ytfy5csRGBiI3bt349atW7h16xZ2796NoKAgPsSSiIiIdErtYSkbGxuVO9gKITBmzBhl2fPnbw4bNgwKBZ8yTURERLqhdnJz9OjRmoyDiIiISCvUTm769OlTk3EQERERaUW17rhXWFiIjIwMlJSUqJR37NixWkERERERSSUpubl37x78/Pxw6NChCrdzzg0RERHpiqSl4EFBQXj48CHOnj0LMzMzHD58GJs3b0bLli3xww8/aDtGIiIiIrVJ6rn55ZdfsH//fnTr1g0GBgZwc3PDgAEDYGVlhdDQUAwdOlTbcRIRERGpRVLPTUFBAezt7QEADRs2xL179wA8e1J4UlKS9qIjIiIi0pDkOxT//vvvAIDOnTtj/fr1uH37NtatWwcnJyetBkhERESkCUnDUkFBQcjKygIAhISEYNCgQdi2bRvkcjmio6O1GR8RERGRRiQlNxMmTFD+3KVLF9y8eRO//fYbmjRpAltbW60FV58IIVD0VNoqs8ISrk4jIiJ6rlr3uXnO3NwcXbt21UZT9ZIQAqPXnUFi+kNdh0JERFTnqZ3cBAcHq91oWFiYpGDqq6KnCq0kNl5ur8HM2FALEREREdVdaic3ycnJatX768M1SXMJH/eHuVxagmJmbMjrT0RE9R4fnPmKMZcbwlyuldFCIiKieknSUnAiIiKiVxWTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0iuTkZuvWrfDx8YGzszPS09MBAOHh4di/f7/WgiMiIiLSlKTkZu3atQgODoavry8ePXoEheLZ7f9tbGwQHh6uzfiIiIiINCIpufnmm2+wceNGLFq0CIaG/3fDOS8vL1y8eFFrwRERERFpSlJyk5aWhi5dupQrNzExQUFBQbWDIiIiIpJKUnLj7u6OlJSUcuWHDh1C27ZtqxsTERERkWSS7vM/b948zJo1C0+ePIEQAufOncOOHTsQGhqKTZs2aTtGIiIiIrVJSm78/PxQWlqK+fPno7CwEOPHj4eLiwtWrlyJcePGaTtGIiIiIrVJfkLj9OnTMX36dOTk5KCsrAz29vbajIuIiIhIEklzbpYuXYrr168DAGxtbZnYEBER0StDUnKzZ88eeHh4oGfPnli9ejXu3bun7biIiIiIJJGU3Fy4cAEXLlxAv379EBYWBhcXF/j6+mL79u0oLCzUdoxEREREapP8+IV27dph+fLluHHjBo4ePQp3d3cEBQXB0dFRm/ERERERaUQrD860sLCAmZkZ5HI5nj59qo0miYiIiCSRnNykpaXhs88+Q9u2beHl5YWkpCQsWbIE2dnZ2oyPiIiISCOSloL36tUL586dQ4cOHeDn56e8zw0RERGRrklKbvr27YtNmzahXbt22o6HiIiIqFokJTfLly/XdhxEREREWqF2chMcHIxPPvkEFhYWCA4OrrJuWFhYtQMjIiIikkLt5CY5OVm5Eio5ObnGAiIiIiKqDrWTm6NHj1b4MxEREdGrRNJS8HfffRf5+fnlygsKCvDuu+9WOygiIiIiqSQlN5s3b0ZRUVG58qKiImzZsqXaQRERERFJpdFqqby8PAghIIRAfn4+TE1NldsUCgUOHjzIJ4QTERGRTmmU3NjY2EAmk0Emk8HDw6PcdplMhqVLl2otOCIiIiJNaTQsdfToUfz8888QQmD37t345ZdflK+TJ08iIyMDixYt0iiAiIgIuLu7w9TUFJ6enjhx4kSV9YuLi7Fo0SK4ubnBxMQEzZs3x7fffqvRMYmIiEh/adRz06dPHwDPnivVpEkTyGSyah08JiYGQUFBiIiIgI+PD9avX48hQ4YgNTUVTZo0qXCfMWPG4M8//0RkZCRatGiBu3fvorS0tFpxEBERkf6QCSGEOhUvXLiA9u3bw8DAABcuXKiybseOHdU6eI8ePdC1a1esXbtWWdamTRuMHDkSoaGh5eofPnwY48aNw40bN9CwYUO1jlFcXIzi4mLl+7y8PLi6uiI3NxdWVlZqtVHTCktK0XbxjwCA1GWDYC6XdONoIiIivZWXlwdra2u1vr/V/hbt3LkzsrOzYW9vj86dO0Mmk6GivEgmk0GhULy0vZKSEiQmJmLBggUq5QMHDsTp06cr3OeHH36Al5cXvvjiC2zduhUWFhYYPnw4PvnkE5iZmVW4T2hoKOcBERER1SNqJzdpaWmws7NT/lxdOTk5UCgUcHBwUCl3cHBAdnZ2hfvcuHEDJ0+ehKmpKfbu3YucnBzMnDkTDx48qHTezcKFC1UeF/G854aIiIj0k9rJjZubW4U/V9eL83aEEJXO5SkrK4NMJsO2bdtgbW0N4NlzrEaPHo01a9ZU2HtjYmICExMTrcVLRERErzbJN/E7cOCA8v38+fNhY2MDb29vpKenq9WGra0tDA0Ny/XS3L17t1xvznNOTk5wcXFRJjbAszk6QgjcunVLwpkQERGRvpGU3CxfvlzZS3LmzBmsXr0aX3zxBWxtbTF37ly12pDL5fD09ERcXJxKeVxcHLy9vSvcx8fHB3fu3MHjx4+VZVevXoWBgQEaN24s5VSIiIhIz0hKbjIzM9GiRQsAwL59+zB69Gi89957CA0Nfel9av4qODgYmzZtwrfffosrV65g7ty5yMjIQEBAAIBn82UmT56srD9+/Hg0atQIfn5+SE1NRXx8PObNm4d333230gnFREREVL9IWnPcoEED3L9/H02aNMGRI0eUvTWmpqYVPnOqMmPHjsX9+/exbNkyZGVloX379jh48KByTk9WVhYyMjJUjhsXF4fZs2fDy8sLjRo1wpgxY/Dpp59KOQ0iIiLSQ5KSmwEDBsDf3x9dunTB1atXMXToUADA5cuX0bRpU43amjlzJmbOnFnhtujo6HJlrVu3LjeURURERPScpGGpNWvWoFevXrh37x727NmDRo0aAQASExPxzjvvaDVAIiIiIk1I6rmxsbHB6tWry5XzZnlERESka5Lv8//o0SNERkbiypUrkMlkaNOmDaZNm6ayTJuIiIiotkkalkpISEDz5s2xYsUKPHjwADk5OVixYgWaN2+OpKQkbcdIREREpDZJPTdz587F8OHDsXHjRhgZPWuitLQU/v7+CAoKQnx8vFaDJCIiIlKXpOQmISFBJbEBACMjI8yfPx9eXl5aC46IiIhIU5KGpaysrFTuP/NcZmYmLC0tqx0UERERkVSSkpuxY8di2rRpiImJQWZmJm7duoWdO3fC39+fS8GJiIhIpyQNS3311VeQyWSYPHkySktLAQDGxsaYMWMG/v3vf2s1QCIiIiJNSEpu5HI5Vq5cidDQUFy/fh1CCLRo0QLm5ubajo+IiIhIIxoNSxUWFmLWrFlwcXGBvb09/P394eTkhI4dOzKxISIioleCRslNSEgIoqOjMXToUIwbNw5xcXGYMWNGTcVGREREpDGNhqViY2MRGRmJcePGAQAmTpwIHx8fKBQKGBoa1kiARERERJrQqOcmMzMTvXv3Vr7v3r07jIyMcOfOHa0HRkRERCSFRsmNQqGAXC5XKTMyMlKumCIiIiLSNY2GpYQQmDp1KkxMTJRlT548QUBAACwsLJRlsbGx2ouQiIiISAMaJTdTpkwpVzZx4kStBUNERERUXRolN1FRUTUVBxEREZFWSHr8AhEREdGrSu3kJiAgAJmZmWrVjYmJwbZt2yQHRURERCSV2sNSdnZ2aN++Pby9vTF8+HB4eXnB2dkZpqamePjwIVJTU3Hy5Ens3LkTLi4u2LBhQ03GTURERFQhtZObTz75BLNnz0ZkZCTWrVuHS5cuqWy3tLRE//79sWnTJgwcOFDrgRIRERGpQ6MJxfb29li4cCEWLlyIR48eIT09HUVFRbC1tUXz5s0hk8lqKk4iIiIitUh6KjgA2NjYwMbGRouhEBEREVUfV0sRERGRXmFyQ0RERHqFyQ0RERHpFSY3REREpFckJzelpaX46aefsH79euTn5wMA7ty5g8ePH2stOCIiIiJNSVotlZ6ejsGDByMjIwPFxcUYMGAALC0t8cUXX+DJkydYt26dtuMkIiIiUouknps5c+bAy8sLDx8+hJmZmbJ81KhR+Pnnn7UWHBEREZGmJPXcnDx5EqdOnYJcLlcpd3Nzw+3bt7USGBEREZEUknpuysrKoFAoypXfunULlpaW1Q6KiIiISCpJyc2AAQMQHh6ufC+TyfD48WOEhITA19dXW7ERERERaUzSsNSKFSvQt29ftG3bFk+ePMH48eNx7do12NraYseOHdqOkYiIiEhtkpIbZ2dnpKSkYOfOnUhMTERZWRmmTZuGCRMmqEwwJiIiIqptkpKb+Ph4eHt7w8/PD35+fsry0tJSxMfH429/+5vWAiQiIiLShKQ5N3379sWDBw/Klefm5qJv377VDoqIiIhIKknJjRACMpmsXPn9+/dhYWFR7aCIiIiIpNJoWOrNN98E8Gx11NSpU2FiYqLcplAocOHCBXh7e2s3QiIiIiINaJTcWFtbA3jWc2NpaakyeVgul6Nnz56YPn26diMkIiIi0oBGyU1UVBQAoGnTpvjwww85BEVERESvHEmrpUJCQrQdBxEREZFWSEpuAGD37t34/vvvkZGRgZKSEpVtSUlJ1Q6MiIiISApJq6VWrVoFPz8/2NvbIzk5Gd27d0ejRo1w48YNDBkyRNsxEhEREalNUnITERGBDRs2YPXq1ZDL5Zg/fz7i4uIQGBiI3NxcbcdIREREpDZJyU1GRoZyybeZmRny8/MBAJMmTeKzpYiIiEinJCU3jo6OuH//PgDAzc0NZ8+eBQCkpaVBCKG96IiIiIg0JCm56devH/7zn/8AAKZNm4a5c+diwIABGDt2LEaNGqXVAImIiIg0IWm11IYNG1BWVgYACAgIQMOGDXHy5EkMGzYMAQEBWg2QiIiISBOSkhsDAwMYGPxfp8+YMWMwZswYAMDt27fh4uKineiIiIiINCRpWKoi2dnZmD17Nlq0aKGtJomIiIg0plFy8+jRI0yYMAF2dnZwdnbGqlWrUFZWhsWLF6NZs2Y4e/Ysvv3225qKlYiIiOilNBqW+uc//4n4+HhMmTIFhw8fxty5c3H48GE8efIEhw4dQp8+fWoqTiIiIiK1aJTcHDhwAFFRUejfvz9mzpyJFi1awMPDA+Hh4TUUHhEREZFmNBqWunPnDtq2bQsAaNasGUxNTeHv718jgRERERFJoVFyU1ZWBmNjY+V7Q0NDWFhYVCuAiIgIuLu7w9TUFJ6enjhx4oRa+506dQpGRkbo3LlztY5PRERE+kWjYSkhBKZOnQoTExMAwJMnTxAQEFAuwYmNjVWrvZiYGAQFBSEiIgI+Pj5Yv349hgwZgtTUVDRp0qTS/XJzczF58mS88cYb+PPPPzU5BSIiItJzGvXcTJkyBfb29rC2toa1tTUmTpwIZ2dn5fvnL3WFhYVh2rRp8Pf3R5s2bRAeHg5XV1esXbu2yv3ef/99jB8/Hr169dIkfCIiIqoHNOq5iYqK0tqBS0pKkJiYiAULFqiUDxw4EKdPn64yhuvXr+O7777Dp59++tLjFBcXo7i4WPk+Ly9PetBERET0ytPaTfw0lZOTA4VCAQcHB5VyBwcHZGdnV7jPtWvXsGDBAmzbtg1GRurlZaGhoSq9Sq6urtWOnYiIiF5dOktunpPJZCrvhRDlygBAoVBg/PjxWLp0KTw8PNRuf+HChcjNzVW+MjMzqx0zERERvbokPVtKG2xtbWFoaFiul+bu3bvlenMAID8/HwkJCUhOTsYHH3wA4NnqLSEEjIyMcOTIEfTr16/cfiYmJsoJ0ERERKT/dNZzI5fL4enpibi4OJXyuLg4eHt7l6tvZWWFixcvIiUlRfkKCAhAq1atkJKSgh49etRW6ERERPQK01nPDQAEBwdj0qRJ8PLyQq9evbBhwwZkZGQgICAAwLMhpdu3b2PLli0wMDBA+/btVfa3t7eHqalpuXIiIiKqvyT33GzduhU+Pj5wdnZGeno6ACA8PBz79+9Xu42xY8ciPDwcy5YtQ+fOnREfH4+DBw/Czc0NAJCVlYWMjAypIRIREVE9JCm5Wbt2LYKDg+Hr64tHjx5BoVAAAGxsbDR+ztTMmTNx8+ZNFBcXIzExEX/729+U26Kjo3Hs2LFK912yZAlSUlIknAERERHpK0nJzTfffIONGzdi0aJFMDQ0VJZ7eXnh4sWLWguurhFCoLCkVMJLoevQiYiI9IakOTdpaWno0qVLuXITExMUFBRUO6i6SAiB0evOIDH9oa5DISIiqtck9dy4u7tXOBx06NAh5VPD65uip4pqJzZebq/BzNjw5RWJiIioUpJ6bubNm4dZs2bhyZMnEELg3Llz2LFjB0JDQ7Fp0yZtx1jnJHzcH+ZyzZMUM2PDCm9gSEREROqTlNz4+fmhtLQU8+fPR2FhIcaPHw8XFxesXLkS48aN03aMdY653BDmcp2usiciIqq3JH8DT58+HdOnT0dOTg7Kyspgb2+vzbiIiIiIJJE052bp0qW4fv06gGePUWBiQ0RERK8KScnNnj174OHhgZ49e2L16tW4d++etuMiIiIikkRScnPhwgVcuHAB/fr1Q1hYGFxcXODr64vt27ejsLBQ2zESERERqU3y4xfatWuH5cuX48aNGzh69Cjc3d0RFBQER0dHbcZHREREpBGtPBXcwsICZmZmkMvlePr0qTaaJCIiIpJEcnKTlpaGzz77DG3btoWXlxeSkpKwZMkSZGdnazM+IiIiIo1IWgreq1cvnDt3Dh06dICfn5/yPjdEREREuiYpuenbty82bdqEdu3aaTseIiIiomqRlNwsX75c23EQERERaYXayU1wcDA++eQTWFhYIDg4uMq6YWFh1Q6MiIiISAq1k5vk5GTlSqjk5OQaC4iIiIioOtRObo4ePVrhz0RERESvEklLwd99913k5+eXKy8oKMC7775b7aCIiIiIpJKU3GzevBlFRUXlyouKirBly5ZqB0VEREQklUarpfLy8iCEgBAC+fn5MDU1VW5TKBQ4ePAgnxBOREREOqVRcmNjYwOZTAaZTAYPD49y22UyGZYuXaq14IiIiIg0pVFyc/ToUQgh0K9fP+zZswcNGzZUbpPL5XBzc4Ozs7PWgyQiIiJSl0bJTZ8+fQA8e65UkyZNIJPJaiQoIiIiIqnUTm4uXLiA9u3bw8DAALm5ubh48WKldTt27KiV4IiIiIg0pXZy07lzZ2RnZ8Pe3h6dO3eGTCaDEKJcPZlMBoVCodUgiYiIiNSldnKTlpYGOzs75c9EREREryK1kxs3N7cKfyYiIiJ6lUi+id+BAweU7+fPnw8bGxt4e3sjPT1da8ERERERaUpScrN8+XKYmZkBAM6cOYPVq1fjiy++gK2tLebOnavVAImIiIg0odFS8OcyMzPRokULAMC+ffswevRovPfee/Dx8cHrr7+uzfiIiIiINCKp56ZBgwa4f/8+AODIkSPo378/AMDU1LTCZ04RERER1RZJPTcDBgyAv78/unTpgqtXr2Lo0KEAgMuXL6Np06bajI+IiIhII5J6btasWYNevXrh3r172LNnDxo1agQASExMxDvvvKPVAImIiIg0IannxsbGBqtXry5XzodmEhERka5JSm4A4NGjR4iMjMSVK1cgk8nQpk0bTJs2DdbW1tqMj4iIiEgjkoalEhIS0Lx5c6xYsQIPHjxATk4OVqxYgebNmyMpKUnbMRIRERGpTVLPzdy5czF8+HBs3LgRRkbPmigtLYW/vz+CgoIQHx+v1SCJiIiI1CUpuUlISFBJbADAyMgI8+fPh5eXl9aCIyIiItKUpGEpKysrZGRklCvPzMyEpaVltYMiIiIikkpScjN27FhMmzYNMTExyMzMxK1bt7Bz5074+/tzKTgRERHplKRhqa+++goymQyTJ09GaWkpAMDY2BgzZszAv//9b60GSERERKQJScmNXC7HypUrERoaiuvXr0MIgRYtWsDc3Fzb8RERERFpRKNhqcLCQsyaNQsuLi6wt7eHv78/nJyc0LFjRyY2RERE9ErQKLkJCQlBdHQ0hg4dinHjxiEuLg4zZsyoqdiIiIiINKbRsFRsbCwiIyMxbtw4AMDEiRPh4+MDhUIBQ0PDGgmQiIiISBMa9dxkZmaid+/eyvfdu3eHkZER7ty5o/XAiIiIiKTQKLlRKBSQy+UqZUZGRsoVU0RERES6ptGwlBACU6dOhYmJibLsyZMnCAgIgIWFhbIsNjZWexESERERaUCj5GbKlCnlyiZOnKi1YIiIiIiqS6PkJioqqqbiICIiItIKSY9fICIiInpVMbkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK9ITm62bt0KHx8fODs7Iz09HQAQHh6O/fv3a9ROREQE3N3dYWpqCk9PT5w4caLSurGxsRgwYADs7OxgZWWFXr164ccff5R6CkRERKSHJCU3a9euRXBwMHx9ffHo0SMoFAoAgI2NDcLDw9VuJyYmBkFBQVi0aBGSk5PRu3dvDBkyBBkZGRXWj4+Px4ABA3Dw4EEkJiaib9++GDZsGJKTk6WcBhEREekhmRBCaLpT27ZtsXz5cowcORKWlpb49ddf0axZM1y6dAmvv/46cnJy1GqnR48e6Nq1K9auXassa9OmDUaOHInQ0FC12mjXrh3Gjh2LxYsXq1U/Ly8P1tbWyM3NhZWVlVr7qKOwpBRtFz/rRUpdNgjmco1uIURERERV0OT7W1LPTVpaGrp06VKu3MTEBAUFBWq1UVJSgsTERAwcOFClfODAgTh9+rRabZSVlSE/Px8NGzastE5xcTHy8vJUXkRERKS/JCU37u7uSElJKVd+6NAhtG3bVq02cnJyoFAo4ODgoFLu4OCA7Oxstdr4+uuvUVBQgDFjxlRaJzQ0FNbW1sqXq6urWm0TERFR3SRp7GTevHmYNWsWnjx5AiEEzp07hx07diA0NBSbNm3SqC2ZTKbyXghRrqwiO3bswJIlS7B//37Y29tXWm/hwoUIDg5Wvs/Ly2OCQ0REpMckJTd+fn4oLS3F/PnzUVhYiPHjx8PFxQUrV67EuHHj1GrD1tYWhoaG5Xpp7t69W64350UxMTGYNm0adu3ahf79+1dZ18TEROUp5kRERKTfJC8Fnz59OtLT03H37l1kZ2cjMzMT06ZNU3t/uVwOT09PxMXFqZTHxcXB29u70v127NiBqVOnYvv27Rg6dKjU8ImIiEhPVXtJj62treR9g4ODMWnSJHh5eaFXr17YsGEDMjIyEBAQAODZkNLt27exZcsWAM8Sm8mTJ2PlypXo2bOnstfHzMwM1tbW1T0VIiIi0gOSkht3d/cq58XcuHFDrXbGjh2L+/fvY9myZcjKykL79u1x8OBBuLm5AQCysrJU7nmzfv16lJaWYtasWZg1a5ayfMqUKYiOjpZyKkRERKRnJCU3QUFBKu+fPn2K5ORkHD58GPPmzdOorZkzZ2LmzJkVbnsxYTl27JhGbRMREVH9Iym5mTNnToXla9asQUJCQrUCIiIiIqoOrT44c8iQIdizZ482myQiIiLSiFaTm927d1d5t2AiIiKimiZpWKpLly4qE4qFEMjOzsa9e/cQERGhteCIiIiINCUpuRk5cqTKewMDA9jZ2eH1119H69attREXERERkSQaJzelpaVo2rQpBg0aBEdHx5qIiYiIiEgyjefcGBkZYcaMGSguLq6JeIiIiIiqRdKE4h49eiA5OVnbsRARERFVm6Q5NzNnzsQ//vEP3Lp1C56enrCwsFDZ3rFjR60ER0RERKQpjZKbd999F+Hh4Rg7diwAIDAwULlNJpNBCAGZTAaFQqHdKImIiIjUpFFys3nzZvz73/9GWlpaTcVDREREVC0aJTdCCABQPtiSiIiI6FWj8YTiqp4GTkRERKRrGk8o9vDweGmC8+DBA8kBEREREVWHxsnN0qVLYW1tXROxEBEREVWbxsnNuHHjYG9vXxOxEBEREVWbRnNuON+GiIiIXnUaJTfPV0sRERERvao0GpYqKyurqTiIiIiItELSs6WIiIiIXlVMboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itMboiIiEivMLkhIiIivcLkhoiIiPQKkxsiIiLSK0xuiIiISK8wuSEiIiK9wuSGiIiI9AqTGyIiItIrTG6IiIhIrzC5ISIiIr3C5IaIiIj0CpMbIiIi0itGug6AiPSHEAKlpaVQKBS6DoWI6iBjY2MYGhpWux0mN0SkFSUlJcjKykJhYaGuQyGiOkomk6Fx48Zo0KBBtdphckNE1VZWVoa0tDQYGhrC2dkZcrkcMplM12ERUR0ihMC9e/dw69YttGzZslo9OExuiKjaSkpKUFZWBldXV5ibm+s6HCKqo+zs7HDz5k08ffq0WskNJxQTkdYYGPBPChFJp60eX/4lIiIiIr3C5IaIiIj0CpMbIqIa1rRpU4SHh0vePzo6GjY2NlqLp666efMmZDIZUlJSavxYJSUlaNGiBU6dOlXjx6ov7t69Czs7O9y+fbvGj8XkhojqtalTp2LkyJE1eozz58/jvffeU6tuRYnQ2LFjcfXqVbWP9/rrr0Mmk0Emk0Eul6N58+ZYuHAhiouLNQn7lePq6oqsrCy0b9++xo+1YcMGuLm5wcfHp9y29957D4aGhti5c2e5bZX9PqWkpEAmk+HmzZvKMiEENmzYgB49eqBBgwawsbGBl5cXwsPDa/SWCg8fPsSkSZNgbW0Na2trTJo0CY8ePapynz///BNTp06Fs7MzzM3NMXjwYFy7dk2lzoYNG/D666/DysoKMpmsXJv29vaYNGkSQkJCtHxG5TG5ISKqYXZ2dtVaRWZmZgZ7e3uN9pk+fTqysrLwxx9/4IsvvsCaNWuwZMkSyTGoQ6FQoKysrMbaNzQ0hKOjI4yMan6h7zfffAN/f/9y5YWFhYiJicG8efMQGRlZrWNMmjQJQUFBGDFiBI4ePYqUlBT861//wv79+3HkyJFqtV2V8ePHIyUlBYcPH8bhw4eRkpKCSZMmVVpfCIGRI0fixo0b2L9/P5KTk+Hm5ob+/fujoKBAWa+wsBCDBw/GP//5z0rb8vPzw7Zt2/Dw4UOtnlNFQdcrubm5AoDIzc3VarsFxU+F20f/FW4f/VcUFD/VattEr7qioiKRmpoqioqKlGVlZWWioPipTl5lZWVqxz5lyhQxYsSISrcfO3ZMdOvWTcjlcuHo6Cg++ugj8fTp//0bz8vLE+PHjxfm5ubC0dFRhIWFiT59+og5c+Yo67i5uYkVK1Yo34eEhAhXV1chl8uFk5OTmD17thBCiD59+ggAKi8hhIiKihLW1tYqce3fv194enoKExMT0ahRIzFq1CjlthePL4QQb775pujatavyfVlZmfj888+Fu7u7MDU1FR07dhS7du0qd4wWLVoIU1NT8frrr4vo6GgBQDx8+FAlrv/85z+iTZs2wtDQUNy4cUMUFxeLefPmCWdnZ2Fubi66d+8ujh49qmz35s2b4u9//7uwsbER5ubmom3btuLAgQNCCCEePHggxo8fL2xtbYWpqalo0aKF+Pbbb4UQQqSlpQkAIjk5We3Pp0+fPmL27Nli3rx54rXXXhMODg4iJCSk/Af9F4mJicLAwKDC74no6GjRs2dP8ejRI2FmZibS0tJUtlf2+5ScnCwAKOvHxMQIAGLfvn3l6paVlYlHjx5VGaNUqampAoA4e/assuzMmTMCgPjtt98q3Of3338XAMSlS5eUZaWlpaJhw4Zi48aN5eofPXpU5ffkRU2bNhWRkZEVbqvob8lzmnx/8z43RFQjip4q0Hbxjzo5duqyQTCXV//P2+3bt+Hr64upU6diy5Yt+O233zB9+nSYmpoqe0GCg4Nx6tQp/PDDD3BwcMDixYuRlJSEzp07V9jm7t27sWLFCuzcuRPt2rVDdnY2fv31VwBAbGwsOnXqhPfeew/Tp0+vNK4DBw7gzTffxKJFi7B161aUlJTgwIEDldb/9ddfcerUKTRt2lRZ9vHHHyM2NhZr165Fy5YtER8fj4kTJ8LOzg59+vTBzZs3MXr0aMyZMwf+/v5ITk7Ghx9+WK7twsJChIaGYtOmTWjUqBHs7e3h5+eHmzdvYufOnXB2dsbevXsxePBgXLx4ES1btsSsWbNQUlKC+Ph4WFhYIDU1VXlH2n/9619ITU3FoUOHYGtriz/++ANFRUWSPx8A2Lx5M4KDg/G///0PZ86cwdSpU+Hj44MBAwZU2G58fDw8PDxgZWVVbltkZCQmTpwIa2tr+Pr6IioqCkuXLq302ldm27ZtaNWqFUaMGFFum0wmg7W1daX7vuzuvb1798ahQ4cq3HbmzBlYW1ujR48eyrKePXvC2toap0+fRqtWrcrt83w409TUVFlmaGgIuVyOkydPVtjDVZXu3bvjxIkTePfddzXaTxM6T24iIiLw5ZdfIisrC+3atUN4eDh69+5daf3jx48jODgYly9fhrOzM+bPn4+AgIBajJiI6ouIiAi4urpi9erVkMlkaN26Ne7cuYOPPvoIixcvRkFBATZv3ozt27fjjTfeAABERUXB2dm50jYzMjLg6OiI/v37w9jYGE2aNEH37t0BAA0bNoShoSEsLS3h6OhYaRufffYZxo0bp/Kl2qlTp3Kxb9q0CU+fPkVJSQkMDAywZs0aAEBBQQHCwsLwyy+/oFevXgCAZs2a4eTJk1i/fj369OmDdevWoVWrVvjyyy8BAK1atcKlS5fw2WefqRzn6dOniIiIUB7/+vXr2LFjB27duqW8Dh9++CEOHz6MqKgoLF++HBkZGXjrrbfQoUMH5bH/en26dOkCLy8vAFBJyF70ss/n+X2XOnbsqJzn0bJlS6xevRo///xzpcnNzZs3K/wMr127hrNnzyI2NhYAMHHiRAQGBiIkJETjezxdu3atwkRCHS+bUG1mZlbptuzs7AqHOO3t7ZGdnV3hPq1bt4abmxsWLlyI9evXw8LCAmFhYcjOzkZWVpZGsQOAi4sLkpOTNd5PEzpNbmJiYhAUFISIiAj4+Phg/fr1GDJkCFJTU9GkSZNy9dPS0uDr64vp06fju+++w6lTpzBz5kzY2dnhrbfe0sEZEFFlzIwNkbpskM6OrQ1XrlxBr169VG4s5uPjg8ePH+PWrVt4+PAhnj59qkxOAMDa2rrKL623334b4eHhaNasGQYPHgxfX18MGzZMo3kkKSkpVfbsAMCECROwaNEi5OXl4fPPP4eVlZXy72RqaiqePHlS7su9pKQEXbp0AQD8/vvv6Natm8r2v57nc3K5HB07dlS+T0pKghACHh4eKvWKi4vRqFEjAEBgYCBmzJiBI0eOoH///njrrbeUbcyYMQNvvfUWkpKSMHDgQIwcORLe3t4VnuPLPp/n3yN/jQ8AnJyccPfu3UquHFBUVKTSS/FcZGQkBg0aBFtbWwCAr68vpk2bhp9++gkDBw6stL2KCCEk37CuRYsWkvZ7rqLjVhWPsbEx9uzZg2nTpikT8P79+2PIkCGSjm9mZlbjz6DTaXITFhaGadOmKbu0wsPD8eOPP2Lt2rUIDQ0tV3/dunVo0qSJciVBmzZtkJCQgK+++orJDdErRiaTaWVoSJcq+oMvhADw7Pz++nNFdSri6uqK33//HXFxcfjpp58wc+ZMfPnllzh+/DiMjY3Viquq/5k/Z21trfwS/O6779CuXTtERkZi2rRpykm/Bw4cgIuLi8p+JiYmynNQ57zMzMxU6pWVlcHQ0BCJiYnlbp//fDjF398fgwYNwoEDB3DkyBGEhobi66+/xuzZszFkyBCkp6fjwIED+Omnn/DGG29g1qxZ+Oqrr8od+2Wfz3MvXleZTFblxGdbW1tcvHhRpUyhUGDLli3Izs5WSUQVCgUiIyOVyY2VlRXS09PLtfl85dDz4SYPDw9cuXKl0hiqUp1hKUdHR/z555/lyu/duwcHB4dK2/T09ERKSgpyc3NRUlICOzs79OjRQ9nDpokHDx7Azs5O4/00obPVUiUlJUhMTCyX7Q4cOBCnT5+ucJ8zZ86Uqz9o0CAkJCTg6dOnFe5TXFyMvLw8lRcRkTratm2L06dPq3ypnz59GpaWlnBxcUHz5s1hbGyMc+fOKbfn5eWVWyL7IjMzMwwfPhyrVq3CsWPHcObMGeWXqVwuh0KhqHL/jh074ueff1b7PIyNjfHPf/4TH3/8MQoLC9G2bVuYmJggIyMDLVq0UHm5uroCeDYUcf78eZV2EhISXnqsLl26QKFQ4O7du+Xa/utQm6urKwICAhAbG4t//OMf2Lhxo3KbnZ0dpk6diu+++w7h4eHYsGFDhcd62ecjVZcuXfDbb7+ptHvw4EHk5+cjOTkZKSkpyteuXbuwb98+3L9/H8Cz63bp0iU8efJEpc3z58/Dzs4Or732GoBnK5auXr2K/fv3lzu+EAK5ubmVxvfX41f02rRpU6X79urVC7m5uSq/s//73/+Qm5tbaQ/ZX1lbW8POzg7Xrl1DQkJChXOGXubSpUvKHsKaorPkJicnBwqFolym6ODgUOm4X3Z2doX1S0tLkZOTU+E+oaGhyrX81tbWyn+4RETP5ebmlvuCyMjIwMyZM5GZmYnZs2fjt99+w/79+xESEoLg4GAYGBjA0tISU6ZMwbx583D06FFcvnwZ7777LgwMDCrt4o+OjkZkZCQuXbqEGzduYOvWrTAzM4ObmxuAZ3NM4uPjcfv27Ur/roWEhGDHjh0ICQnBlStXcPHiRXzxxRdVnuP48eMhk8kQEREBS0tLfPjhh5g7dy42b96M69evIzk5GWvWrMHmzZsBAO+//z5+++03fPTRR7h69Sq+//57REdHA6j6+T8eHh6YMGECJk+ejNjYWKSlpeH8+fP4/PPPcfDgQQBAUFAQfvzxR6SlpSEpKQm//PIL2rRpAwBYvHgx9u/fjz/++AOXL1/Gf//7X+W2F73s85Gqb9++KCgowOXLl5VlkZGRGDp0KDp16oT27dsrX2+99Rbs7Ozw3XffAXg2HGhkZIRJkyYhISEB169fx3fffYfQ0FDMmzdP2d6YMWMwduxYvPPOOwgNDUVCQgLS09Px3//+F/3798fRo0crje/FpPHFV1WJXZs2bTB48GBMnz4dZ8+exdmzZzF9+nT8/e9/VxlObd26Nfbu3at8v2vXLhw7dky5HHzAgAEYOXKkSodDdnY2UlJS8McffwAALl68iJSUFDx48EBZp7CwsMKODa176XqqGnL79m0BQJw+fVql/NNPPxWtWrWqcJ+WLVuK5cuXq5SdPHlSABBZWVkV7vPkyRORm5urfGVmZtbIUvC/LnvVZBkqkT6oavnmq27KlCnlll8DEFOmTBFCSFsK3r17d7FgwQJlnb8uBd+7d6/o0aOHsLKyEhYWFqJnz57ip59+UtY9c+aM6NixozAxMalyKfiePXtE586dhVwuF7a2tuLNN99UbqtoKbgQQnz22WfCzs5O5Ofni7KyMrFy5UrRqlUrYWxsLOzs7MSgQYPE8ePHlfWfLwU3MTERr7/+uli7dq0AoPycK4pLCCFKSkrE4sWLRdOmTYWxsbFwdHQUo0aNEhcuXBBCCPHBBx+I5s2bCxMTE2FnZycmTZokcnJyhBBCfPLJJ6JNmzbCzMxMNGzYUIwYMULcuHFDCCF9KfiL12LEiBHKz7cy48aNU36G2dnZwsjISHz//fcV1p09e7bo0KGD8v21a9fEW2+9JVxcXISFhYXo0KGDWL16tVAoFCr7KRQKsXbtWtGtWzdhbm4urKyshKenp1i5cqUoLCysMr7quH//vpgwYYKwtLQUlpaWYsKECeWWbQMQUVFRyvcrV64UjRs3FsbGxqJJkybi448/FsXFxSr7hISEVPhv6a/tbN++vdLveCG0txRcZ8lNcXGxMDQ0FLGxsSrlgYGB4m9/+1uF+/Tu3VsEBgaqlMXGxgojIyNRUlKi1nFr6j43RPVZXU5utO3x48fC2tpabNq0SdehaN2nn34qGjdurOswasWFCxeEvb29yMvL03UoeqVbt25i27ZtlW7XVnKjs2EpuVwOT09PxMXFqZTHxcVVOu7Xq1evcvWPHDkCLy8vtSfiERFpU3JyMnbs2IHr168jKSkJEyZMAABJcxFeNRERETh//rxy+OzLL7/ElClTdB1WrejQoQO++OILlcclUPXcvXsXo0ePxjvvvFPzB6tWClZNO3fuFMbGxiIyMlKkpqaKoKAgYWFhIW7evCmEEGLBggVi0qRJyvo3btwQ5ubmYu7cuSI1NVVERkYKY2NjsXv3brWPyZ4bIu2rzz03SUlJomvXrsLCwkK89tpron///srhl7ouKChIODk5CRMTE9GyZUuxbNkylSEfIm3TizsUjx07Fvfv38eyZcuUD0M7ePCgcmJdVlYWMjIylPXd3d1x8OBBzJ07F2vWrIGzszNWrVrFZeBEpDNdunRBYmKirsOoEStWrMCKFSt0HQaRxmRCVHFDBj2Ul5cHa2tr5ObmVnhrbSLS3JMnT5CWlgZ3d/cKb35GRKSOqv6WaPL9zaeCE5HW1LP/KxGRlmnrbwiTGyKqtucT+mv6lupEpN9KSkoAoNzdrTVVt++NTkSvBENDQ9jY2Cif12Nubi75uTlEVD+VlZXh3r17MDc31+hZaxVhckNEWvH81vpVPZCQiKgqBgYGaNKkSbX/c8Tkhoi0QiaTwcnJCfb29pU+642IqCpyubxaj854jskNEWmVoaFhtcfLiYiqgxOKiYiISK8wuSEiIiK9wuSGiIiI9Eq9m3Pz/AZBeXl5Oo6EiIiI1PX8e1udG/3Vu+QmPz8fAODq6qrjSIiIiEhT+fn5sLa2rrJOvXu2VFlZGe7cuQNLS0ut32QsLy8Prq6uyMzM5HOrahCvc+3gda4dvM61h9e6dtTUdRZCID8/H87Ozi9dLl7vem4MDAzQuHHjGj2GlZUV/+HUAl7n2sHrXDt4nWsPr3XtqInr/LIem+c4oZiIiIj0CpMbIiIi0itMbrTIxMQEISEhMDEx0XUoeo3XuXbwOtcOXufaw2tdO16F61zvJhQTERGRfmPPDREREekVJjdERESkV5jcEBERkV5hckNERER6hcmNhiIiIuDu7g5TU1N4enrixIkTVdY/fvw4PD09YWpqimbNmmHdunW1FGndpsl1jo2NxYABA2BnZwcrKyv06tULP/74Yy1GW3dp+vv83KlTp2BkZITOnTvXbIB6QtPrXFxcjEWLFsHNzQ0mJiZo3rw5vv3221qKtu7S9Dpv27YNnTp1grm5OZycnODn54f79+/XUrR1U3x8PIYNGwZnZ2fIZDLs27fvpfvo5HtQkNp27twpjI2NxcaNG0VqaqqYM2eOsLCwEOnp6RXWv3HjhjA3Nxdz5swRqampYuPGjcLY2Fjs3r27liOvWzS9znPmzBGff/65OHfunLh69apYuHChMDY2FklJSbUced2i6XV+7tGjR6JZs2Zi4MCBolOnTrUTbB0m5ToPHz5c9OjRQ8TFxYm0tDTxv//9T5w6daoWo657NL3OJ06cEAYGBmLlypXixo0b4sSJE6Jdu3Zi5MiRtRx53XLw4EGxaNEisWfPHgFA7N27t8r6uvoeZHKjge7du4uAgACVstatW4sFCxZUWH/+/PmidevWKmXvv/++6NmzZ43FqA80vc4Vadu2rVi6dKm2Q9MrUq/z2LFjxccffyxCQkKY3KhB0+t86NAhYW1tLe7fv18b4ekNTa/zl19+KZo1a6ZStmrVKtG4ceMai1HfqJPc6Op7kMNSaiopKUFiYiIGDhyoUj5w4ECcPn26wn3OnDlTrv6gQYOQkJCAp0+f1lisdZmU6/yisrIy5Ofno2HDhjURol6Qep2joqJw/fp1hISE1HSIekHKdf7hhx/g5eWFL774Ai4uLvDw8MCHH36IoqKi2gi5TpJynb29vXHr1i0cPHgQQgj8+eef2L17N4YOHVobIdcbuvoerHcPzpQqJycHCoUCDg4OKuUODg7Izs6ucJ/s7OwK65eWliInJwdOTk41Fm9dJeU6v+jrr79GQUEBxowZUxMh6gUp1/natWtYsGABTpw4ASMj/ulQh5TrfOPGDZw8eRKmpqbYu3cvcnJyMHPmTDx48IDzbioh5Tp7e3tj27ZtGDt2LJ48eYLS0lIMHz4c33zzTW2EXG/o6nuQPTcakslkKu+FEOXKXla/onJSpel1fm7Hjh1YsmQJYmJiYG9vX1Ph6Q11r7NCocD48eOxdOlSeHh41FZ4ekOT3+eysjLIZDJs27YN3bt3h6+vL8LCwhAdHc3em5fQ5DqnpqYiMDAQixcvRmJiIg4fPoy0tDQEBATURqj1ii6+B/nfLzXZ2trC0NCw3P8C7t69Wy4rfc7R0bHC+kZGRmjUqFGNxVqXSbnOz8XExGDatGnYtWsX+vfvX5Nh1nmaXuf8/HwkJCQgOTkZH3zwAYBnX8JCCBgZGeHIkSPo169frcRel0j5fXZycoKLiwusra2VZW3atIEQArdu3ULLli1rNOa6SMp1Dg0NhY+PD+bNmwcA6NixIywsLNC7d298+umn7FnXEl19D7LnRk1yuRyenp6Ii4tTKY+Li4O3t3eF+/Tq1atc/SNHjsDLywvGxsY1FmtdJuU6A896bKZOnYrt27dzzFwNml5nKysrXLx4ESkpKcpXQEAAWrVqhZSUFPTo0aO2Qq9TpPw++/j44M6dO3j8+LGy7OrVqzAwMEDjxo1rNN66Ssp1LiwshIGB6legoaEhgP/rWaDq09n3YI1OV9Yzz5caRkZGitTUVBEUFCQsLCzEzZs3hRBCLFiwQEyaNElZ//kSuLlz54rU1FQRGRnJpeBq0PQ6b9++XRgZGYk1a9aIrKws5evRo0e6OoU6QdPr/CKullKPptc5Pz9fNG7cWIwePVpcvnxZHD9+XLRs2VL4+/vr6hTqBE2vc1RUlDAyMhIRERHi+vXr4uTJk8LLy0t0795dV6dQJ+Tn54vk5GSRnJwsAIiwsDCRnJysXHL/qnwPMrnR0Jo1a4Sbm5uQy+Wia9eu4vjx48ptU6ZMEX369FGpf+zYMdGlSxchl8tF06ZNxdq1a2s54rpJk+vcp08fAaDca8qUKbUfeB2j6e/zXzG5UZ+m1/nKlSuif//+wszMTDRu3FgEBweLwsLCWo667tH0Oq9atUq0bdtWmJmZCScnJzFhwgRx69atWo66bjl69GiVf29fle9BmRDsfyMiIiL9wTk3REREpFeY3BAREZFeYXJDREREeoXJDREREekVJjdERESkV5jcEBERkV5hckNERER6hckNERER6RUmN0QViI6Oho2Nja7DkKxp06YIDw+vss6SJUvQuXPnWonnVfPLL7+gdevWKCsrq5XjvSqfh5RjyGQy7Nu3r1rHnTp1KkaOHFmtNirSrVs3xMbGar1dqvuY3JDemjp1KmQyWbnXH3/8oevQEB0drRKTk5MTxowZg7S0NK20f/78ebz33nvK9xV9QX344Yf4+eeftXK8yrx4ng4ODhg2bBguX76scTvaTDbnz5+PRYsWKR+cWF8+j7okPj4ew4YNg7Ozc6UJ1r/+9S8sWLCg1pJUqjuY3JBeGzx4MLKyslRe7u7uug4LwLMnbWdlZeHOnTvYvn07UlJSMHz4cCgUimq3bWdnB3Nz8yrrNGjQAI0aNar2sV7mr+d54MABFBQUYOjQoSgpKanxY1fk9OnTuHbtGt5+++1K49Tnz6OuKCgoQKdOnbB69epK6wwdOhS5ubn48ccfazEyqguY3JBeMzExgaOjo8rL0NAQYWFh6NChAywsLODq6oqZM2fi8ePHlbbz66+/om/fvrC0tISVlRU8PT2RkJCg3H769Gn87W9/g5mZGVxdXREYGIiCgoIqY5PJZHB0dISTkxP69u2LkJAQXLp0SdmztHbtWjRv3hxyuRytWrXC1q1bVfZfsmQJmjRpAhMTEzg7OyMwMFC57a/DIE2bNgUAjBo1CjKZTPn+r0MUP/74I0xNTfHo0SOVYwQGBqJPnz5aO08vLy/MnTsX6enp+P3335V1qvo8jh07Bj8/P+Tm5ip7VpYsWQIAKCkpwfz58+Hi4gILCwv06NEDx44dqzKenTt3YuDAgTA1Na00Tn3+PP7q/PnzGDBgAGxtbWFtbY0+ffogKSmpXL2srCwMGTIEZmZmcHd3x65du1S23759G2PHjsVrr72GRo0aYcSIEbh586bacVRkyJAh+PTTT/Hmm29WWsfQ0BC+vr7YsWNHtY5F+ofJDdVLBgYGWLVqFS5duoTNmzfjl19+wfz58yutP2HCBDRu3Bjnz59HYmIiFixYAGNjYwDAxYsXMWjQILz55pu4cOECYmJicPLkSXzwwQcaxWRmZgYAePr0Kfbu3Ys5c+bgH//4By5duoT3338ffn5+OHr0KABg9+7dWLFiBdavX49r165h37596NChQ4Xtnj9/HgAQFRWFrKws5fu/6t+/P2xsbLBnzx5lmUKhwPfff48JEyZo7TwfPXqE7du3A4Dy+gFVfx7e3t4IDw9X9qxkZWXhww8/BAD4+fnh1KlT2LlzJy5cuIC3334bgwcPxrVr1yqNIT4+Hl5eXi+NtT58Hvn5+ZgyZQpOnDiBs2fPomXLlvD19UV+fr5KvX/9619466238Ouvv2LixIl45513cOXKFQBAYWEh+vbtiwYNGiA+Ph4nT55EgwYNMHjw4Ep7554PA2pD9+7dceLECa20RXqkxp87TqQjU6ZMEYaGhsLCwkL5Gj16dIV1v//+e9GoUSPl+6ioKGFtba18b2lpKaKjoyvcd9KkSeK9995TKTtx4oQwMDAQRUVFFe7zYvuZmZmiZ8+eonHjxqK4uFh4e3uL6dOnq+zz9ttvC19fXyGEEF9//bXw8PAQJSUlFbbv5uYmVqxYoXwPQOzdu1elTkhIiOjUqZPyfWBgoOjXr5/y/Y8//ijkcrl48OBBtc4TgLCwsBDm5uYCgAAghg8fXmH95172eQghxB9//CFkMpm4ffu2Svkbb7whFi5cWGnb1tbWYsuWLeXirA+fx4vHeFFpaamwtLQU//nPf1RiDQgIUKnXo0cPMWPGDCGEEJGRkaJVq1airKxMub24uFiYmZmJH3/8UQjx7N/iiBEjlNtjY2NFq1atKo3jRRVdr+f2798vDAwMhEKhULs90n/suSG91rdvX6SkpChfq1atAgAcPXoUAwYMgIuLCywtLTF58mTcv3+/0i794OBg+Pv7o3///vj3v/+N69evK7clJiYiOjoaDRo0UL4GDRqEsrKyKiek5ubmokGDBsqhmJKSEsTGxkIul+PKlSvw8fFRqe/j46P83/Lbb7+NoqIiNGvWDNOnT8fevXtRWlparWs1YcIEHDt2DHfu3AEAbNu2Db6+vnjttdeqdZ6WlpZISUlBYmIi1q1bh+bNm2PdunUqdTT9PAAgKSkJQgh4eHioxHT8+HGVz+dFRUVF5YakgPrzefzV3bt3ERAQAA8PD1hbW8Pa2hqPHz9GRkaGSr1evXqVe//83BMTE/HHH3/A0tJSGUfDhg3x5MmTSj+HUaNG4bffftPoelTGzMwMZWVlKC4u1kp7pB+MdB0AUU2ysLBAixYtVMrS09Ph6+uLgIAAfPLJJ2jYsCFOnjyJadOm4enTpxW2s2TJEowfPx4HDhzAoUOHEBISgp07d2LUqFEoKyvD+++/rzLH4rkmTZpUGpulpSWSkpJgYGAABwcHWFhYqGx/sdteCKEsc3V1xe+//464uDj89NNPmDlzJr788kscP35cZbhHE927d0fz5s2xc+dOzJgxA3v37kVUVJRyu9TzNDAwUH4GrVu3RnZ2NsaOHYv4+HgA0j6P5/EYGhoiMTERhoaGKtsaNGhQ6X62trZ4+PBhufL68nn81dSpU3Hv3j2Eh4fDzc0NJiYm6NWrl1qTvZ+fe1lZGTw9PbFt27Zydezs7NSKozoePHgAc3Nz5TAiEcDkhuqhhIQElJaW4uuvv1YuBf7+++9fup+Hhwc8PDwwd+5cvPPOO4iKisKoUaPQtWtXXL58uVwS9TJ//dJ/UZs2bXDy5ElMnjxZWXb69Gm0adNG+d7MzAzDhw/H8OHDMWvWLLRu3RoXL15E165dy7VnbGys1qqf8ePHY9u2bWjcuDEMDAwwdOhQ5Tap5/miuXPnIiwsDHv37sWoUaPU+jzkcnm5+Lt06QKFQoG7d++id+/eah+/S5cuSE1NLVdeHz+PEydOICIiAr6+vgCAzMxM5OTklKt39uxZlXM/e/YsunTpoowjJiYG9vb2sLKykhyLVJcuXarwGlP9xmEpqneaN2+O0tJSfPPNN7hx4wa2bt1abpjkr4qKivDBBx/g2LFjSE9Px6lTp3D+/HnlF9tHH32EM2fOYNasWUhJScG1a9fwww8/YPbs2ZJjnDdvHqKjo7Fu3Tpcu3YNYWFhiI2NVU6kjY6ORmRkJC5duqQ8BzMzM7i5uVXYXtOmTfHzzz8jOzu7wl6L5yZMmICkpCR89tlnGD16tMrwjbbO08rKCv7+/ggJCYEQQq3Po2nTpnj8+DF+/vln5OTkoLCwEB4eHpgwYQImT56M2NhYpKWl4fz58/j8889x8ODBSo8/aNAgnDx5UqOY9fXzaNGiBbZu3YorV67gf//7HyZMmFBhD8iuXbvw7bff4urVqwgJCcG5c+eUE5cnTJgAW1tbjBgxAidOnEBaWhqOHz+OOXPm4NatWxUed+/evWjdunWVsT1+/Fg5nAwAaWlpSElJKTdkduLECQwcOFDtc6Z6QrdTfohqzouTGP8qLCxMODk5CTMzMzFo0CCxZcsWAUA8fPhQCKE6wbS4uFiMGzdOuLq6CrlcLpydncUHH3ygMmnz3LlzYsCAAaJBgwbCwsJCdOzYUXz22WeVxlbRBNkXRUREiGbNmgljY2Ph4eGhMgl27969okePHsLKykpYWFiInj17ip9++km5/cUJrD/88INo0aKFMDIyEm5ubkKIyieXduvWTQAQv/zyS7lt2jrP9PR0YWRkJGJiYoQQL/88hBAiICBANGrUSAAQISEhQgghSkpKxOLFi0XTpk2FsbGxcHR0FKNGjRIXLlyoNKYHDx4IMzMz8dtvv700zr/Sh8/jxWMkJSUJLy8vYWJiIlq2bCl27dpV4eTnNWvWiAEDBggTExPh5uYmduzYodJuVlaWmDx5srC1tRUmJiaiWbNmYvr06SI3N1cIUf7f4vOJ5lU5evSocgL6X19TpkxR1rl165YwNjYWmZmZVbZF9Y9MCCF0k1YREenG/PnzkZubi/Xr1+s6FKqGefPmITc3Fxs2bNB1KPSK4bAUEdU7ixYtgpubm1buPky6Y29vj08++UTXYdAriD03REREpFfYc0NERER6hckNERER6RUmN0RERKRXmNwQERGRXmFyQ0RERHqFyQ0RERHpFSY3REREpFeY3BAREZFeYXJDREREeuX/A9eIVfBC6FycAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display = RocCurveDisplay.from_estimator(lor, X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33af49d3-3daf-4b9a-95fd-c1ded3c2c037", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "26c8a6dd-7d3e-4165-b802-013a646bb851", + "metadata": {}, + "source": [ + "## Decision Tree\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "609d8e9c-b92e-4d7d-ac40-f8edca2020ae", + "metadata": {}, + "outputs": [], + "source": [ + "mdl = DecisionTreeClassifier(criterion=\"entropy\", max_depth=6)\n", + "mdl.fit(X_train,y_train)\n", + "y_p = mdl.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "cda9a8e7-83f6-43c7-841e-ce6f85d92d84", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.76 0.76 0.76 29\n", + " 1 0.74 0.74 0.74 27\n", + "\n", + " accuracy 0.75 56\n", + " macro avg 0.75 0.75 0.75 56\n", + "weighted avg 0.75 0.75 0.75 56\n", + "\n" + ] + } + ], + "source": [ + "print(classification_report(y_test, y_p))" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "7e85f163-fb7d-4fef-bc5e-cf27645dba8d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAG2CAYAAACEWASqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwl0lEQVR4nO3dfXwU9bn///eEkE2AbDBgEiJJAOVeBATkRoTQKhhtBG2PUDyKiHdFRBqLiBSJ9kDERw8iIkjtr4RjpeJpFdFahMqdKKgBoq1wQDRAFGOwICEBcrM73z8i++sahGxmN7uTeT0fj3nUub+iKRfX9fnMjGGapikAAGBLUeEOAAAANByJHAAAGyORAwBgYyRyAABsjEQOAICNkcgBALAxEjkAADZGIgcAwMZI5AAA2BiJHAAAGyORAwAQAnl5eRowYIDi4+OVlJSkMWPGaO/evb791dXVmjFjhnr16qWWLVsqNTVVt912mw4fPhzQfUjkAACEwObNm3Xfffdp+/btWr9+vWpqajRy5EhVVFRIkk6ePKmdO3dq9uzZ2rlzp1555RXt27dPN9xwQ0D3MfhoCgAAoXfkyBElJSVp8+bNGjZs2FmP+fDDD3XFFVfo4MGDSk9Pr9d1o4MZZGPzer06fPiw4uPjZRhGuMMBAATINE2dOHFCqampiooKXZP49OnTqqqqsnwd0zTr5BuXyyWXy3Xec48fPy5JSkxMPOcxhmGodevWAQVlW8XFxaYkFhYWFhabL8XFxSHLFadOnTJTkpoFJc5WrVrV2TZnzpzzxuD1es3s7Gxz6NCh54yzX79+5i233BLQz2frijw+Pl6SdHBnB7lbMdyPpunGLr3CHQIQMjWq1la96fvzPBSqqqpUUurRwR0d5I5veK4oO+FVRr8DKi4ultvt9m2vTzU+ZcoUffzxx9q6detZ91dXV2vcuHHyer1asmRJQHHZOpGfaW+4W0VZ+o8DRLJoo3m4QwBCx6z9n8YYHm0Vb6hVfMPv49V3Ocft9kvk53P//fdrzZo12rJli9q3b19nf3V1tW6++WYVFRVpw4YNAV1bsnkiBwCgvjymVx7T2vmBME1T999/v1599VVt2rRJHTt2rHPMmST+6aefauPGjWrTpk3AcZHIAQCO4JUprxqeyQM997777tPKlSv12muvKT4+XiUlJZKkhIQExcXFqaamRj/72c+0c+dOvfHGG/J4PL5jEhMTFRMTU6/7kMgBAAiBpUuXSpIyMzP9ti9fvly33367vvjiC61Zs0aS1KdPH79jNm7cWOe8H0IiBwA4gldeBdYcr3t+IMzzvKalQ4cO5z2mPkjkAABH8JimPBYSp5VzQ4mp3gAA2BgVOQDAERp7sltjIZEDABzBK1OeJpjIaa0DAGBjVOQAAEegtQ4AgI0xax0AAEQcKnIAgCN4v1usnB+JSOQAAEfwWJy1buXcUCKRAwAcwWPK4tfPghdLMDFGDgCAjVGRAwAcgTFyAABszCtDHhmWzo9EtNYBALAxKnIAgCN4zdrFyvmRiEQOAHAEj8XWupVzQ4nWOgAANkZFDgBwhKZakZPIAQCO4DUNeU0Ls9YtnBtKtNYBALAxKnIAgCPQWgcAwMY8ipLHQiPaE8RYgolEDgBwBNPiGLnJGDkAAAg2KnIAgCMwRg4AgI15zCh5TAtj5BH6ilZa6wAA2BgVOQDAEbwy5LVQv3oVmSU5iRwA4AhNdYyc1joAADZGRQ4AcATrk91orQMAEDa1Y+QWPppCax0AAAQbFTkAwBG8Ft+1zqx1AADCiDFyAABszKuoJvkcOWPkAADYGIkcAOAIHtOwvAQiLy9PAwYMUHx8vJKSkjRmzBjt3bvX7xjTNJWbm6vU1FTFxcUpMzNTn3zySUD3IZEDABzB891kNytLIDZv3qz77rtP27dv1/r161VTU6ORI0eqoqLCd8yTTz6pBQsWaPHixfrwww+VkpKia665RidOnKj3fRgjBwAgBNauXeu3vnz5ciUlJWnHjh0aNmyYTNPUwoULNWvWLN10002SpBUrVig5OVkrV67UPffcU6/7UJEDABzBa0ZZXiSprKzMb6msrKzX/Y8fPy5JSkxMlCQVFRWppKREI0eO9B3jcrk0fPhwvffee/X+uUjkAABHCFZrPS0tTQkJCb4lLy/vvPc2TVM5OTkaOnSoLr30UklSSUmJJCk5Odnv2OTkZN+++qC1DgBAAIqLi+V2u33rLpfrvOdMmTJFH3/8sbZu3Vpnn2H4T6IzTbPOtnMhkQMAHMErBTzz/PvnS5Lb7fZL5Odz//33a82aNdqyZYvat2/v256SkiKptjJv166db3tpaWmdKv1caK0DABzhzAthrCyBME1TU6ZM0SuvvKINGzaoY8eOfvs7duyolJQUrV+/3retqqpKmzdv1pAhQ+p9HypyAABC4L777tPKlSv12muvKT4+3jfunZCQoLi4OBmGoWnTpmnevHnq3LmzOnfurHnz5qlFixYaP358ve9DIgcAOIL1d60Hdu7SpUslSZmZmX7bly9frttvv12S9NBDD+nUqVOaPHmyjh07poEDB2rdunWKj4+v931I5AAAR2js75Gb9fjIimEYys3NVW5ubgOjIpEDAByisSvyxhKZUQEAgHqhIgcAOEJD3pf+/fMjEYkcAOAIXtOQ18pz5BbODaXI/OsFAACoFypyAIAjeC221gN9IUxjIZEDABzh379g1tDzI1FkRgUAAOqFihwA4AgeGfJYeCGMlXNDiUQOAHAEWusAACDiUJEDABzBI2vtcU/wQgkqEjkAwBGaamudRA4AcAQ+mgIAACIOFTkAwBFMi98jN3n8DACA8KG1DgAAIg4VOQDAEZrqZ0xJ5AAAR/BY/PqZlXNDKTKjAgAA9UJFDgBwBFrrAADYmFdR8lpoRFs5N5QiMyoAAFAvVOQAAEfwmIY8FtrjVs4NJRI5AMARGCMHAMDGTItfPzN5sxsAAAg2KnIAgCN4ZMhj4cMnVs4NJRI5AMARvKa1cW6vGcRggojWOgAANkZFjjpeeiZJ777ZWsX7XYqJ9apH/5OaNOuw0i6plCTVVEv589vpww1ufXUwRi3dXvW96oQmPXJYbVJqwhw9ELgV7+9WSlp1ne1r8tvo2UfahyEihILX4mQ3K+eGUtijWrJkiTp27KjY2Fj169dP77zzTrhDcryPt7VS9u3faOEbnyrvpc/k8UiP/PxinT5Z++tSeSpK+//RQuOnfa1n39qnR39fpC8/d2nO7Z3CHDnQMFOzumhc7x6+5eGxtb/L77zeOryBIai8MiwvkSisFfmqVas0bdo0LVmyRFdeeaWWLVumrKws7d69W+np6eEMzdHmrfzcb/3Bpw5pbK9e+vTjOPUaVKGWbq+eWPWZ3zGT/+sLTb2uq0q/aK6k9nUrGyCSHT/q/0fh2CmlOlwUo4+3tQxTRED9hbUiX7BggSZNmqQ777xT3bt318KFC5WWlqalS5eGMyx8T0VZM0lSfGvPOY8xDFMtE374GMAOopt79aOfHtNbLyVKEVqBoWHOvNnNyhKJwpbIq6qqtGPHDo0cOdJv+8iRI/Xee++FKSp8n2lKv8u9SD2vKFeHbqfPekzVaUN/mJeqETceU8t4byNHCATXkGvL1Mrt0bqXE8MdCoLszBi5lSUSha21/s0338jj8Sg5Odlve3JyskpKSs56TmVlpSorK33rZWVlIY0R0rOPXKSiPXH679WfnnV/TbU07xcdZHqlKXlfNHJ0QPCN+vm/9OFGt45+3TzcoQD1Eva/XhiGf6vCNM06287Iy8tTQkKCb0lLS2uMEB3r2VkXadu6BD355/26MLXuuHdNtTT3ng4qKY5R3kufUY3D9pIuqlLfq8q1diXVeFPkleF733qDlggdaglbIm/btq2aNWtWp/ouLS2tU6WfMXPmTB0/fty3FBcXN0aojmOa0uJHLtK7f0vQk/+7XynpVXWOOZPEvyxy6YlV++VOZGwc9jdy3FF9+0203v+7O9yhIARMizPWTRK5v5iYGPXr10/r16/3275+/XoNGTLkrOe4XC653W6/BcG3+JH22vBKoh5+9qDiWnl1tDRaR0ujVXmq9pfYUyP95q6O2vdRC81YfFBej+E7proqMn/RgfMxDFMjxx7V3//3Ank9/B43RZaq8QZ8OW3Lli3Kzs5WamqqDMPQ6tWr/faXl5drypQpat++veLi4tS9e/cGTfYO6+NnOTk5uvXWW9W/f38NHjxYv/vd73To0CHde++94QzL8d5Y0VaSNP2nnf22P/jUIY0ce1RHvorR9nUJkqTJ13TzO+bJP+9X7yHljRMoEER9h5UruX213nqpTbhDQRNRUVGh3r17a+LEifrpT39aZ/8vf/lLbdy4UX/84x/VoUMHrVu3TpMnT1ZqaqpGjx5d7/uENZGPHTtW//rXv/T444/rq6++0qWXXqo333xTGRkZ4QzL8d46XHjO/SlpVec9BrCbnZvjNSq1d7jDQAg19pvdsrKylJWV9YP7t23bpgkTJigzM1OSdPfdd2vZsmUqKCgIKJGHfbLb5MmTdeDAAVVWVmrHjh0aNmxYuEMCADRBwWqtl5WV+S3//jRVIIYOHao1a9boyy+/lGma2rhxo/bt26dRo0YFdJ2wJ3IAAOwkLS3N7wmqvLy8Bl1n0aJF6tGjh9q3b6+YmBhde+21WrJkiYYOHRrQdfhoCgDAEay+L/3MucXFxX6TrV0uV4Out2jRIm3fvl1r1qxRRkaGtmzZosmTJ6tdu3a6+uqr630dEjkAwBEaMvP8++dLCspTU6dOndIjjzyiV199Vddff70k6bLLLlNhYaF++9vfBpTIaa0DANDIqqurVV1drago/zTcrFkzeb2BvVyLihwA4AjBqsjrq7y8XPv37/etFxUVqbCwUImJiUpPT9fw4cM1ffp0xcXFKSMjQ5s3b9b//M//aMGCBQHdh0QOAHCExk7kBQUFGjFihG89JydHkjRhwgTl5+frpZde0syZM3XLLbfo6NGjysjI0Ny5cwN+lwqJHACAEMjMzJRpmj+4PyUlRcuXL7d8HxI5AMARGrsibywkcgCAI5iSpcfPfri2Di8SOQDAEZpqRc7jZwAA2BgVOQDAEZpqRU4iBwA4QlNN5LTWAQCwMSpyAIAjNNWKnEQOAHAE0zRkWkjGVs4NJVrrAADYGBU5AMARgvU98khDIgcAOEJTHSOntQ4AgI1RkQMAHKGpTnYjkQMAHKGpttZJ5AAAR2iqFTlj5AAA2BgVOQDAEUyLrfVIrchJ5AAARzAlmaa18yMRrXUAAGyMihwA4AheGTJ4sxsAAPbErHUAABBxqMgBAI7gNQ0ZvBAGAAB7Mk2Ls9YjdNo6rXUAAGyMihwA4AhNdbIbiRwA4AgkcgAAbKypTnZjjBwAABujIgcAOEJTnbVOIgcAOEJtIrcyRh7EYIKI1joAADZGRQ4AcARmrQMAYGOmrH1TPEI767TWAQCwMypyAIAj0FoHAMDOmmhvndY6AMAZvqvIG7oowIp8y5Ytys7OVmpqqgzD0OrVq+scs2fPHt1www1KSEhQfHy8Bg0apEOHDgV0HxI5AAAhUFFRod69e2vx4sVn3f/ZZ59p6NCh6tatmzZt2qSPPvpIs2fPVmxsbED3obUOAHCExn6zW1ZWlrKysn5w/6xZs3TdddfpySef9G3r1KlTwHFRkQMAHMFKW/3fJ8qVlZX5LZWVlQHH4vV69de//lVdunTRqFGjlJSUpIEDB561/X4+JHIAAAKQlpamhIQE35KXlxfwNUpLS1VeXq4nnnhC1157rdatW6cbb7xRN910kzZv3hzQtWitAwCcoQET1uqcL6m4uFhut9u32eVyBXwpr9crSRo9erR++ctfSpL69Omj9957T88995yGDx9e72uRyAEAjhCsMXK32+2XyBuibdu2io6OVo8ePfy2d+/eXVu3bg3oWrTWAQBoZDExMRowYID27t3rt33fvn3KyMgI6FpU5AAAZ2jkF8KUl5dr//79vvWioiIVFhYqMTFR6enpmj59usaOHathw4ZpxIgRWrt2rV5//XVt2rQpoPvUK5EvWrSo3hecOnVqQAEAANAYGvsVrQUFBRoxYoRvPScnR5I0YcIE5efn68Ybb9Rzzz2nvLw8TZ06VV27dtVf/vIXDR06NKD71CuRP/XUU/W6mGEYJHIAACRlZmbKPM+g/B133KE77rjD0n3qlciLioos3QQAgIgQoe9Lt6LBk92qqqq0d+9e1dTUBDMeAABCIlgvhIk0ASfykydPatKkSWrRooV69uzpe7n71KlT9cQTTwQ9QAAAgsIMwhKBAk7kM2fO1EcffaRNmzb5vdj96quv1qpVq4IaHAAAOLeAHz9bvXq1Vq1apUGDBskw/v82Q48ePfTZZ58FNTgAAILH+G6xcn7kCTiRHzlyRElJSXW2V1RU+CV2AAAiSiM/R95YAm6tDxgwQH/9619962eS9/PPP6/BgwcHLzIAAHBeAVfkeXl5uvbaa7V7927V1NTo6aef1ieffKJt27YF/MUWAAAaDRV5rSFDhujdd9/VyZMndfHFF2vdunVKTk7Wtm3b1K9fv1DECACAdWe+fmZliUANetd6r169tGLFimDHAgAAAtSgRO7xePTqq69qz549MgxD3bt31+jRoxUdzTdYAACRKVifMY00AWfef/7znxo9erRKSkrUtWtXSbWfXbvwwgu1Zs0a9erVK+hBAgBgGWPkte6880717NlTX3zxhXbu3KmdO3equLhYl112me6+++5QxAgAAH5AwBX5Rx99pIKCAl1wwQW+bRdccIHmzp2rAQMGBDU4AACCxuqEtQid7BZwRd61a1d9/fXXdbaXlpbqkksuCUpQAAAEm2FaXyJRvSrysrIy3z/PmzdPU6dOVW5urgYNGiRJ2r59ux5//HHNnz8/NFECAGBVEx0jr1cib926td/rV03T1M033+zbdubD6dnZ2fJ4PCEIEwAAnE29EvnGjRtDHQcAAKHVRMfI65XIhw8fHuo4AAAILSe31s/m5MmTOnTokKqqqvy2X3bZZZaDAgAA9dOgz5hOnDhRf/vb3866nzFyAEBEaqIVecCPn02bNk3Hjh3T9u3bFRcXp7Vr12rFihXq3Lmz1qxZE4oYAQCwzgzCEoECrsg3bNig1157TQMGDFBUVJQyMjJ0zTXXyO12Ky8vT9dff30o4gQAAGcRcEVeUVGhpKQkSVJiYqKOHDkiqfaLaDt37gxudAAABEsT/Yxpg97stnfvXklSnz59tGzZMn355Zd67rnn1K5du6AHCABAMDj6zW7/btq0afrqq68kSXPmzNGoUaP04osvKiYmRvn5+cGODwAAnEPAifyWW27x/XPfvn114MAB/d///Z/S09PVtm3boAYHAEDQNNFZ6w1+jvyMFi1a6PLLLw9GLAAAIED1SuQ5OTn1vuCCBQsaHAwAAKFiyNo4d2ROdatnIt+1a1e9LvbvH1YBAACh1yQ+mnJjl16KNpqHOwwgJCbuPRjuEICQOVnu0abGGp118kdTAACwvSY62S3g58gBAEDkoCIHADhDE63ISeQAAEew+na2SH2zG611AABsrEGJ/IUXXtCVV16p1NRUHTxYO6N24cKFeu2114IaHAAAQdNEP2MacCJfunSpcnJydN111+nbb7+Vx+ORJLVu3VoLFy4MdnwAAAQHibzWM888o+eff16zZs1Ss2bNfNv79++vf/zjH0ENDgAAu9qyZYuys7OVmpoqwzC0evXqHzz2nnvukWEYDSqIA07kRUVF6tu3b53tLpdLFRUVAQcAAEBjaOzPmFZUVKh3795avHjxOY9bvXq13n//faWmpjbo5wp41nrHjh1VWFiojIwMv+1/+9vf1KNHjwYFAQBAyDXym92ysrKUlZV1zmO+/PJLTZkyRW+99Zauv/76BoUVcCKfPn267rvvPp0+fVqmaeqDDz7Qn/70J+Xl5en3v/99g4IAACDkgvQceVlZmd9ml8sll8sV8OW8Xq9uvfVWTZ8+XT179mxwWAEn8okTJ6qmpkYPPfSQTp48qfHjx+uiiy7S008/rXHjxjU4EAAA7CAtLc1vfc6cOcrNzQ34OvPnz1d0dLSmTp1qKZ4GvRDmrrvu0l133aVvvvlGXq9XSUlJloIAACDUgvVCmOLiYrndbt/2hlTjO3bs0NNPP62dO3da/nKopRfCtG3bliQOALCHID1+5na7/ZaGJPJ33nlHpaWlSk9PV3R0tKKjo3Xw4EE9+OCD6tChQ0DXatBkt3P97eHzzz8P9JIAADjKrbfeqquvvtpv26hRo3Trrbdq4sSJAV0r4EQ+bdo0v/Xq6mrt2rVLa9eu1fTp0wO9HAAAjcNiaz3QiXLl5eXav3+/b72oqEiFhYVKTExUenq62rRp43d88+bNlZKSoq5duwZ0n4AT+QMPPHDW7c8++6wKCgoCvRwAAI2jkb9+VlBQoBEjRvjWc3JyJEkTJkxQfn6+hUD8Be3rZ1lZWZo5c6aWL18erEsCAGBbmZmZMs36Z/8DBw406D5BS+R//vOflZiYGKzLAQAQXHyPvFbfvn39JruZpqmSkhIdOXJES5YsCWpwAAAES1P9HnnAiXzMmDF+61FRUbrwwguVmZmpbt26BSsuAABQDwEl8pqaGnXo0EGjRo1SSkpKqGICAAD1FNALYaKjo/WLX/xClZWVoYoHAIDQ4HvktQYOHKhdu3aFIhYAAEKmsT9j2lgCHiOfPHmyHnzwQX3xxRfq16+fWrZs6bf/sssuC1pwAADg3OqdyO+44w4tXLhQY8eOlSS/r7UYhiHTNGUYhjweT/CjBAAgGCK0qrai3ol8xYoVeuKJJ1RUVBTKeAAACA2nP0d+5u00GRkZIQsGAAAEJqAxcqvfTAUAIFx4IYykLl26nDeZHz161FJAAACEhNNb65L02GOPKSEhIVSxAACAAAWUyMeNG6ekpKRQxQIAQMg4vrXO+DgAwNaaaGu93m92C+SbqgAAoHHUuyL3er2hjAMAgNBqohV5wK9oBQDAjhw/Rg4AgK010Yo84K+fAQCAyEFFDgBwhiZakZPIAQCO0FTHyGmtAwBgY1TkAABnoLUOAIB90VoHAAARh4ocAOAMtNYBALCxJprIaa0DAGBjVOQAAEcwvlusnB+JSOQAAGdooq11EjkAwBF4/AwAAEQcKnIAgDPQWgcAwOYiNBlbQWsdAAAboyIHADhCU53sRiIHADhDEx0jp7UOAEAIbNmyRdnZ2UpNTZVhGFq9erVvX3V1tWbMmKFevXqpZcuWSk1N1W233abDhw8HfB8SOQDAEc601q0sgaioqFDv3r21ePHiOvtOnjypnTt3avbs2dq5c6deeeUV7du3TzfccEPAPxetdQCAMzRyaz0rK0tZWVln3ZeQkKD169f7bXvmmWd0xRVX6NChQ0pPT6/3fajIAQCIAMePH5dhGGrdunVA51GRAwAcIViz1svKyvy2u1wuuVwuC5FJp0+f1sMPP6zx48fL7XYHdC4VOQDAGcwgLJLS0tKUkJDgW/Ly8iyFVV1drXHjxsnr9WrJkiUBn09FDgBwhiCNkRcXF/tVzVaq8erqat18880qKirShg0bAq7GJRI5AAABcbvdDUq433cmiX/66afauHGj2rRp06DrkMgBAI7Q2G92Ky8v1/79+33rRUVFKiwsVGJiolJTU/Wzn/1MO3fu1BtvvCGPx6OSkhJJUmJiomJiYup9HxI5AMAZGvnxs4KCAo0YMcK3npOTI0maMGGCcnNztWbNGklSnz59/M7buHGjMjMz630fEjkAACGQmZkp0/zh7H+ufYEgkQMAHMEwTRkWkqeVc0OJRA4AcAY+mgIAACINFTkAwBH4HjkAAHZGax0AAEQaKnIAgCPQWgcAwM6aaGudRA4AcISmWpEzRg4AgI1RkQMAnIHWOgAA9hap7XEraK0DAGBjVOQAAGcwzdrFyvkRiEQOAHAEZq0DAICIQ0UOAHAGZq0DAGBfhrd2sXJ+JKK1DgCAjVGR47xWvL9bKWnVdbavyW+jZx9pH4aIgIb7eJlbB9e10LefN1d0rKmkvpXq/6tjSuhU4zvGNKXCxQnau6qVqsqidGHvKg169Kgu6Fz3/wewkSbaWg9rRb5lyxZlZ2crNTVVhmFo9erV4QwHP2BqVheN693Dtzw8tpMk6Z3XW4c3MKABSj6IVbdbTugnL5do1PKv5fVIb01KVvVJw3fMP55365Plbg169Kiy/1yiuLYevTUxSdXlxjmujEh3Zta6lSUShTWRV1RUqHfv3lq8eHE4w8B5HD8arWNHmvuWgVeX6XBRjD7e1jLcoQEBG/n/larzTRW6oHO1ErtV66q8f6nicLT+9UmMpNpqfPf/xOuye4+rw8hTuqBLta6a/408p6P02Rv8ztvamefIrSwRKKyt9aysLGVlZYUzBAQourlXP/rpMb2y7EJJVCewv6oTtfWMK6F2JlP5F9E6dSRaFw095TumWYyUPOC0Sne51G1ceVjiBH6IrcbIKysrVVlZ6VsvKysLYzTONOTaMrVye7Tu5cRwhwJYZprSB3kXKLnfaV3QpXb8++SRZpKkuDb+U5Tj2npUfthWf2Tie3ghTATIy8tTQkKCb0lLSwt3SI4z6uf/0ocb3Tr6dfNwhwJYtv3xRB3bF6PhC76pu/P7DSeTHpTtmUFYIpCtEvnMmTN1/Phx31JcXBzukBwl6aIq9b2qXGtXUo3D/rb/5gId2hCna1d8rZYpHt/2FhfW/vOpb/z/eDz1r2aKbesREGls1SdyuVxyuVzhDsOxRo47qm+/idb7f3eHOxSgwUzzuyS+voWufeFrxafV+O1v1b5GcRfW6PC7cWrTo7bd7qmSvv4wVv1+dSwcISNImmpr3VaJHOFjGKZGjj2qv//vBfJ6aDDCvrY/lqjP32ipHy8pVfOWXp08Ult5x8Sbio41ZRhSj9tO6ONlCXJ3qJY7o0YfL0tQs1ivLv5JRZijhyV8/Sz4ysvLtX//ft96UVGRCgsLlZiYqPT09DBGhu/rO6xcye2r9dZLbcIdCmDJ//0pXpL0t1tT/LYPzftGnW+qTdS97iqTp9LQtscSVXW8mdr2rtSoP5SqeavI/IMczhbWRF5QUKARI0b41nNyciRJEyZMUH5+fpiiwtns3ByvUam9wx0GYNnEvQfPe4xhSH3vP66+9x9vhIjQWGith0BmZqbMCG1VAACaGF7RCgAAIg2T3QAAjkBrHQAAO/OatYuV8yMQiRwA4AyMkQMAgEhDRQ4AcARDFsfIgxZJcJHIAQDO0ETf7EZrHQAAGyORAwAc4czjZ1aWQGzZskXZ2dlKTU2VYRhavXq1337TNJWbm6vU1FTFxcUpMzNTn3zyScA/F4kcAOAMjfw98oqKCvXu3VuLFy8+6/4nn3xSCxYs0OLFi/Xhhx8qJSVF11xzjU6cOBHQfRgjBwAgBLKyspSVlXXWfaZpauHChZo1a5ZuuukmSdKKFSuUnJyslStX6p577qn3fajIAQCOYJim5UWSysrK/JbKysqAYykqKlJJSYlGjhzp2+ZyuTR8+HC99957AV2LRA4AcAZvEBZJaWlpSkhI8C15eXkBh1JSUiJJSk5O9tuenJzs21dftNYBAAhAcXGx3G63b93lcjX4Wobh/3S6aZp1tp0PiRwA4Aj/3h5v6PmS5Ha7/RJ5Q6SkpEiqrczbtWvn215aWlqnSj8fWusAAGdo5Fnr59KxY0elpKRo/fr1vm1VVVXavHmzhgwZEtC1qMgBAM7QyG92Ky8v1/79+33rRUVFKiwsVGJiotLT0zVt2jTNmzdPnTt3VufOnTVv3jy1aNFC48ePD+g+JHIAAEKgoKBAI0aM8K3n5ORIkiZMmKD8/Hw99NBDOnXqlCZPnqxjx45p4MCBWrduneLj4wO6D4kcAOAIDXk72/fPD0RmZqbMc1TxhmEoNzdXubm5DQ9KJHIAgFPw0RQAABBpqMgBAI5geGsXK+dHIhI5AMAZaK0DAIBIQ0UOAHAGqy91icyCnEQOAHCGYL2iNdLQWgcAwMaoyAEAztBEJ7uRyAEAzmDK903xBp8fgUjkAABHYIwcAABEHCpyAIAzmLI4Rh60SIKKRA4AcIYmOtmN1joAADZGRQ4AcAavJMPi+RGIRA4AcARmrQMAgIhDRQ4AcIYmOtmNRA4AcIYmmshprQMAYGNU5AAAZ2iiFTmJHADgDDx+BgCAffH4GQAAiDhU5AAAZ2CMHAAAG/OakmEhGXsjM5HTWgcAwMaoyAEAzkBrHQAAO7OYyBWZiZzWOgAANkZFDgBwBlrrAADYmNeUpfY4s9YBAECwUZEDAJzB9NYuVs6PQCRyAIAzMEYOAICNMUYOAAAiDYkcAOAMZ1rrVpYA1NTU6Ne//rU6duyouLg4derUSY8//ri83uCOtdNaBwA4gymLY+SBHT5//nw999xzWrFihXr27KmCggJNnDhRCQkJeuCBBxoex/eQyAEACIFt27Zp9OjRuv766yVJHTp00J/+9CcVFBQE9T601gEAzhCk1npZWZnfUllZedbbDR06VG+//bb27dsnSfroo4+0detWXXfddUH9sajIAQDO4PVKsjA+/d3Ydlpamt/mOXPmKDc3t87hM2bM0PHjx9WtWzc1a9ZMHo9Hc+fO1c9//vOGx3AWJHIAAAJQXFwst9vtW3e5XGc9btWqVfrjH/+olStXqmfPniosLNS0adOUmpqqCRMmBC0eEjkAwBmC9EIYt9vtl8h/yPTp0/Xwww9r3LhxkqRevXrp4MGDysvLI5EDABCwRn6z28mTJxUV5T8VrVmzZjx+BgCAHWRnZ2vu3LlKT09Xz549tWvXLi1YsEB33HFHUO9DIgcAOEMjv6L1mWee0ezZszV58mSVlpYqNTVV99xzjx599NGGx3AWJHIAgCOYplemhS+YBXpufHy8Fi5cqIULFzb4nvVBIgcAOINpWvvwSYR+/YwXwgAAYGNU5AAAZzAtjpFHaEVOIgcAOIPXKxkWHv2yML4eSrTWAQCwMSpyAIAz0FoHAMC+TK9XpoXWupVH10KJ1joAADZGRQ4AcAZa6wAA2JjXlIyml8hprQMAYGNU5AAAZzBNSVaeI4/MipxEDgBwBNNryrTQWjdJ5AAAhJHplbWKnMfPAABAkFGRAwAcgdY6AAB21kRb67ZO5Gf+dlSjakvP+AOR7GS5J9whACFz6rvf78aodq3mihpVBy+YILJ1Ij9x4oQkaaveDHMkQOhsujzcEQChd+LECSUkJITk2jExMUpJSdHWEuu5IiUlRTExMUGIKngMM1Kb/vXg9Xp1+PBhxcfHyzCMcIfjCGVlZUpLS1NxcbHcbne4wwGCit/vxmeapk6cOKHU1FRFRYVu/vXp06dVVVVl+ToxMTGKjY0NQkTBY+uKPCoqSu3btw93GI7kdrv5gw5NFr/fjStUlfi/i42NjbgEHCw8fgYAgI2RyAEAsDESOQLicrk0Z84cuVyucIcCBB2/37AjW092AwDA6ajIAQCwMRI5AAA2RiIHAMDGSOQAANgYiRz1tmTJEnXs2FGxsbHq16+f3nnnnXCHBATFli1blJ2drdTUVBmGodWrV4c7JKDeSOSol1WrVmnatGmaNWuWdu3apauuukpZWVk6dOhQuEMDLKuoqFDv3r21ePHicIcCBIzHz1AvAwcO1OWXX66lS5f6tnXv3l1jxoxRXl5eGCMDgsswDL366qsaM2ZMuEMB6oWKHOdVVVWlHTt2aOTIkX7bR44cqffeey9MUQEAJBI56uGbb76Rx+NRcnKy3/bk5GSVlJSEKSoAgEQiRwC+/6lY0zT5fCwAhBmJHOfVtm1bNWvWrE71XVpaWqdKBwA0LhI5zismJkb9+vXT+vXr/bavX79eQ4YMCVNUAABJig53ALCHnJwc3Xrrrerfv78GDx6s3/3udzp06JDuvffecIcGWFZeXq79+/f71ouKilRYWKjExESlp6eHMTLg/Hj8DPW2ZMkSPfnkk/rqq6906aWX6qmnntKwYcPCHRZg2aZNmzRixIg62ydMmKD8/PzGDwgIAIkcAAAbY4wcAAAbI5EDAGBjJHIAAGyMRA4AgI2RyAEAsDESOQAANkYiBwDAxkjkgEW5ubnq06ePb/32228Py7esDxw4IMMwVFhY+IPHdOjQQQsXLqz3NfPz89W6dWvLsRmGodWrV1u+DoC6SORokm6//XYZhiHDMNS8eXN16tRJv/rVr1RRURHyez/99NP1fhtYfZIvAJwL71pHk3Xttddq+fLlqq6u1jvvvKM777xTFRUVWrp0aZ1jq6ur1bx586DcNyEhISjXAYD6oCJHk+VyuZSSkqK0tDSNHz9et9xyi6+9e6Yd/oc//EGdOnWSy+WSaZo6fvy47r77biUlJcntdutHP/qRPvroI7/rPvHEE0pOTlZ8fLwmTZqk06dP++3/fmvd6/Vq/vz5uuSSS+RyuZSenq65c+dKkjp27ChJ6tu3rwzDUGZmpu+85cuXq3v37oqNjVW3bt20ZMkSv/t88MEH6tu3r2JjY9W/f3/t2rUr4H9HCxYsUK9evdSyZUulpaVp8uTJKi8vr3Pc6tWr1aVLF8XGxuqaa65RcXGx3/7XX39d/fr1U2xsrDp16qTHHntMNTU1AccDIHAkcjhGXFycqqurfev79+/Xyy+/rL/85S++1vb111+vkpISvfnmm9qxY4cuv/xy/fjHP9bRo0clSS+//LLmzJmjuXPnqqCgQO3atauTYL9v5syZmj9/vmbPnq3du3dr5cqVvu+4f/DBB5Kkv//97/rqq6/0yiuvSJKef/55zZo1S3PnztWePXs0b948zZ49WytWrJAkVVRU6Cc/+Ym6du2qHTt2KDc3V7/61a8C/ncSFRWlRYsW6Z///KdWrFihDRs26KGHHvI75uTJk5o7d65WrFihd999V2VlZRo3bpxv/1tvvaX//M//1NSpU7V7924tW7ZM+fn5vr+sAAgxE2iCJkyYYI4ePdq3/v7775tt2rQxb775ZtM0TXPOnDlm8+bNzdLSUt8xb7/9tul2u83Tp0/7Xeviiy82ly1bZpqmaQ4ePNi89957/fYPHDjQ7N2791nvXVZWZrpcLvP5558/a5xFRUWmJHPXrl1+29PS0syVK1f6bfvNb35jDh482DRN01y2bJmZmJhoVlRU+PYvXbr0rNf6dxkZGeZTTz31g/tffvlls02bNr715cuXm5LM7du3+7bt2bPHlGS+//77pmma5lVXXWXOmzfP7zovvPCC2a5dO9+6JPPVV1/9wfsCaDjGyNFkvfHGG2rVqpVqampUXV2t0aNH65lnnvHtz8jI0IUXXuhb37Fjh8rLy9WmTRu/65w6dUqfffaZJGnPnj11vsE+ePBgbdy48awx7NmzR5WVlfrxj39c77iPHDmi4uJiTZo0SXfddZdve01NjW/8fc+ePerdu7datGjhF0egNm7cqHnz5mn37t0qKytTTU2NTp8+rYqKCrVs2VKSFB0drf79+/vO6datm1q3bq09e/boiiuu0I4dO/Thhx/6VeAej0enT5/WyZMn/WIEEHwkcjRZI0aM0NKlS9W8eXOlpqbWmcx2JlGd4fV61a5dO23atKnOtRr6CFZcXFzA53i9Xkm17fWBAwf67WvWrJkkyQzC14cPHjyo6667Tvfee69+85vfKDExUVu3btWkSZP8hiCk2sfHvu/MNq/Xq8cee0w33XRTnWNiY2Mtxwng3EjkaLJatmypSy65pN7HX3755SopKVF0dLQ6dOhw1mO6d++u7du367bbbvNt2759+w9es3PnzoqLi9Pbb7+tO++8s87+mJgYSbUV7BnJycm66KKL9Pnnn+uWW24563V79OihF154QadOnfL9ZeFccZxNQUGBampq9N///d+KiqqdLvPyyy/XOa6mpkYFBQW64oorJEl79+7Vt99+q27dukmq/fe2d+/egP5dAwgeEjnwnauvvlqDBw/WmDFjNH/+fHXt2lWHDx/Wm2++qTFjxqh///564IEHNGHCBPXv319Dhw7Viy++qE8++USdOnU66zVjY2M1Y8YMPfTQQ4qJidGVV16pI0eO6JNPPtGkSZOUlJSkuLg4rV27Vu3bt1dsbKwSEhKUm5urqVOnyu12KysrS5WVlSooKNCxY8eUk5Oj8ePHa9asWZo0aZJ+/etf68CBA/rtb38b0M978cUXq6amRs8884yys7P17rvv6rnnnqtzXPPmzXX//fdr0aJFat68uaZMmaJBgwb5Evujjz6qn/zkJ0pLS9N//Md/KCoqSh9//LH+8Y9/6L/+678C/w8BICDMWge+YxiG3nzzTQ0bNkx33HGHunTponHjxunAgQO+WeZjx47Vo48+qhkzZqhfv346ePCgfvGLX5zzurNnz9aDDz6oRx99VN27d9fYsWNVWloqqXb8edGiRVq2bJlSU1M1evRoSdKdd96p3//+98rPz1evXr00fPhw5efn+x5Xa9WqlV5//XXt3r1bffv21axZszR//vyAft4+ffpowYIFmj9/vi699FK9+OKLysvLq3NcixYtNGPGDI0fP16DBw9WXFycXnrpJd/+UaNG6Y033tD69es1YMAADRo0SAsWLFBGRkZA8QBoGMMMxmAbAAAICypyAABsjEQOAICNkcgBALAxEjkAADZGIgcAwMZI5AAA2BiJHAAAGyORAwBgYyRyAABsjEQOAICNkcgBALAxEjkAADb2/wCsRTsvPsEfnwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cm = confusion_matrix(y_test, y_p, labels=mdl.classes_)\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=mdl.classes_)\n", + "disp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "30867fc9-15c0-4513-9f31-5c11c2aa0518", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of Decision Tree model is 75.0\n" + ] + } + ], + "source": [ + "#printing the accuracy for test set\n", + "print('Accuracy of Decision Tree model is {}'.format(accuracy_score(y_test,y_p)*100))" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "8ca87bb0-5907-4b65-8bf1-10449cb933ac", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfqUlEQVR4nO3deVxU9foH8M+wDQOyqCyCIK64r5ALXPNqCqm5tWlaKqmFWi7cNL3eQiuluqVouaWI2c+t3LLC1MzErasg5AKlCbIoqLgAsjPz/f1BTIwz6MwwMDDzeb9e89L5zjlnnnNGmYfv8hyJEEKAiIiIyERYGDsAIiIiIkNickNEREQmhckNERERmRQmN0RERGRSmNwQERGRSWFyQ0RERCaFyQ0RERGZFCtjB1DXFAoFbty4AQcHB0gkEmOHQ0RERFoQQiA/Px+enp6wsHh034zZJTc3btyAt7e3scMgIiIiPWRkZMDLy+uR25hdcuPg4ACg4uI4OjoaORoiIiLSRl5eHry9vZXf449idslN5VCUo6MjkxsiIqIGRpspJZxQTERERCaFyQ0RERGZFCY3REREZFKY3BAREZFJYXJDREREJoXJDREREZkUJjdERERkUpjcEBERkUlhckNEREQmhckNERERmRSjJjexsbEYMWIEPD09IZFIsG/fvsfuc+zYMfj5+cHW1hatW7fGunXraj9QIiIiajCMmtwUFBSge/fu+Pzzz7XaPjU1FcOGDUP//v2RkJCAf//735g1axZ2795dy5ESERFRQ2HUG2cOHToUQ4cO1Xr7devWoUWLFoiMjAQAdOzYEXFxcfjkk0/w3HPP1VKUREREpA2FQuBOQSnyi8vQ2rWR0eJoUHcFP336NIKCglTagoODERUVhbKyMlhbW6vtU1JSgpKSEuXzvLy8Wo+TiIjI1MgVArfzS5CVW4Ts3GJk5RYjO++vP3OLkJVbjJt5xSiTC/g0tcOxeQONFmuDSm6ys7Ph7u6u0ubu7o7y8nLk5OTAw8NDbZ+IiAgsWbKkrkIkIiJqcErLFbiZp56sVCYxN/OKcSu/BHKFeOyxJBJACEAIAYlEUgfRq2tQyQ0AtQslhNDYXmnhwoUICwtTPs/Ly4O3t3ftBUhERFSPFJfJq/S0qCYtlX/mPCh5/IEAWFlI4O5oi2ZOFQ+Pv/7u4ST7609buDpIYW1p3MXYDSq5adasGbKzs1Xabt26BSsrKzRt2lTjPlKpFFKptC7CIyIiqlMPSsqVvSyqSUuRctjofmGZVseysbJAM2WyUjV5kcHjr7amjaSwtDBOb4wuGlRy069fP3z33XcqbYcOHYK/v7/G+TZEREQNkRACuUVlygRFLWn565FfUq7V8WTWlvBw/itpcZT9nbw4/d3z0tjO2mjDSIZm1OTmwYMH+PPPP5XPU1NTkZiYiCZNmqBFixZYuHAhrl+/ji1btgAAQkND8fnnnyMsLAzTpk3D6dOnERUVhe3btxvrFIiIiHSiUAjcLSzVmLD8PUm3CMVlCq2O52hrBQ8nGdxVholUh4scba1MJnHRhlGTm7i4OAwc+Pds6sq5MZMmTcLmzZuRlZWF9PR05eutWrVCTEwM5s6di9WrV8PT0xOrVq3iMnAiIqoXNK0ouplXZcgorwg3c0tQKtcucWlib4NmjrYP9bT83fPSzNEW9tIGNQhTJySickaumcjLy4OTkxNyc3Ph6Oho7HCIiKiBKC1X4Fa++mTcqpN0dVlR5NpIqpKkVE1aPJxs4e5oC1tryzo4s4ZBl+9vpntERGT2qltRlF2llkvOgxJo0x1gaSGBu4NUbRVR1Z4Xt3qwosiUMbkhIiKTVrGiqLKn5a/hoocm6d7TdkWRpcXfy6Cr9LpUHS5yaSArikwZkxsiImqQhBDIKypHllrtlio9L3nFyC/WYUWRk+1DyYtMZZJuE3sbs5qY21AxuSEionpHCIG7BaVVJuKqL4POyi1GUZlcq+M52FqpJStVkxgPRxkcZea1osiUMbkhIqI6JVcI5Dwo0bwMWo8VRY3trFUn4z5UNbeZky0acUWRWeGnTUREBlMm/+seRZqWQf813+WmDiuKXCpXFDlqXgbdzIkrikgdkxsiItJKcZn8oWRFtcy/riuK3JQrijRXzXVzsIWNFVcUke6Y3BAREQpKytV6WFTK/ucV425BqVbHsraU/DU8pHkZNFcUUW1jckNEZMKEEMgrLlddBq1hkq62K4psrS0q5rI8ompuEzsbWDBxISNickNE1EA9dkXRXz0vhaVariiSWqkvg+aKImqAmNwQEdVDcoXAnb9WFCnntuSprirKzitGabn2K4rcNUzK9ahS6t/B1rqWz4qobjC5ISKqY2VyBW7ll2heBv3X0NGt/BKUa7GiCKiyoujh+S1VJulyRRGZEyY3REQGVFwmx628v+4KrWEZdFZuMW5ruaLIQgK4O9pW6XF5qOflr9e4oohIFZMbIiItFZaWa14GreeKIrVhIpUkRgaXRjaw4s0ViXTG5IaIzJ6mFUXZeerDRXlariiSWlnA01mmLDL39zDR31Vzm9pzRRFRbWFyQ0QmTQiBe4Vl6sugc4uRXeWGi9quKLK3sYSH88M9LaoTdJ1k1lxRRGRETG6IqMHStKIoO69ErWqutiuKnO2sVRIW9VouXFFE1BAwuSGieqn8rxVFahNy8/6+K/TNvGIdVhTZ/HU/IvUy/5VF6WQ2XFFEZAqY3BBRnSspl+NmbvUrirLzinE7vwTa5C0WEsDNQcMy6Co9L26OUkitmLgQmQsmN0RkUIWl5cqelb+HhlTnu9zRckWRlYWk+mXQfz13bSTliiIiUsHkhoi0IoRAfkl59cug9VhRpDIs9NCKIncnKVzspVxRREQ6Y3JDRCorim7mFWtMWrJzi1Ggw4oitaTloaq5znZcUUREtYPJDZGJUygEcgpK1JdB67miyElmXW2Jf64oIqL6gMkNUQP28Iqi7Dz14SJdVhQ1tbfRuIqo8nkzJ1vY2fDHBhHVb/wpRVRPlZRX3qNIfUJu1l9JjLYriiQSwM1BWjEZ11F9GTRXFBGRKWFyQ2QERaVy1YRFuaKoBNl5Fe05D3RbUaQs8++oPknX1UEKa64oIiIzweSGyMDyi8seWeY/K7cYuUVlWh3LpnJFUTVl/ps52XJFERHRQ5jcEGlJCIH7hWUak5XKFUU380rwoES7pdB2NpZ/z2WppmpuY64oIiLSGZMbIlSsKLpTUPr3smcNVXOzcotRouWKIkdbK83LoKv0vDhIrZi4EBHVAiY3ZLaKy+SYuzMR5zNzcSu/GGVy3VcUuWsYLmrmaAt7Kf9rEREZC38Ck9n6LeM+DlzMVj6XSADXRtJHVs11c5TC1porioiI6jMmN2S25KKip8anqR22TesLN64oIiIyCUxuyOxJrSzQ3Flm7DCIiMhA+GsqERERmRQmN0RERGRSmNwQERGRSWFyQ0RERCaFyQ0RERGZFCY3REREZFJ0Xgqem5uLvXv34vjx47h27RoKCwvh6uqKnj17Ijg4GAEBAbURJxEREZFWtO65ycrKwrRp0+Dh4YH33nsPBQUF6NGjB5566il4eXnh6NGjGDJkCDp16oSdO3fWZsxERERE1dK656Z79+6YOHEizpw5gy5dumjcpqioCPv27cPy5cuRkZGBt956y2CBEhEREWlD6+Tm0qVLcHV1feQ2MpkML730El566SXcvn27xsERERER6UrrYanHJTY13Z6IiIjIEAy6WurevXvYsmWLIQ9JREREpBODJjfp6ekICQkx5CGJiIiIdKLTUvC8vLxHvp6fn1+jYIiIiIhqSqfkxtnZGRKJpNrXhRCPfJ2IiIiotumU3Dg4OGDRokXo06ePxtevXLmC119/3SCBEREREelDp+SmV69eAIABAwZofN3Z2RlCiJpHRURERKQnnSYUjx8/Hra2ttW+3qxZM4SHh9c4KCIiIiJ96dRzM23atEe+7u7uzuSGiIiIjIp3BSciIiKTwuSGiIiITAqTGyIiIjIpTG6IiIjIpDC5ISIiIpNi9ORmzZo1aNWqFWxtbeHn54fjx48/cvutW7eie/fusLOzg4eHB0JCQnDnzp06ipaIiIjqO72Tm4EDB2Ly5MkqbZMmTcKgQYO0PsbOnTsxZ84cLFq0CAkJCejfvz+GDh2K9PR0jdufOHECEydOxJQpU3Dp0iV88803OHv2LKZOnarvaRAREZGJ0Tu5admyJTw9PVXamjdvDh8fH62PsXz5ckyZMgVTp05Fx44dERkZCW9vb6xdu1bj9r/++itatmyJWbNmoVWrVvjHP/6B119/HXFxcdW+R0lJCfLy8lQeREREZLr0Tm6io6OxbNkylbZly5YhOjpaq/1LS0sRHx+PoKAglfagoCCcOnVK4z4BAQHIzMxETEwMhBC4efMmdu3aheHDh1f7PhEREXByclI+vL29tYqPiIiIGiajzbnJycmBXC6Hu7u7Sru7uzuys7M17hMQEICtW7di7NixsLGxQbNmzeDs7IzPPvus2vdZuHAhcnNzlY+MjAyDngcRERHVL1rffmHVqlVaH3TWrFlabyuRSFSeCyHU2iolJSVh1qxZePfddxEcHIysrCzMmzcPoaGhiIqK0riPVCqFVCrVOh4iIiJq2LROblasWKHVdhKJRKvkxsXFBZaWlmq9NLdu3VLrzakUERGBwMBAzJs3DwDQrVs32Nvbo3///vjggw/g4eGhVYxERERkurROblJTUw36xjY2NvDz88Phw4cxZswYZfvhw4cxatQojfsUFhbCyko1ZEtLSwAVPT5ERERENZpzU1paij/++APl5eV67R8WFoaNGzdi06ZNSE5Oxty5c5Geno7Q0FAAFfNlJk6cqNx+xIgR2LNnD9auXYuUlBScPHkSs2bNQu/evdVWbhEREZF50rrnpqrCwkK8+eab+PLLLwEAly9fRuvWrTFr1ix4enpiwYIFWh1n7NixuHPnDt577z1kZWWhS5cuiImJUS4nz8rKUql5M3nyZOTn5+Pzzz/Hv/71Lzg7O2PQoEH46KOP9DkNIiIiMkESocd4zuzZs3Hy5ElERkbi6aefxvnz59G6dWvs378f4eHhSEhIqI1YDSIvLw9OTk7Izc2Fo6OjscMhIzp1NQfjN/wPvu6NcGjuAGOHQ0REj6DL97dePTf79u3Dzp070bdvX5WVTZ06dcLVq1f1OSQRERGRQeg15+b27dtwc3NTay8oKKh2GTcRERFRXdAruXniiSfwww8/KJ9XJjQbNmxAv379DBMZERERkR70GpaKiIjA008/jaSkJJSXl2PlypW4dOkSTp8+jWPHjhk6RiIiIiKt6dVzExAQgJMnT6KwsBBt2rTBoUOH4O7ujtOnT8PPz8/QMRIRERFpTa+eGwDo2rWrcik4ERERUX2hd3Ijl8uxd+9eJCcnQyKRoGPHjhg1apRaBWEiIiKiuqRXJnLx4kWMGjUK2dnZaN++PYCKQn6urq7Yv38/unbtatAgiYiIiLSl15ybqVOnonPnzsjMzMS5c+dw7tw5ZGRkoFu3bnjttdcMHSMRERGR1vTqufntt98QFxeHxo0bK9saN26MpUuX4oknnjBYcERERES60qvnpn379rh586Za+61bt9C2bdsaB0VERESkL62Tm7y8POVj2bJlmDVrFnbt2oXMzExkZmZi165dmDNnDm9iSQ2HzndVIyKihkDrYSlnZ2eVWysIIfDiiy8q2yrvvzlixAjI5XIDh0lkeHcKSgEADrbWRo6EiIgMSevk5ujRo7UZB1Gdu3r7AQCgrWsjI0dCRESGpHVyM2DAgNqMg6jOXb1dAABo42Zv5EiIiMiQalRxr7CwEOnp6SgtLVVp79atW42CIqoLV29V9Ny0Yc8NEZFJ0Su5uX37NkJCQnDgwAGNr3PODdV3CoVASg6TGyIiU6TXUvA5c+bg3r17+PXXXyGTyfDjjz/iyy+/RLt27bB//35Dx0hkcDdyi1BcpoCNpQW8GsuMHQ4RERmQXj03P//8M7799ls88cQTsLCwgI+PD4YMGQJHR0dERERg+PDhho6TyKAq59u0dLGDlaVeOT4REdVTev1ULygogJubGwCgSZMmuH37NoCKO4WfO3fOcNER1RLOtyEiMl16Vyj+448/AAA9evTA+vXrcf36daxbtw4eHh4GDZCoNlQuA2/typVSRESmRq9hqTlz5iArKwsAEB4ejuDgYGzduhU2NjbYvHmzIeMjqhWVyQ17boiITI9eyc2ECROUf+/ZsyeuXbuG33//HS1atICLi4vBgiOqLcoaN0xuiIhMTo3q3FSys7NDr169DHEoolqXW1SG2/klADgsRURkirRObsLCwrQ+6PLly/UKhqgupPw1JOXuKOV9pYiITJDWyU1CQoJW21W9uSZRfcQhKSIi08YbZ5LZ4WRiIiLTxuplZHb+rnHD+TZERKaIyQ2ZHWXPjRt7boiITBGTGzIrZXIF0u4UAuCwFBGRqWJyQ2Yl/W4hyhUCdjaWaOZoa+xwiIioFjC5IbNSOd+mtas9LCy4so+IyBTpndx89dVXCAwMhKenJ9LS0gAAkZGR+Pbbbw0WHJGhcRk4EZHp0yu5Wbt2LcLCwjBs2DDcv38fcrkcAODs7IzIyEhDxkdkUFwGTkRk+vRKbj777DNs2LABixYtgqWlpbLd398fFy5cMFhwRIbG5IaIyPTpldykpqaiZ8+eau1SqRQFBQU1DoqoNggh/q5x48YaN0REpkqv5KZVq1ZITExUaz9w4AA6depU05iIakXOg1LkFZdDIgFaNmVyQ0RkqvS6K/i8efMwc+ZMFBcXQwiBM2fOYPv27YiIiMDGjRsNHSORQVQOSXk3toOtteVjtiYiooZKr+QmJCQE5eXlmD9/PgoLCzF+/Hg0b94cK1euxLhx4wwdI5FB/D3fhr02RESmTK/kBgCmTZuGadOmIScnBwqFAm5uboaMi8jgrt7iMnAiInOg15ybJUuW4OrVqwAAFxcXJjbUIPCeUkRE5kGv5Gb37t3w9fVF37598fnnn+P27duGjovI4LgMnIjIPOiV3Jw/fx7nz5/HoEGDsHz5cjRv3hzDhg3Dtm3bUFhYaOgYiWqsqFSO6/eLAHDODRGRqdP79gudO3fGsmXLkJKSgqNHj6JVq1aYM2cOmjVrZsj4iAwiNacAQgDOdtZoYm9j7HCIiKgWGeTGmfb29pDJZLCxsUFZWZkhDklkUFWHpCQS3jCTiMiU6Z3cpKamYunSpejUqRP8/f1x7tw5LF68GNnZ2YaMj8gguAyciMh86LUUvF+/fjhz5gy6du2KkJAQZZ0bovqKdwMnIjIfeiU3AwcOxMaNG9G5c2dDx0NUK5T3lGJyQ0Rk8vRKbpYtW2boOIhqjUIhkJLDGjdEROZC6+QmLCwM77//Puzt7REWFvbIbZcvX17jwIgM5UZuEYrLFLC2lMC7sczY4RARUS3TOrlJSEhQroRKSEiotYCIDK1yvk3LpvawsjTIAkEiIqrHtE5ujh49qvHvRPUd59sQEZkXvX6NffXVV5Gfn6/WXlBQgFdffbXGQREZ0t/3lOIycCIic6BXcvPll1+iqKhIrb2oqAhbtmypcVBEhsR7ShERmRedVkvl5eVBCAEhBPLz82Fra6t8TS6XIyYmhncIp3qHNW6IiMyLTsmNs7MzJBIJJBIJfH191V6XSCRYsmSJwYIjqqncojLczi8BALRmdWIiIrOg07DU0aNHceTIEQghsGvXLvz888/Kx4kTJ5Ceno5FixbpFMCaNWvQqlUr2Nraws/PD8ePH3/k9iUlJVi0aBF8fHwglUrRpk0bbNq0Saf3JPOR8teQlLujFA621kaOhoiI6oJOPTcDBgwAUHFfqRYtWtT4BoQ7d+7EnDlzsGbNGgQGBmL9+vUYOnQokpKS0KJFC437vPjii7h58yaioqLQtm1b3Lp1C+Xl5TWKg0wXh6SIiMyP1snN+fPn0aVLF1hYWCA3NxcXLlyodttu3bppdczly5djypQpmDp1KgAgMjISBw8exNq1axEREaG2/Y8//ohjx44hJSUFTZo0AQC0bNnyke9RUlKCkpIS5fO8vDytYiPTwMnERETmR+vkpkePHsjOzoabmxt69OgBiUQCIYTadhKJBHK5/LHHKy0tRXx8PBYsWKDSHhQUhFOnTmncZ//+/fD398fHH3+Mr776Cvb29hg5ciTef/99yGSaK89GRERwHpAZ+7vGDefbEBGZC62Tm9TUVLi6uir/XlM5OTmQy+Vwd3dXaXd3d0d2drbGfVJSUnDixAnY2tpi7969yMnJwYwZM3D37t1q590sXLhQ5XYReXl58Pb2rnH81DD8XeOGPTdEROZC6+TGx8dH499r6uF5O0KIaufyKBQKSCQSbN26FU5OTgAqhraef/55rF69WmPvjVQqhVQqNVi81HCUyRVIu1MIgMNSRETmRO8ifj/88IPy+fz58+Hs7IyAgACkpaVpdQwXFxdYWlqq9dLcunVLrTenkoeHB5o3b65MbACgY8eOEEIgMzNTjzMhU5Z+txDlCgE7G0s0c7R9/A5ERGQS9Epuli1bpuwlOX36ND7//HN8/PHHcHFxwdy5c7U6ho2NDfz8/HD48GGV9sOHDyMgIEDjPoGBgbhx4wYePHigbLt8+TIsLCzg5eWlz6mQCaucb9Pa1R4WFjVb2UdERA2HXslNRkYG2rZtCwDYt28fnn/+ebz22muIiIh4bJ2aqsLCwrBx40Zs2rQJycnJmDt3LtLT0xEaGgqgYr7MxIkTlduPHz8eTZs2RUhICJKSkhAbG4t58+bh1VdfrXZCMZkvLgMnIjJPOtW5qdSoUSPcuXMHLVq0wKFDh5S9Nba2thrvOVWdsWPH4s6dO3jvvfeQlZWFLl26ICYmRjmnJysrC+np6Srve/jwYbz55pvw9/dH06ZN8eKLL+KDDz7Q5zTIxHEZOBGRedIruRkyZAimTp2Knj174vLlyxg+fDgA4NKlS4+tO/OwGTNmYMaMGRpf27x5s1pbhw4d1IayiDSprE7M2y4QEZkXvYalVq9ejX79+uH27dvYvXs3mjZtCgCIj4/HSy+9ZNAAifQhhOCwFBGRmdKr58bZ2Rmff/65WjuL5VF9caegFLlFZZBIgFYu7LkhIjIneiU3AHD//n1ERUUhOTkZEokEHTt2xJQpU1SWaRMZS+VKKa/GMthaWxo5GiIiqkt6DUvFxcWhTZs2WLFiBe7evYucnBysWLECbdq0wblz5wwdI5HOOCRFRGS+9Oq5mTt3LkaOHIkNGzbAyqriEOXl5Zg6dSrmzJmD2NhYgwZJpCuulCIiMl96JTdxcXEqiQ0AWFlZYf78+fD39zdYcET6YnJDRGS+9BqWcnR0VKk/UykjIwMODg41Doqopv5ObjiZmIjI3OiV3IwdOxZTpkzBzp07kZGRgczMTOzYsQNTp07lUnAyuuIyOTLvVRST5N3AiYjMj17DUp988gkkEgkmTpyI8vJyAIC1tTWmT5+ODz/80KABEukqNacAQgBOMms0tbcxdjhERFTH9EpubGxssHLlSkRERODq1asQQqBt27aws7MzdHxEOqs6JCWR8IaZRETmRqdhqcLCQsycORPNmzeHm5sbpk6dCg8PD3Tr1o2JDdUbV29xGTgRkTnTKbkJDw/H5s2bMXz4cIwbNw6HDx/G9OnTays2Ir0oe24434aIyCzpNCy1Z88eREVFYdy4cQCAl19+GYGBgZDL5bC0ZBVYqh+4DJyIyLzp1HOTkZGB/v37K5/37t0bVlZWuHHjhsEDI9KHQiGQoqxOzGXgRETmSKfkRi6Xw8ZGdfWJlZWVcsUUkbFl5RWjqEwOa0sJvJtwHhgRkTnSaVhKCIHJkydDKpUq24qLixEaGgp7+79/S96zZ4/hIiTSQeUNM32a2sPaUq8yTkRE1MDplNxMmjRJre3ll182WDBENcXKxEREpFNyEx0dXVtxEBkEJxMTERH77cmksMYNERFpndyEhoYiIyNDq2137tyJrVu36h0Ukb5Y44aIiLQelnJ1dUWXLl0QEBCAkSNHwt/fH56enrC1tcW9e/eQlJSEEydOYMeOHWjevDm++OKL2oybSE1ecRlu5ZcAAFpzzg0RkdnSOrl5//338eabbyIqKgrr1q3DxYsXVV53cHDA4MGDsXHjRgQFBRk8UKLHqaxv4+YghaOttZGjISIiY9FpQrGbmxsWLlyIhQsX4v79+0hLS0NRURFcXFzQpk0b3qSQjKpyGTjn2xARmTe97goOAM7OznB2djZgKEQ18/d8Gw5JERGZM66WIpPBZeBERAQwuSETcvU2l4ETERGTGzIRZXIF0u78ldxwGTgRkVljckMmIeNuIcrkAjJrS3g42ho7HCIiMiK9k5vy8nL89NNPWL9+PfLz8wEAN27cwIMHDwwWHJG2KoekWrvaw8KCq/aIiMyZXqul0tLS8PTTTyM9PR0lJSUYMmQIHBwc8PHHH6O4uBjr1q0zdJxEj8TJxEREVEmvnpvZs2fD398f9+7dg0wmU7aPGTMGR44cMVhwRNpijRsiIqqkV8/NiRMncPLkSdjY2Ki0+/j44Pr16wYJjEgXrHFDRESV9Oq5USgUkMvlau2ZmZlwcHCocVBEuhBCcBk4EREp6ZXcDBkyBJGRkcrnEokEDx48QHh4OIYNG2ao2Ii0cqegFLlFZZBIgFYu7LkhIjJ3eg1LrVixAgMHDkSnTp1QXFyM8ePH48qVK3BxccH27dsNHSPRI1XOt/FqLIOttaWRoyEiImPTK7nx9PREYmIiduzYgfj4eCgUCkyZMgUTJkxQmWBMVBc4JEVERFXpldzExsYiICAAISEhCAkJUbaXl5cjNjYWTz75pMECJHocLgMnIqKq9JpzM3DgQNy9e1etPTc3FwMHDqxxUES6YHJDRERV6ZXcCCEgkahXgb1z5w7s7Tmhk+rW38kN/+0REZGOw1LPPvssgIrVUZMnT4ZUKlW+JpfLcf78eQQEBBg2QqJHKC6TI/NeEQDeMJOIiCrolNw4OTkBqOi5cXBwUJk8bGNjg759+2LatGmGjZDoEVJzCiAE4CSzRlN7m8fvQEREJk+n5CY6OhoA0LJlS7z11lscgiKjqzokpWmolIiIzI9eq6XCw8MNHQeRXq7e4jJwIiJSpVdyAwC7du3C119/jfT0dJSWlqq8du7cuRoHRqSNv+8pxeSGiIgq6LVaatWqVQgJCYGbmxsSEhLQu3dvNG3aFCkpKRg6dKihYyTS6EFJOX5NuQMAaMueGyIi+oteyc2aNWvwxRdf4PPPP4eNjQ3mz5+Pw4cPY9asWcjNzTV0jEQaLT90GbfyS+DdRIZ/tHMxdjhERFRP6JXcpKenK5d8y2Qy5OfnAwBeeeUV3luK6sSFzFxsPpUKAPhgdFfeU4qIiJT0Sm6aNWuGO3cqhgN8fHzw66+/AgBSU1MhhDBcdEQalMsVWLj3PBQCGNndEwN8XY0dEhER1SN6JTeDBg3Cd999BwCYMmUK5s6diyFDhmDs2LEYM2aMQQMketiW02m4eD0PjrZW+M8zHY0dDhER1TN6rZb64osvoFAoAAChoaFo0qQJTpw4gREjRiA0NNSgARJVdeN+ET499AcAYMHQjnBzsDVyREREVN/oldxYWFjAwuLvTp8XX3wRL774IgDg+vXraN68uWGiI3rI4v2XUFAqh59PY4x7wtvY4RARUT2k17CUJtnZ2XjzzTfRtm1bQx2SSMXBS9k4lHQTVhYSLBvTFRYWrEhMRETqdEpu7t+/jwkTJsDV1RWenp5YtWoVFAoF3n33XbRu3Rq//vorNm3aVFuxkhl7UFKOxfsvAQCmPdka7Zs5GDkiIiKqr3Qalvr3v/+N2NhYTJo0CT/++CPmzp2LH3/8EcXFxThw4AAGDBhQW3GSmVt+6DKycovh3USGWYPaGTscIiKqx3RKbn744QdER0dj8ODBmDFjBtq2bQtfX19ERkbWUnhEqjVt3h/VBTIb1rQhIqLq6TQsdePGDXTq1AkA0Lp1a9ja2mLq1Km1EhgRoFrTZkR3T/yzvZuxQyIionpOp+RGoVDA2tpa+dzS0hL29vY1CmDNmjVo1aoVbG1t4efnh+PHj2u138mTJ2FlZYUePXrU6P2pfqusaeNga4V3WNOGiIi0oNOwlBACkydPhlQqBQAUFxcjNDRULcHZs2ePVsfbuXMn5syZgzVr1iAwMBDr16/H0KFDkZSUhBYtWlS7X25uLiZOnIinnnoKN2/e1OUUqAFRrWnTgTVtiIhIKxKhw/0SQkJCtNouOjpaq+369OmDXr16Ye3atcq2jh07YvTo0YiIiKh2v3HjxqFdu3awtLTEvn37kJiYqNX7AUBeXh6cnJyQm5sLR0dHrfejuvfaljgcSrqJXi2csSs0gEu/iYjMmC7f3zr13GibtGijtLQU8fHxWLBggUp7UFAQTp069cgYrl69iv/7v//DBx988Nj3KSkpQUlJifJ5Xl6e/kFTnTlUtabNs6xpQ0RE2jNYET9d5eTkQC6Xw93dXaXd3d0d2dnZGve5cuUKFixYgK1bt8LKSru8LCIiAk5OTsqHtzer2tZ3D0rKEV6lpk2HZuxhIyIi7Rktuakkkaj+Ri6EUGsDALlcjvHjx2PJkiXw9fXV+vgLFy5Ebm6u8pGRkVHjmKl2rTjMmjZERKQ/ve4tZQguLi6wtLRU66W5deuWWm8OAOTn5yMuLg4JCQl44403AFSs3hJCwMrKCocOHcKgQYPU9pNKpcoJ0FT/Xbyei+iTrGlDRET6M1rPjY2NDfz8/HD48GGV9sOHDyMgIEBte0dHR1y4cAGJiYnKR2hoKNq3b4/ExET06dOnrkKnWiJXCCzcc4E1bYiIqEaM1nMDAGFhYXjllVfg7++Pfv364YsvvkB6ejpCQ0MBVAwpXb9+HVu2bIGFhQW6dOmisr+bmxtsbW3V2qlh2nL6Gi5cz2VNGyIiqhG9e26++uorBAYGwtPTE2lpaQCAyMhIfPvtt1ofY+zYsYiMjMR7772HHj16IDY2FjExMfDx8QEAZGVlIT09Xd8QqQHJyi3CJwcratq8/TRr2hARkf50qnNTae3atXj33XcxZ84cLF26FBcvXkTr1q2xefNmfPnllzh69GhtxGoQrHNTP73+VRwOXrqJni2csZs1bYiI6CG6fH/r1XPz2WefYcOGDVi0aBEsLf+e8Onv748LFy7oc0gyY4cuZePgpYqaNhGsaUNERDWkV3KTmpqKnj17qrVLpVIUFBTUOCgyH1Vr2kztz5o2RERUc3olN61atdJ4y4MDBw4o7xpOpI3KmjZejWWY/RRr2hARUc3ptVpq3rx5mDlzJoqLiyGEwJkzZ7B9+3ZERERg48aNho6RTJRKTZvRrGlDRESGoVdyExISgvLycsyfPx+FhYUYP348mjdvjpUrV2LcuHGGjpFMUNWaNs9088BA1rQhIiID0Wu1VFU5OTlQKBRwc2sYX05cLVU/RJ9MxZLvkuBga4UjYQPg5sil30REVL1aXy21ZMkSXL16FUDFbRQaSmJD9UNWbhE+PXQZwF81bZjYEBGRAemV3OzevRu+vr7o27cvPv/8c9y+fdvQcZEJW7I/CQ9KytGzhTPG925h7HCIiMjE6JXcnD9/HufPn8egQYOwfPlyNG/eHMOGDcO2bdtQWFho6BjJhBxOuokfL2Wzpg0REdUavW+/0LlzZyxbtgwpKSk4evQoWrVqhTlz5qBZs2aGjI9MSEFJOcK/vQiANW2IiKj2GOSu4Pb29pDJZLCxsUFZWZkhDkkmaMXhy7jBmjZERFTL9E5uUlNTsXTpUnTq1An+/v44d+4cFi9ejOzsbEPGRybi4vVcbGJNGyIiqgN61bnp168fzpw5g65duyIkJERZ54ZIE7lC4N97K2raDGdNGyIiqmV6JTcDBw7Exo0b0blzZ0PHQyboq9PXcD4zFw5SK4Q/w9tzEBFR7dIruVm2bJmh4yATlZVbhE/+qmkzfyhr2hARUe3TOrkJCwvD+++/D3t7e4SFhT1y2+XLl9c4MDINlTVteng7YwJr2hARUR3QOrlJSEhQroRKSEiotYDIdFTWtLFkTRsiIqpDWic3R48e1fh3Ik1Ua9q0QkcP1rQhIqK6oddS8FdffRX5+flq7QUFBXj11VdrHBQ1fKxpQ0RExqJXcvPll1+iqKhIrb2oqAhbtmypcVDUsD1c08bORq9560RERHrR6VsnLy8PQggIIZCfnw9b279XvsjlcsTExPAO4WZOrhBYxJo2RERkRDolN87OzpBIJJBIJPD19VV7XSKRYMmSJQYLjhqe//s1Db+xpg0RERmRTsnN0aNHIYTAoEGDsHv3bjRp0kT5mo2NDXx8fODp6WnwIKlhyM4txn8P/gGANW2IiMh4dEpuBgwYAKDivlItWrSARMKlvfS3Jd9dYk0bIiIyOq2Tm/Pnz6NLly6wsLBAbm4uLly4UO223bp1M0hw1HD8lHQTBy6ypg0RERmf1slNjx49kJ2dDTc3N/To0QMSiQRCCLXtJBIJ5HK5QYOk+q2gpBzh+y8BAKb+gzVtiIjIuLROblJTU+Hq6qr8O1GlyJ8u4/r9IjR3lmH2YNa0ISIi49I6ufHx8dH4dzJvFTVtrgEAPmBNGyIiqgf0LuL3ww8/KJ/Pnz8fzs7OCAgIQFpamsGCo/qtsqaNXCEwvKsHBnZgTRsiIjI+vZKbZcuWQSaTAQBOnz6Nzz//HB9//DFcXFwwd+5cgwZI9VfVmjbvjmBNGyIiqh/0GkPIyMhA27ZtAQD79u3D888/j9deew2BgYH45z//acj4qJ5SqWnzdHu4s6YNERHVE3r13DRq1Ah37twBABw6dAiDBw8GANja2mq85xSZnqo1bcb34RwsIiKqP/TquRkyZAimTp2Knj174vLlyxg+fDgA4NKlS2jZsqUh46N6qGpNm2VjusKSNW2IiKge0avnZvXq1ejXrx9u376N3bt3o2nTpgCA+Ph4vPTSSwYNkOqXwlLVmjadPFnThoiI6heJ0FSJz4Tl5eXByckJubm5cHTkF7OulsUk44vYFDR3luFw2JNc+k1ERHVCl+9vvb+Z7t+/j6ioKCQnJ0MikaBjx46YMmUKnJyc9D0k1XOXbuQi6kRFAUfWtCEiovpKr2GpuLg4tGnTBitWrMDdu3eRk5ODFStWoE2bNjh37pyhY6R6QK4Q+Pfei6xpQ0RE9Z5ev3rPnTsXI0eOxIYNG2BlVXGI8vJyTJ06FXPmzEFsbKxBgyTj2/q/NPyWcZ81bYiIqN7TK7mJi4tTSWwAwMrKCvPnz4e/v7/BgqP64WZeMT7+kTVtiIioYdBrWMrR0RHp6elq7RkZGXBwcKhxUFS/VNa06c6aNkRE1ADoldyMHTsWU6ZMwc6dO5GRkYHMzEzs2LEDU6dO5VJwE3Mk+SZiLlTWtOnCmjZERFTv6TUs9cknn0AikWDixIkoLy8HAFhbW2P69On48MMPDRogGU9haTne/baips2Uf7RCZ0+uhCMiovqvRnVuCgsLcfXqVQgh0LZtW9jZ2RkytlrBOjfaY00bIiKqL3T5/tZpWKqwsBAzZ85E8+bN4ebmhqlTp8LDwwPdunVrEIkNaa9qTZv3RnVmYkNERA2GTslNeHg4Nm/ejOHDh2PcuHE4fPgwpk+fXluxkZFUrWkzrGszPNXR3dghERERaU2nX8f37NmDqKgojBs3DgDw8ssvIzAwEHK5HJaWlrUSINW9ypo2jaRWCB/R2djhEBER6USnnpuMjAz0799f+bx3796wsrLCjRs3DB4YGQdr2hARUUOnU3Ijl8thY2Oj0mZlZaVcMUUNX9WaNhNY04aIiBognYalhBCYPHkypFKpsq24uBihoaGwt7dXtu3Zs8dwEVKd+fl31rQhIqKGT6fkZtKkSWptL7/8ssGCIeMpLC3HO/tY04aIiBo+nZKb6Ojo2oqDjGzlT1dw/X4RmjvLMGdwO2OHQ0REpDe9br9ApiXpRh42sqYNERGZCCY3Zq6ips0F1rQhIiKTweTGzG37XxoSWdOGiIhMCJMbM1a1ps28YNa0ISIi08Dkxoy9910S8kvK0d3LCS/3ZU0bIiIyDXonN1999RUCAwPh6emJtLQ0AEBkZCS+/fZbnY6zZs0atGrVCra2tvDz88Px48er3XbPnj0YMmQIXF1d4ejoiH79+uHgwYP6noJZ+/n3m/jhQlZFTZtnu7KmDRERmQy9kpu1a9ciLCwMw4YNw/379yGXywEAzs7OiIyM1Po4O3fuxJw5c7Bo0SIkJCSgf//+GDp0KNLT0zVuHxsbiyFDhiAmJgbx8fEYOHAgRowYgYSEBH1Ow2xVrWnzamBL1rQhIiKTIhFCCF136tSpE5YtW4bRo0fDwcEBv/32G1q3bo2LFy/in//8J3JycrQ6Tp8+fdCrVy+sXbtW2daxY0eMHj0aERERWh2jc+fOGDt2LN59912tts/Ly4OTkxNyc3Ph6Oio1T6mJiImGetjU9DcWYZDc5+EvZRLv4mIqH7T5ftbr56b1NRU9OzZU61dKpWioKBAq2OUlpYiPj4eQUFBKu1BQUE4deqUVsdQKBTIz89HkyZNqt2mpKQEeXl5Kg9z9nBNGyY2RERkavRKblq1aoXExES19gMHDqBTp05aHSMnJwdyuRzu7qp1Vdzd3ZGdna3VMT799FMUFBTgxRdfrHabiIgIODk5KR/e3t5aHdsUVa1pM7QLa9oQEZFp0uvX9nnz5mHmzJkoLi6GEAJnzpzB9u3bERERgY0bN+p0LIlEdSKrEEKtTZPt27dj8eLF+Pbbb+Hm5lbtdgsXLkRYWJjyeV5entkmOKxpQ0RE5kCv5CYkJATl5eWYP38+CgsLMX78eDRv3hwrV67EuHHjtDqGi4sLLC0t1Xppbt26pdab87CdO3diypQp+OabbzB48OBHbiuVSlXuYm6ubj1U06aZE2vaEBGRadJ7Kfi0adOQlpaGW7duITs7GxkZGZgyZYrW+9vY2MDPzw+HDx9WaT98+DACAgKq3W/79u2YPHkytm3bhuHDh+sbvtlZ8j1r2hARkXmo8WxSFxcXvfcNCwvDK6+8An9/f/Tr1w9ffPEF0tPTERoaCqBiSOn69evYsmULgIrEZuLEiVi5ciX69u2r7PWRyWRwcuJy5uoc/f0WfjjPmjZERGQe9EpuWrVq9ch5MSkpKVodZ+zYsbhz5w7ee+89ZGVloUuXLoiJiYGPT0XPQlZWlkrNm/Xr16O8vBwzZ87EzJkzle2TJk3C5s2b9TkVk1dYWo7/7LsIgDVtiIjIPOhV52blypUqz8vKypCQkIAff/wR8+bNw4IFCwwWoKGZW52biAPJWH8sBZ5OtjgcNoBLv4mIqEHS5ftbr2+62bNna2xfvXo14uLi9Dkk1YLkrDxsPF5Z06YLExsiIjILBr1x5tChQ7F7925DHpL0pFAILNxTUdPm6c7NMLgTa9oQEZF5MGhys2vXrkdWC6a6s/VMurKmzeKRrGlDRETmQ69xip49e6pMKBZCIDs7G7dv38aaNWsMFhzp51ZeMT4+8DsA4K0gX9a0ISIis6JXcjN69GiV5xYWFnB1dcU///lPdOjQwRBxUQ1U1rTp5uWEV/q1NHY4REREdUrn5Ka8vBwtW7ZEcHAwmjVrVhsxUQ1U1rSxkADLxrCmDRERmR+d59xYWVlh+vTpKCkpqY14qAZUa9q0QpfmrGlDRETmR68JxX369EFCQoKhY6EaWnnkCq7fL4Knky3mDvE1djhERERGodecmxkzZuBf//oXMjMz4efnB3t7e5XXu3XrZpDgSHusaUNERFRBp2/AV199FZGRkRg7diwAYNasWcrXJBIJhBCQSCSQy+WGjZIeSaEQ+Pde1rQhIiICdExuvvzyS3z44YdITU2trXhID9vOpCMhnTVtiIiIAB2Tm8rbUFXe2JKM71ZeMT76kTVtiIiIKuk8ofhRdwOnuvfe90nIL2ZNGyIioko6zzr19fV9bIJz9+5dvQMi7R394xa+Z00bIiIiFTonN0uWLIGTE+unGFtRqRzv/FXTJoQ1bYiIiJR0Tm7GjRsHNze32oiFdLDyyBVk3quoaRPGmjZERERKOs254Xyb+uH37DxsPJ4CAFjCmjZEREQqdEpuKldLkfEoFAIL91xAuUIguLM7hrCmDRERkQqdfuVXKBS1FQdpqbKmjb2NJWvaEBERaaDXvaXIOFRq2gS3h4eTzMgRERER1T9MbhqQypo2XZs7YSJr2hAREWnE5KaBqFrTJuJZ1rQhIiKqDpObBoA1bYiIiLTH5KYBYE0bIiIi7TG5qedY04aIiEg3TG7qMYVC4N+saUNERKQTJjf12Paz6TjHmjZEREQ6YXJTT93KL8aHBypq2vwriDVtiIiItMXkpp56//tkZU2bSQEtjR0OERFRg8Hkph765Y9b+O63G7CQAMvGsKYNERGRLpjc1DNFpXK8821FTZvJAa3Q1Ys1bYiIiHTB5KaeWfXzFWTcLYKHky3CgljThoiISFdMbuqR37PzsCH2r5o2IzujEWvaEBER6YzJTT1RtaZNUCd3BHVuZuyQiIiIGiQmN/UEa9oQEREZBpObeuDhmjaezqxpQ0REpC8mN/UAa9oQEREZDpMbIzt2+TZr2hARERkQkxsjKiqV4z/7LgBgTRsiIiJDYXJjRJ+xpg0REZHBMbkxkj+y8/HFXzVtFrOmDRERkcEwuTEChULg33sratoM6eSOYNa0ISIiMhgmN0aw42wG4tPuwc7GEktY04aIiMigmNzUsYqaNskAWNOGiIioNnCiRx374Ptk5BWXo0tzR0zq52PscMhMyeVylJWVGTsMIiIV1tbWsLS0rPFxmNzUoWOXb2P/XzVtIsZ0g5UlO86o7j148ACZmZkQQhg7FCIiFRKJBF5eXmjUqFGNjsPkpo5UrWkzKaAla9qQUcjlcmRmZsLOzg6urq6QSFg0kojqByEEbt++jczMTLRr165GPThMbupIZU2bZo62+FdQe2OHQ2aqrKwMQgi4urpCJuN8LyKqX1xdXXHt2jWUlZXVKLnhuEgdqFrTZsko1rQh42OPDRHVR4b62cTkppaxpg0REVHdYnJTy1jThoiIqG4xualFt/NLWNOGiIiojjG5qUUf/JDEmjZEDUzLli0RGRlp8G1NQV2d77Vr1yCRSJCYmKhsO3nyJLp27Qpra2uMHj0av/zyCyQSCe7fv18rMdy5cwdubm64du1arRzfHF24cAFeXl4oKCio9fdiclNLYi/fxreJrGlDZAiTJ0+GRCKBRCKBtbU13N3dMWTIEGzatAkKhcKg73X27Fm89tprBt9WG5XnWN1j8uTJBnuvh+Xl5WHRokXo0KEDbG1t0axZMwwePBh79uyp85pI3t7eyMrKQpcuXZRtYWFh6NGjB1JTU7F582YEBAQgKysLTk61U1YjIiICI0aMQMuWLdVeCwoKgqWlJX799Ve11/75z39izpw5au379u1TmyxbWlqKjz/+GN27d4ednR1cXFwQGBiI6OjoWi2ymZ6ejhEjRsDe3h4uLi6YNWsWSktLq92+MtnU9Pjmm2+U212+fBmjRo2Ci4sLHB0dERgYiKNHjypf79q1K3r37o0VK1bU2rlV4rKdWlBcJsd/9l0EAEzsx5o2VH8JIVBUJjfKe8usLXVaGfH0008jOjoacrkcN2/exI8//ojZs2dj165d2L9/P6ysDPPjzNXVtVa21UZWVpby7zt37sS7776LP/74Q9n28PL9srIyWFtb1/h979+/j3/84x/Izc3FBx98gCeeeAJWVlY4duwY5s+fj0GDBsHZ2bnG76MtS0tLNGumuvji6tWrCA0NhZeXl7Lt4W10VVpaChsbG7X2oqIiREVFISYmRu219PR0nD59Gm+88QaioqLQt29fvd87ODgYv/32G95//30EBgbC0dERv/76Kz755BP07NkTPXr00OvYjyKXyzF8+HC4urrixIkTuHPnDiZNmgQhBD777DON+1Qmm1V98cUX+PjjjzF06FBl2/Dhw+Hr64uff/4ZMpkMkZGReOaZZ3D16lXlZxUSEoLQ0FAsXLjQIJWIqyXMTG5urgAgcnNza+09Pv4xWfi8/b3os/QnkVdUWmvvQ6SroqIikZSUJIqKioQQQhSUlAmft783yqOgpEzruCdNmiRGjRql1n7kyBEBQGzYsEHZdv/+fTFt2jTh6uoqHBwcxMCBA0ViYqLKft9++63w8/MTUqlUNG3aVIwZM0b5mo+Pj1ixYoXyeXh4uPD29hY2NjbCw8NDvPnmm9Vum5aWJkaOHCns7e2Fg4ODeOGFF0R2drbKsbp37y62bNkifHx8hKOjoxg7dqzIy8tTO7fo6Gjh5OSkfJ6amioAiJ07d4oBAwYIqVQqNm3aJIQQYtOmTaJDhw5CKpWK9u3bi9WrV6scKzMzU7z44ovC2dlZNGnSRIwcOVKkpqYqX58+fbqwt7cX169fV4sjPz9flJWVaTzfTz/9VHTp0kXY2dkJLy8vMX36dJGfn698/dq1a+KZZ54Rzs7Ows7OTnTq1En88MMPQggh7t69K8aPHy9cXFyEra2taNu2rfJ8Ks81ISFB+feqj+joaHH06FEBQNy7d0/5fidPnhT9+/cXtra2wsvLS7z55pviwYMHKp/X+++/LyZNmiQcHR3FxIkT1c5XCCF2794tXFxcNL62ePFiMW7cOJGcnCwcHBxUji+EEAMGDBCzZ89W22/v3r2i6lfuRx99JCwsLMS5c+fUti0tLVU7rqHExMQICwsLlc96+/btQiqV6vS92KNHD/Hqq68qn9++fVsAELGxscq2vLw8AUD89NNPyraSkhIhlUrFkSNHNB734Z9RVeny/W30sZI1a9agVatWsLW1hZ+fH44fP/7I7Y8dOwY/Pz/Y2tqidevWWLduXR1Fqp3LN/Ox/lhFTZvFIzvDwbbmv1URkWaDBg1C9+7dsWfPHgAVPVHDhw9HdnY2YmJiEB8fj169euGpp57C3bt3AQA//PADnn32WQwfPhwJCQk4cuQI/P39NR5/165dWLFiBdavX48rV65g37596Nq1q8ZthRAYPXo07t69i2PHjuHw4cO4evUqxo4dq7Ld1atXsW/fPnz//ff4/vvvcezYMXz44Ydan/Pbb7+NWbNmITk5GcHBwdiwYQMWLVqEpUuXIjk5GcuWLcM777yDL7/8EgBQWFiIgQMHolGjRoiNjcWJEyfQqFEjPP300ygtLYVCocCOHTswYcIEeHp6qr1fo0aNqu0Vs7CwwKpVq3Dx4kV8+eWX+PnnnzF//nzl6zNnzkRJSQliY2Nx4cIFfPTRR8qy+u+88w6SkpJw4MABJCcnY+3atXBxcVF7j8peA0dHR0RGRiIrK0vtmgIV8zmCg4Px7LPP4vz589i5cydOnDiBN954Q2W7//73v+jSpQvi4+PxzjvvaDyv2NhYjf8mhBCIjo7Gyy+/jA4dOsDX1xdff/21xmM8ztatWzF48GD07NlT7TVra2vY29tr3C89PR2NGjV65CM0NLTa9z19+jS6dOmi8lkHBwejpKQE8fHxWsUeHx+PxMRETJkyRdnWtGlTdOzYEVu2bEFBQQHKy8uxfv16uLu7w8/PT7mdjY0Nunfv/tjv+hrTOk2rBTt27BDW1tZiw4YNIikpScyePVvY29uLtLQ0jdunpKQIOzs7MXv2bJGUlCQ2bNggrK2txa5du7R+z9rsuZHLFeK5NSeFz9vfiymbzwqFQmHw9yCqiYd/K1IoFKKgpMwoD13+f1TXcyOEEGPHjhUdO3YUQlT05Dg6Oori4mKVbdq0aSPWr18vhBCiX79+YsKECdW+V9XeiU8//VT4+vqK0lLNPbBVtz106JCwtLQU6enpytcvXbokAIgzZ84IISp6buzs7FR6aubNmyf69Omjduzqem4iIyNVtvP29hbbtm1TaXv//fdFv379hBBCREVFifbt26tc75KSEiGTycTBgwfFzZs3BQCxfPnyaq+JpvPV5OuvvxZNmzZVPu/atatYvHixxm1HjBghQkJCNL5WteemkpOTk4iOjlY+f7jn5pVXXhGvvfaaynGOHz8uLCwslP/efXx8xOjRox9xhhVGjRql0itR6dChQ8LV1VXZk7VixQoRGBioso22PTcymUzMmjXrsbE8rKysTFy5cuWRj5s3b1a7/7Rp08SQIUPU2m1sbNT+HVVn+vTpyv9zVWVmZgo/Pz8hkUiEpaWl8PT0VPkMK40ZM0ZMnjxZ47EN1XNj1Dk3y5cvx5QpUzB16lQAQGRkJA4ePIi1a9ciIiJCbft169ahRYsWytn6HTt2RFxcHD755BM899xzdRm6RjvjMhBXWdNmVGdWgaV6TyKRwM6mYU+9E0Io/6/Fx8fjwYMHaNq0qco2RUVFuHr1KgAgMTER06ZN0+rYL7zwAiIjI9G6dWs8/fTTGDZsGEaMGKGxJyM5ORne3t7w9vZWtnXq1AnOzs5ITk7GE088AaBixZGDg4NyGw8PD9y6dUvr863ao3D79m1kZGRgypQpKudUXl6unGgbHx+PP//8U+U9AaC4uBhXr15F9+7dAehXGfbo0aNYtmwZkpKSkJeXh/LychQXF6OgoAD29vaYNWsWpk+fjkOHDmHw4MF47rnn0K1bNwDA9OnT8dxzz+HcuXMICgrC6NGjERAQoHMMlSrPc+vWrco2IQQUCgVSU1PRsWNHAKi2l66qoqIi2NraqrVHRUVh7Nixys//pZdewrx58/DHH3+gfXvdbqtT9d+tLqysrNC2bVud96tK0/tqG09RURG2bdum1uslhMCMGTPg5uaG48ePQyaTYePGjXjmmWdw9uxZeHh4KLeVyWQoLCys0Tk8jtGGpUpLSxEfH4+goCCV9qCgIJw6dUrjPqdPn1bbPjg4GHFxcdXOLC8pKUFeXp7Kozbczi9BRExFTZuwIb5ozpo2RHUiOTkZrVq1AgAoFAp4eHggMTFR5fHHH39g3rx5ANQn5T6Kt7c3/vjjD6xevRoymQwzZszAk08+qfHnTXVfDg+3PzwBWCKR6LTiq+pwReV+GzZsUDnfixcvKlfyKBQK+Pn5qV2Ty5cvY/z48XB1dUXjxo2RnJysdQwAkJaWhmHDhqFLly7YvXs34uPjsXr1agBQXp+pU6ciJSUFr7zyCi5cuAB/f3/lpNWhQ4ciLS0Nc+bMwY0bN/DUU0/hrbfe0imGqhQKBV5//XWVc/ztt99w5coVtGnTRuP1q46Liwvu3bun0nb37l3s27cPa9asgZWVFaysrNC8eXOUl5dj06ZNyu0cHR2Rm5urdsz79+/D0dFR+dzX11fnaw7UfFiqWbNmyM7OVmm7d+8eysrK4O7u/tj337VrFwoLCzFx4kSV9p9//hnff/89duzYgcDAQPTq1Qtr1qyBTCZTDpFWunv3rsEn4z/MaL+y5eTkQC6Xq11Md3d3tQtfKTs7W+P25eXlyMnJUckMK0VERGDJkiWGC7waOQ9K4NJICu8mdpgc0LLW34+IKn6gXrhwAXPnzgUA9OrVC9nZ2bCystK4hBcAunXrhiNHjiAkJESr95DJZBg5ciRGjhyJmTNnokOHDrhw4QJ69eqlsl2nTp2Qnp6OjIwMZe9NUlIScnNzlb0Ghubu7o7mzZsjJSUFEyZM0LhNr169sHPnTri5ual8uVY1duxYfPXVVwgPD1ebd1NQUACpVKrWWxUXF4fy8nJ8+umnsLCo+D1Z0/wTb29vhIaGKlfIbNiwAW+++SaAitVmkydPxuTJk9G/f3/MmzcPn3zyic7XofI8L126VONeDQDo2bMn/u///k+lbevWrfDy8sK+fftU2o8cOYKIiAgsXboUVlZW6NChAw4cOKB2zLNnz6r07owfPx7//ve/kZCQoDbvpry8HCUlJRoTMU9PT5X6P5pU9zkDQL9+/bB06VJkZWUpvzMPHToEqVSqMjemOlFRURg5cqRaclLZE1P5b6GShYWFWvJ+8eJFPP/88499r5ow+oTih3/TeVzXmKbtNbVXWrhwIXJzc5WPjIyMGkasWUcPRxyY0x9fTPRnTRuiWlBSUoLs7Gxcv34d586dw7JlyzBq1Cg888wzyt8iBw8ejH79+mH06NE4ePAgrl27hlOnTuE///kP4uLiAADh4eHYvn07wsPDkZycjAsXLuDjjz/W+J6bN29GVFQULl68iJSUFHz11VeQyWTw8VEvyjl48GB069YNEyZMwLlz53DmzBlMnDgRAwYM0GooRF+LFy9GREQEVq5cicuXL+PChQuIjo7G8uXLAQATJkyAi4sLRo0ahePHjyM1NRXHjh3D7NmzkZmZCQBYtmwZvL290adPH2zZsgVJSUm4cuUKNm3ahB49euDBgwdq79umTRuUl5fjs88+U16bhxd4zJkzBwcPHkRqairOnTuHn3/+WZnovfvuu/j222/x559/4tKlS/j+++9rlAS+/fbbOH36NGbOnInExERcuXIF+/fvVyZSuggODsalS5dUem+ioqLw/PPPo0uXLiqPV199Fffv38cPP/wAAJgxYwauXr2KmTNn4rfffsPly5exevVqREVFKXsPK69NYGAgnnrqKaxevRq//fYbUlJS8PXXX6NPnz64cuWKxtgqh6Ue9XBzc6v23IKCgtCpUye88sorygn1b731FqZNm6ZMiq5fv44OHTrgzJkzKvv++eefiI2NVU4lqapfv35o3LgxJk2apDzvefPmITU1FcOHD1dud+3aNVy/fh2DBw/W4pOogcfOyqklJSUlwtLSUuzZs0elfdasWeLJJ5/UuE///v3VJmDt2bNHWFlZVTvh72F1sRScqL561GS9+mzSpEnKZcBWVlbC1dVVDB48WGzatEnI5XKVbfPy8sSbb74pPD09hbW1tfD29hYTJkxQmei7e/du0aNHD2FjYyNcXFzEs88+q3yt6qTZvXv3ij59+ghHR0dhb28v+vbtq7KsVd+l4FWtWLFC+Pj4qJ1zdROKNU3Q3Lp1q/J8GjduLJ588kmVn61ZWVli4sSJwsXFRUilUtG6dWsxbdo0lZ+D9+/fFwsWLBDt2rUTNjY2wt3dXQwePFjs3btXORn54fNdvny58PDwEDKZTAQHB4stW7aoTPJ94403RJs2bYRUKhWurq7ilVdeETk5OUKIiknPHTt2FDKZTDRp0kSMGjVKpKSkVHuuj5tQLIQQZ86cEUOGDBGNGjUS9vb2olu3bmLp0qXK1x83Ibqqvn37inXr1gkhhIiLi1OZGP6wESNGiBEjRiifx8XFieDgYOHm5iYcHR2Fv7+/2L59u9p+xcXFIiIiQnTt2lXY2tqKJk2aiMDAQLF582blpOXakJaWJoYPH6689m+88YbKJPzK63/06FGV/RYuXCi8vLzU/s9VOnv2rAgKChJNmjQRDg4Oom/fviImJkZlm2XLlong4OBqYzPUhGKJEHVcerKKPn36wM/PD2vWrFG2derUCaNGjdI4ofjtt9/Gd999h6SkJGXb9OnTkZiYiNOnT2v1nnl5eXByckJubu4ju+6ITFFxcTFSU1OV5ReISLOYmBi89dZbuHjxotpQC+mnpKQE7dq1w/bt2xEYGKhxm0f9jNLl+9uon1hYWBg2btyITZs2ITk5GXPnzkV6erpyMtTChQtVJi2FhoYiLS0NYWFhSE5OxqZNmxAVFVWjSWhEREQPGzZsGF5//XVcv37d2KGYjLS0NCxatKjaxMaQjLoGdOzYsbhz5w7ee+895X1EYmJilOPZWVlZSE9PV27fqlUrxMTEYO7cuVi9ejU8PT2xatWqerEMnIiITMvs2bONHYJJ8fX1ha+vb528l1GHpYyBw1JkzjgsRUT1mUkMSxGRcZjZ7zRE1EAY6mcTkxsiM1J5F97S0lIjR0JEpK7yZ1NN7xjesOuuE5FOrKysYGdnh9u3b8Pa2pqrQIio3lAoFLh9+zbs7OyqvVmrtpjcEJkRiUQCDw8PpKamIi0tzdjhEBGpsLCwQIsWLWp8b0YmN0RmxsbGBu3atePQFBHVOzY2NgbpUWZyQ2SGLCwsuFqKiEwWB9yJiIjIpDC5ISIiIpPC5IaIiIhMitnNuaksEJSXl2fkSIiIiEhbld/b2hT6M7vkJj8/HwDg7e1t5EiIiIhIV/n5+XBycnrkNmZ3bymFQoEbN27AwcGhxuvoH5aXlwdvb29kZGTwvlW1iNe5bvA61w1e57rDa103aus6CyGQn58PT0/Pxy4XN7ueGwsLC3h5edXqezg6OvI/Th3gda4bvM51g9e57vBa143auM6P67GpxAnFREREZFKY3BAREZFJYXJjQFKpFOHh4ZBKpcYOxaTxOtcNXue6wetcd3it60Z9uM5mN6GYiIiITBt7boiIiMikMLkhIiIik8LkhoiIiEwKkxsiIiIyKUxudLRmzRq0atUKtra28PPzw/Hjxx+5/bFjx+Dn5wdbW1u0bt0a69atq6NIGzZdrvOePXswZMgQuLq6wtHREf369cPBgwfrMNqGS9d/z5VOnjwJKysr9OjRo3YDNBG6XueSkhIsWrQIPj4+kEqlaNOmDTZt2lRH0TZcul7nrVu3onv37rCzs4OHhwdCQkJw586dOoq2YYqNjcWIESPg6ekJiUSCffv2PXYfo3wPCtLajh07hLW1tdiwYYNISkoSs2fPFvb29iItLU3j9ikpKcLOzk7Mnj1bJCUliQ0bNghra2uxa9euOo68YdH1Os+ePVt89NFH4syZM+Ly5cti4cKFwtraWpw7d66OI29YdL3Ole7fvy9at24tgoKCRPfu3esm2AZMn+s8cuRI0adPH3H48GGRmpoq/ve//4mTJ0/WYdQNj67X+fjx48LCwkKsXLlSpKSkiOPHj4vOnTuL0aNH13HkDUtMTIxYtGiR2L17twAg9u7d+8jtjfU9yORGB7179xahoaEqbR06dBALFizQuP38+fNFhw4dVNpef/110bdv31qL0RToep016dSpk1iyZImhQzMp+l7nsWPHiv/85z8iPDycyY0WdL3OBw4cEE5OTuLOnTt1EZ7J0PU6//e//xWtW7dWaVu1apXw8vKqtRhNjTbJjbG+BzkspaXS0lLEx8cjKChIpT0oKAinTp3SuM/p06fVtg8ODkZcXBzKyspqLdaGTJ/r/DCFQoH8/Hw0adKkNkI0Cfpe5+joaFy9ehXh4eG1HaJJ0Oc679+/H/7+/vj444/RvHlz+Pr64q233kJRUVFdhNwg6XOdAwICkJmZiZiYGAghcPPmTezatQvDhw+vi5DNhrG+B83uxpn6ysnJgVwuh7u7u0q7u7s7srOzNe6TnZ2tcfvy8nLk5OTAw8Oj1uJtqPS5zg/79NNPUVBQgBdffLE2QjQJ+lznK1euYMGCBTh+/DisrPijQxv6XOeUlBScOHECtra22Lt3L3JycjBjxgzcvXuX826qoc91DggIwNatWzF27FgUFxejvLwcI0eOxGeffVYXIZsNY30PsudGRxKJROW5EEKt7XHba2onVbpe50rbt2/H4sWLsXPnTri5udVWeCZD2+ssl8sxfvx4LFmyBL6+vnUVnsnQ5d+zQqGARCLB1q1b0bt3bwwbNgzLly/H5s2b2XvzGLpc56SkJMyaNQvvvvsu4uPj8eOPPyI1NRWhoaF1EapZMcb3IH/90pKLiwssLS3Vfgu4deuWWlZaqVmzZhq3t7KyQtOmTWst1oZMn+tcaefOnZgyZQq++eYbDB48uDbDbPB0vc75+fmIi4tDQkIC3njjDQAVX8JCCFhZWeHQoUMYNGhQncTekOjz79nDwwPNmzeHk5OTsq1jx44QQiAzMxPt2rWr1ZgbIn2uc0REBAIDAzFv3jwAQLdu3WBvb4/+/fvjgw8+YM+6gRjre5A9N1qysbGBn58fDh8+rNJ++PBhBAQEaNynX79+atsfOnQI/v7+sLa2rrVYGzJ9rjNQ0WMzefJkbNu2jWPmWtD1Ojs6OuLChQtITExUPkJDQ9G+fXskJiaiT58+dRV6g6LPv+fAwEDcuHEDDx48ULZdvnwZFhYW8PLyqtV4Gyp9rnNhYSEsLFS/Ai0tLQH83bNANWe078Fana5sYiqXGkZFRYmkpCQxZ84cYW9vL65duyaEEGLBggXilVdeUW5fuQRu7ty5IikpSURFRXEpuBZ0vc7btm0TVlZWYvXq1SIrK0v5uH//vrFOoUHQ9To/jKultKPrdc7PzxdeXl7i+eefF5cuXRLHjh0T7dq1E1OnTjXWKTQIul7n6OhoYWVlJdasWSOuXr0qTpw4Ifz9/UXv3r2NdQoNQn5+vkhISBAJCQkCgFi+fLlISEhQLrmvL9+DTG50tHr1auHj4yNsbGxEr169xLFjx5SvTZo0SQwYMEBl+19++UX07NlT2NjYiJYtW4q1a9fWccQNky7XecCAAQKA2mPSpEl1H3gDo+u/56qY3GhP1+ucnJwsBg8eLGQymfDy8hJhYWGisLCwjqNueHS9zqtWrRKdOnUSMplMeHh4iAkTJojMzMw6jrphOXr06CN/3taX70GJEOx/IyIiItPBOTdERERkUpjcEBERkUlhckNEREQmhckNERERmRQmN0RERGRSmNwQERGRSWFyQ0RERCaFyQ0RERGZFCY3RBps3rwZzs7Oxg5Dby1btkRkZOQjt1m8eDF69OhRJ/HUNz///DM6dOgAhUJRJ+9XXz4Pfd5DIpFg3759NXrfyZMnY/To0TU6hiZPPPEE9uzZY/DjUsPH5IZM1uTJkyGRSNQef/75p7FDw+bNm1Vi8vDwwIsvvojU1FSDHP/s2bN47bXXlM81fUG99dZbOHLkiEHerzoPn6e7uztGjBiBS5cu6XwcQyab8+fPx6JFi5Q3TjSXz6MhiY2NxYgRI+Dp6VltgvXOO+9gwYIFdZakUsPB5IZM2tNPP42srCyVR6tWrYwdFoCKO21nZWXhxo0b2LZtGxITEzFy5EjI5fIaH9vV1RV2dnaP3KZRo0Zo2rRpjd/rcaqe5w8//ICCggIMHz4cpaWltf7empw6dQpXrlzBCy+8UG2cpvx5NBQFBQXo3r07Pv/882q3GT58OHJzc3Hw4ME6jIwaAiY3ZNKkUimaNWum8rC0tMTy5cvRtWtX2Nvbw9vbGzNmzMCDBw+qPc5vv/2GgQMHwsHBAY6OjvDz80NcXJzy9VOnTuHJJ5+ETCaDt7c3Zs2ahYKCgkfGJpFI0KxZM3h4eGDgwIEIDw/HxYsXlT1La9euRZs2bWBjY4P27dvjq6++Utl/8eLFaNGiBaRSKTw9PTFr1izla1WHQVq2bAkAGDNmDCQSifJ51SGKgwcPwtbWFvfv31d5j1mzZmHAgAEGO09/f3/MnTsXaWlp+OOPP5TbPOrz+OWXXxASEoLc3Fxlz8rixYsBAKWlpZg/fz6aN28Oe3t79OnTB7/88ssj49mxYweCgoJga2tbbZym/HlUdfbsWQwZMgQuLi5wcnLCgAEDcO7cObXtsrKyMHToUMhkMrRq1QrffPONyuvXr1/H2LFj0bhxYzRt2hSjRo3CtWvXtI5Dk6FDh+KDDz7As88+W+02lpaWGDZsGLZv316j9yLTw+SGzJKFhQVWrVqFixcv4ssvv8TPP/+M+fPnV7v9hAkT4OXlhbNnzyI+Ph4LFiyAtbU1AODChQsIDg7Gs88+i/Pnz2Pnzp04ceIE3njjDZ1ikslkAICysjLs3bsXs2fPxr/+9S9cvHgRr7/+OkJCQnD06FEAwK5du7BixQqsX78eV65cwb59+9C1a1eNxz179iwAIDo6GllZWcrnVQ0ePBjOzs7YvXu3sk0ul+Prr7/GhAkTDHae9+/fx7Zt2wBAef2AR38eAQEBiIyMVPasZGVl4a233gIAhISE4OTJk9ixYwfOnz+PF154AU8//TSuXLlSbQyxsbHw9/d/bKzm8Hnk5+dj0qRJOH78OH799Ve0a9cOw4YNQ35+vsp277zzDp577jn89ttvePnll/HSSy8hOTkZAFBYWIiBAweiUaNGiI2NxYkTJ9CoUSM8/fTT1fbOVQ4DGkLv3r1x/PhxgxyLTEit33ecyEgmTZokLC0thb29vfLx/PPPa9z266+/Fk2bNlU+j46OFk5OTsrnDg4OYvPmzRr3feWVV8Rrr72m0nb8+HFhYWEhioqKNO7z8PEzMjJE3759hZeXlygpKREBAQFi2rRpKvu88MILYtiwYUIIIT799FPh6+srSktLNR7fx8dHrFixQvkcgNi7d6/KNuHh4aJ79+7K57NmzRKDBg1SPj948KCwsbERd+/erdF5AhD29vbCzs5OABAAxMiRIzVuX+lxn4cQQvz5559CIpGI69evq7Q/9dRTYuHChdUe28nJSWzZskUtTnP4PB5+j4eVl5cLBwcH8d1336nEGhoaqrJdnz59xPTp04UQQkRFRYn27dsLhUKhfL2kpETIZDJx8OBBIUTF/8VRo0YpX9+zZ49o3759tXE8TNP1qvTtt98KCwsLIZfLtT4emT723JBJGzhwIBITE5WPVatWAQCOHj2KIUOGoHnz5nBwcMDEiRNx586darv0w8LCMHXqVAwePBgffvghrl69qnwtPj4emzdvRqNGjZSP4OBgKBSKR05Izc3NRaNGjZRDMaWlpdizZw9sbGyQnJyMwMBAle0DAwOVvy2/8MILKCoqQuvWrTFt2jTs3bsX5eXlNbpWEyZMwC+//IIbN24AALZu3Yphw4ahcePGNTpPBwcHJCYmIj4+HuvWrUObNm2wbt06lW10/TwA4Ny5cxBCwNfXVyWmY8eOqXw+DysqKlIbkgLM5/Oo6tatWwgNDYWvry+cnJzg5OSEBw8eID09XWW7fv36qT2vPPf4+Hj8+eefcHBwUMbRpEkTFBcXV/s5jBkzBr///rtO16M6MpkMCoUCJSUlBjkemQYrYwdAVJvs7e3Rtm1blba0tDQMGzYMoaGheP/999GkSROcOHECU6ZMQVlZmcbjLF68GOPHj8cPP/yAAwcOIDw8HDt27MCYMWOgUCjw+uuvq8yxqNSiRYtqY3NwcMC5c+dgYWEBd3d32Nvbq7z+cLe9EELZ5u3tjT/++AOHDx/GTz/9hBkzZuC///0vjh07pjLco4vevXujTZs22LFjB6ZPn469e/ciOjpa+bq+52lhYaH8DDp06IDs7GyMHTsWsbGxAPT7PCrjsbS0RHx8PCwtLVVea9SoUbX7ubi44N69e2rt5vJ5VDV58mTcvn0bkZGR8PHxgVQqRb9+/bSa7F157gqFAn5+fti6davaNq6urlrFURN3796FnZ2dchiRCGByQ2YoLi4O5eXl+PTTT5VLgb/++uvH7ufr6wtfX1/MnTsXL730EqKjozFmzBj06tULly5dUkuiHqfql/7DOnbsiBMnTmDixInKtlOnTqFjx47K5zKZDCNHjsTIkSMxc+ZMdOjQARcuXECvXr3Ujmdtba3Vqp/x48dj69at8PLygoWFBYYPH658Td/zfNjcuXOxfPly7N27F2PGjNHq87CxsVGLv2fPnpDL5bh16xb69++v9fv37NkTSUlJau3m+HkcP34ca9aswbBhwwAAGRkZyMnJUdvu119/VTn3X3/9FT179lTGsXPnTri5ucHR0VHvWPR18eJFjdeYzBuHpcjstGnTBuXl5fjss8+QkpKCr776Sm2YpKqioiK88cYb+OWXX5CWloaTJ0/i7Nmzyi+2t99+G6dPn8bMmTORmJiIK1euYP/+/XjzzTf1jnHevHnYvHkz1q1bhytXrmD58uXYs2ePciLt5s2bERUVhYsXLyrPQSaTwcfHR+PxWrZsiSNHjiA7O1tjr0WlCRMm4Ny5c1i6dCmef/55leEbQ52no6Mjpk6divDwcAghtPo8WrZsiQcPHuDIkSPIyclBYWEhfH19MWHCBEycOBF79uxBamoqzp49i48++ggxMTHVvn9wcDBOnDihU8ym+nm0bdsWX331FZKTk/G///0PEyZM0NgD8s0332DTpk24fPkywsPDcebMGeXE5QkTJsDFxQWjRo3C8ePHkZqaimPHjmH27NnIzMzU+L579+5Fhw4dHhnbgwcPlMPJAJCamorExES1IbPjx48jKChI63MmM2HcKT9EtefhSYxVLV++XHh4eAiZTCaCg4PFli1bBABx7949IYTqBNOSkhIxbtw44e3tLWxsbISnp6d44403VCZtnjlzRgwZMkQ0atRI2Nvbi27duomlS5dWG5umCbIPW7NmjWjdurWwtrYWvr6+KpNg9+7dK/r06SMcHR2Fvb296Nu3r/jpp5+Urz88gXX//v2ibdu2wsrKSvj4+Aghqp9c+sQTTwgA4ueff1Z7zVDnmZaWJqysrMTOnTuFEI//PIQQIjQ0VDRt2lQAEOHh4UIIIUpLS8W7774rWrZsKaytrUWzZs3EmDFjxPnz56uN6e7du0Imk4nff//9sXFWZQqfx8Pvce7cOeHv7y+kUqlo166d+OabbzROfl69erUYMmSIkEqlwsfHR2zfvl3luFlZWWLixInCxcVFSKVS0bp1azFt2jSRm5srhFD/v1g50fxRjh49qpyAXvUxadIk5TaZmZnC2tpaZGRkPPJYZH4kQghhnLSKiMg45s+fj9zcXKxfv97YoVANzJs3D7m5ufjiiy+MHQrVMxyWIiKzs2jRIvj4+Bik+jAZj5ubG95//31jh0H1EHtuiIiIyKSw54aIiIhMCpMbIiIiMilMboiIiMikMLkhIiIik8LkhoiIiEwKkxsiIiIyKUxuiIiIyKQwuSEiIiKTwuSGiIiITMr/A46NXKStKmZwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display = RocCurveDisplay.from_estimator(mdl, X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "384b3609-330d-400d-a53a-e98885bd1566", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "71b6fedb-87d0-4b24-924a-17a0b0f97337", + "metadata": {}, + "source": [ + "## Random Forest\n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "61aec462-a4c1-4093-b2be-b5b16d537c74", + "metadata": {}, + "outputs": [], + "source": [ + "clf = RandomForestClassifier(n_estimators =100)\n", + "clf.fit(X_train, y_train)\n", + "pp = clf.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "20e279ea-a247-48f9-8267-7327aa9cface", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.90 0.90 0.90 29\n", + " 1 0.89 0.89 0.89 27\n", + "\n", + " accuracy 0.89 56\n", + " macro avg 0.89 0.89 0.89 56\n", + "weighted avg 0.89 0.89 0.89 56\n", + "\n" + ] + } + ], + "source": [ + "print(classification_report(y_test, pp))" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "2c3d055e-cdc4-413e-a944-b54d5eec27e1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAGwCAYAAABSAee3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAsWElEQVR4nO3de3gU9fn38c8GyCZAEoyQk4QQkJOCiAQ5eACsoKlyEbEWxJ+Cgi0FpTx4qqIS20LEtoBKQaVPE/QnFR9b0CqKVAQ8oSSCIKQUJEAQUg4qgUASsjvPH8jqCsJuZja7s/N+Xddcdb87hzuUizv3/f3OjMswDEMAAMCWYsIdAAAAqD8SOQAANkYiBwDAxkjkAADYGIkcAAAbI5EDAGBjJHIAAGyscbgDMMPr9WrPnj1KSEiQy+UKdzgAgCAZhqHDhw8rIyNDMTGhqy2rq6tVW1tr+jyxsbGKi4uzICLr2DqR79mzR5mZmeEOAwBgUnl5uVq3bh2Sc1dXVys7q7kq9nlMnystLU1lZWURlcxtncgTEhIkSTs/bavE5swSIDrd0LFbuEMAQqZOx/W+lvr+PQ+F2tpaVezzaGdJWyUm1D9XVB72KqvnDtXW1pLIrXKynZ7YPMbU/zlAJGvsahLuEIDQ+fYh4Q0xPdo8waXmCfW/jleROYVr60QOAECgPIZXHhNvF/EYXuuCsRCJHADgCF4Z8qr+mdzMsaFEPxoAABujIgcAOIJXXplpjps7OnRI5AAAR/AYhjxG/dvjZo4NJVrrAADYGBU5AMARonWxG4kcAOAIXhnyRGEip7UOAICNUZEDABwhWlvrVOQAAEc4uWrdzBaMgoIC9erVSwkJCUpJSVFeXp62bNnit8/o0aPlcrn8tj59+gR1HRI5AAAhsGrVKk2YMEFr1qzR8uXLVVdXp8GDB6uqqspvv2uvvVZ79+71bUuXLg3qOrTWAQCO4P12M3O8JFVWVvqNu91uud3uU/Z/6623/D4XFhYqJSVFJSUluvLKK/2OT0tLq3dcVOQAAEfwfLtq3cwmSZmZmUpKSvJtBQUFAV3/0KFDkqTk5GS/8ZUrVyolJUUdO3bUnXfeqX379gX1c1GRAwAcwWPI5NvPTvxveXm5EhMTfeOnq8Z/yDAMTZ48WZdffrm6du3qG8/NzdVNN92krKwslZWV6ZFHHtFVV12lkpKSgM4rkcgBAAhKYmKiXyIPxF133aUNGzbo/fff9xsfPny477+7du2qnJwcZWVl6Y033tCwYcMCOjeJHADgCFbNkQfr7rvv1muvvabVq1erdevWZ9w3PT1dWVlZ2rp1a8DnJ5EDABzBK5c8cpk6PhiGYejuu+/W4sWLtXLlSmVnZ5/1mIMHD6q8vFzp6ekBX4fFbgAAhMCECRP0v//7v1q4cKESEhJUUVGhiooKHTt2TJJ05MgR3Xvvvfroo4+0Y8cOrVy5UkOGDFHLli11ww03BHwdKnIAgCN4jRObmeODMW/ePEnSgAED/MYLCws1evRoNWrUSBs3btTzzz+vb775Runp6Ro4cKAWLVqkhISEgK9DIgcAOILHZGs92GONszwJLj4+XsuWLat3PCfRWgcAwMaoyAEAjtDQFXlDIZEDABzBa7jkNUysWjdxbCjRWgcAwMaoyAEAjkBrHQAAG/MoRh4TjWiPhbFYiUQOAHAEw+QcucEcOQAAsBoVOQDAEZgjBwDAxjxGjDyGiTlyE493DSVa6wAA2BgVOQDAEbxyyWuifvUqMktyEjkAwBGidY6c1joAADZGRQ4AcATzi91orQMAEDYn5shNvDSF1joAALAaFTkAwBG8Jp+1zqp1AADCiDlyAABszKuYqLyPnDlyAABsjIocAOAIHsMlj4lXkZo5NpRI5AAAR/CYXOzmobUOAACsRkUOAHAErxEjr4lV615WrQMAED601gEAQMShIgcAOIJX5laee60LxVIkcgCAI5h/IExkNrEjMyoAABAQKnIAgCOYf9Z6ZNa+JHIAgCNE6/vISeQAAEeI1oo8MqMCAAABoSIHADiC+QfCRGbtSyIHADiC13DJa+Y+8gh9+1lk/noBAAACQkUOAHAEr8nWeqQ+EIZEDgBwBPNvP4vMRB6ZUQEAgIBQkQMAHMEjlzwmHupi5thQIpEDAByB1joAAIg4VOQAAEfwyFx73GNdKJYikQMAHCFaW+skcgCAI/DSFAAAEHGoyAEAjmCYfB+5we1nAACED611AAAQcajIAQCOEK2vMSWRAwAcwWPy7Wdmjg2lyIwKAAAEhIocAOAItNYBALAxr2LkNdGINnNsKEVmVAAAICBU5AAAR/AYLnlMtMfNHBtKJHIAgCMwRw4AgI0ZJt9+ZvBkNwAAYDUqcgCAI3jkksfEi0/MHBtKJHIAgCN4DXPz3F7DwmAsRGsdAAAboyLHKV56OkUfLG2h8m1uxcZ5dUHOUY2ZskeZ59f47bdrq1v/9/cZ2rCmuQyvlNWpWlOe2aGU1sfDFDlQP9ffdkDX3XZQqZm1kqSdW+L04qxUFb+bGObIYCWvycVuZo4NJRI5TrHho+YaMvqAOl58VJ46qWhGuh66ub3mr/q34pp6JUl7dsRqcl4HXTvioG69t0LNEj3atTVOsXER2nsCzmD/3ib66/R07dnhliQNuukr5Rfu0ITBHbXzP3Fhjg5W8colr4l5bjPHhlLYf72YO3eusrOzFRcXp549e+q9994Ld0iON33hdg0e/pXadqpW+wurdc+sXdr3Zay2boj37VP0eLouvapSYx/Zq/O7HVN6Vq16X12pFi3rwhg5UD8fL0/S2hWJ+nK7W19ud6toRrqqq2LUuWdVuEMDziqsiXzRokWaNGmSpkyZonXr1umKK65Qbm6udu3aFc6w8ANVlY0kSQktPJIkr1f65J1EndeuRg/d3E4/73ahJl7XQR++mRTOMAFLxMQY6j/0a7mbelVa3Czc4cBCJ5/sZmaLRGFN5DNnztSYMWM0duxYdenSRbNnz1ZmZqbmzZsXzrDwPYYhPZd/ni689Ijadq6WJH1zoLGOVTXSojkpyhl4WAV/267Lrj2k345tqw0f8Q8f7Klt52NasnWjXt+xQRMf363fjmmrXVtpq0eTk3PkZrZIFLY58traWpWUlOg3v/mN3/jgwYP14YcfnvaYmpoa1dR8t+CqsrIypDFC+vND56msNF5/WrLVN2acmCZX32sqNewX+yVJ7bse0+biZnrj+Za6qC/tSNjP7i/cGj+oo5olenT5dYd075O7dN+w80nmiHhh+/XiwIED8ng8Sk1N9RtPTU1VRUXFaY8pKChQUlKSb8vMzGyIUB3rz1PO00dvJ+mJV7apVcZ3K9ETkz1q1NhQVsdqv/0zO1Rr35dNGjpMwBJ1x2O0Z4dbWzc0VWFBuso2xytv7P5whwULeeXyPW+9XluQi90KCgrUq1cvJSQkKCUlRXl5edqyZYvfPoZhKD8/XxkZGYqPj9eAAQO0adOmoK4T9j6By+X/B2MYxiljJz344IM6dOiQbysvL2+IEB3HMKQ5D52nD95M0hP/b5vS2tT6fd8k1lDH7ke1+wu33/iX293ceoao0iSWuzCiifHtqvX6bkaQiXzVqlWaMGGC1qxZo+XLl6uurk6DBw9WVdV3XcsnnnhCM2fO1Jw5c7R27VqlpaVp0KBBOnz4cMDXCVtrvWXLlmrUqNEp1fe+fftOqdJPcrvdcrvdp/0O1pnzUGu9u/gc5RduV3xzr77ad+KvSbMEj9zxJ/5hu2n8Pk0fl6WufY6oe78jKn43UWuWJ+kPr2wLZ+hAvdz+m71auyJB+/fEKr65RwOGfqOL+h3Rw7e0C3dosFBDv/3srbfe8vtcWFiolJQUlZSU6Morr5RhGJo9e7amTJmiYcOGSZIWLFig1NRULVy4UL/85S8Duk7YEnlsbKx69uyp5cuX64YbbvCNL1++XEOHDg1XWJD0+oKWkqT7buzgN37PrF0aPPwrSdJluYc08fHdemlOquY90lqt29Xokfll6tqb+XHYT4tWdbrv6V1KTqnT0cONVFYap4dvaadPVyeEOzREoB+uzwq0yDx06JAkKTk5WZJUVlamiooKDR482O9c/fv314cffhj5iVySJk+erFtvvVU5OTnq27evnnvuOe3atUvjxo0LZ1iOt2zP+oD2u+bmr3TNzV+FNhigAcy6h/U2TmDVk91+uD5r6tSpys/PP+OxhmFo8uTJuvzyy9W1a1dJ8nWkT7dWbOfOnQHHFdZEPnz4cB08eFC//e1vtXfvXnXt2lVLly5VVlZWOMMCAEQhq1rr5eXlSkz87vG9gVTjd911lzZs2KD333//lO+CWSt2OmF/ROv48eM1fvz4cIcBAEBAEhMT/RL52dx999167bXXtHr1arVu3do3npaWJulEZZ6enu4bP9NasdMJ+6p1AAAagpkV6/V5TrthGLrrrrv0j3/8QytWrFB2drbf99nZ2UpLS9Py5ct9Y7W1tVq1apX69esX8HXCXpEDANAQGnrV+oQJE7Rw4UK9+uqrSkhI8M2JJyUlKT4+Xi6XS5MmTdL06dPVoUMHdejQQdOnT1fTpk01cuTIgK9DIgcAIAROPm58wIABfuOFhYUaPXq0JOn+++/XsWPHNH78eH399dfq3bu33n77bSUkBH7HBIkcAOAIDV2RG8bZHyjkcrmUn59/1lXvZ0IiBwA4QkMn8obCYjcAAGyMihwA4AjRWpGTyAEAjmBIQd9C9sPjIxGJHADgCNFakTNHDgCAjVGRAwAcIVorchI5AMARojWR01oHAMDGqMgBAI4QrRU5iRwA4AiG4ZJhIhmbOTaUaK0DAGBjVOQAAEeozzvFf3h8JCKRAwAcIVrnyGmtAwBgY1TkAABHiNbFbiRyAIAjRGtrnUQOAHCEaK3ImSMHAMDGqMgBAI5gmGytR2pFTiIHADiCIckwzB0fiWitAwBgY1TkAABH8MolF092AwDAnli1DgAAIg4VOQDAEbyGSy4eCAMAgD0ZhslV6xG6bJ3WOgAANkZFDgBwhGhd7EYiBwA4AokcAAAbi9bFbsyRAwBgY1TkAABHiNZV6yRyAIAjnEjkZubILQzGQrTWAQCwMSpyAIAjsGodAAAbM2TuneIR2lmntQ4AgJ1RkQMAHIHWOgAAdhalvXUSOQDAGUxW5IrQipw5cgAAbIyKHADgCDzZDQAAG4vWxW601gEAsDEqcgCAMxgucwvWIrQiJ5EDABwhWufIaa0DAGBjVOQAAGfggTAAANhXtK5aDyiRP/XUUwGfcOLEifUOBgAABCegRD5r1qyATuZyuUjkAIDIFaHtcTMCSuRlZWWhjgMAgJCK1tZ6vVet19bWasuWLaqrq7MyHgAAQsOwYItAQSfyo0ePasyYMWratKkuvPBC7dq1S9KJufHHH3/c8gABAMCPCzqRP/jgg/rss8+0cuVKxcXF+cavvvpqLVq0yNLgAACwjsuCLfIEffvZkiVLtGjRIvXp00cu13c/1AUXXKAvvvjC0uAAALBMlN5HHnRFvn//fqWkpJwyXlVV5ZfYAQBA6AWdyHv16qU33njD9/lk8p4/f7769u1rXWQAAFgpShe7Bd1aLygo0LXXXqvNmzerrq5OTz75pDZt2qSPPvpIq1atCkWMAACYF6VvPwu6Iu/Xr58++OADHT16VO3bt9fbb7+t1NRUffTRR+rZs2coYgQAAD+iXs9a79atmxYsWGB1LAAAhEy0vsa0Xonc4/Fo8eLFKi0tlcvlUpcuXTR06FA1bsw7WAAAESpKV60HnXk///xzDR06VBUVFerUqZMk6T//+Y9atWql1157Td26dbM8SAAAcHpBz5GPHTtWF154oXbv3q1PP/1Un376qcrLy3XRRRfpF7/4RShiBADAvJOL3cxsESjoivyzzz5TcXGxzjnnHN/YOeeco2nTpqlXr16WBgcAgFVcxonNzPGRKOiKvFOnTvrvf/97yvi+fft0/vnnWxIUAACWi9L7yANK5JWVlb5t+vTpmjhxol555RXt3r1bu3fv1iuvvKJJkyZpxowZoY4XAAB8T0Ct9RYtWvg9ftUwDP385z/3jRnfrskfMmSIPB5PCMIEAMCkKH0gTECJ/N133w11HAAAhFYD3362evVq/eEPf1BJSYn27t2rxYsXKy8vz/f96NGjT3kmS+/evbVmzZqgrhNQIu/fv39QJwUAwOmqqqrUvXt33X777brxxhtPu8+1116rwsJC3+fY2Nigr1PvJ7gcPXpUu3btUm1trd/4RRddVN9TAgAQOg1ckefm5io3N/eM+7jdbqWlpZkIqh6JfP/+/br99tv15ptvnvZ75sgBABHJokReWVnpN+x2u+V2u+t1ypUrVyolJUUtWrRQ//79NW3atNO+KvxMgr79bNKkSfr666+1Zs0axcfH66233tKCBQvUoUMHvfbaa8GeDgAAW8nMzFRSUpJvKygoqNd5cnNz9eKLL2rFihX605/+pLVr1+qqq65STU1NUOcJuiJfsWKFXn31VfXq1UsxMTHKysrSoEGDlJiYqIKCAl133XXBnhIAgNCzaNV6eXm5EhMTfcP1rcaHDx/u+++uXbsqJydHWVlZeuONNzRs2LCAzxN0Iq+qqvKV/cnJydq/f786duyobt266dNPPw32dAAANAirnuyWmJjol8itkp6erqysLG3dujWo4+r1ZLctW7ZIki6++GI9++yz+vLLL/XMM88oPT092NMBAABJBw8eVHl5edC5NOiKfNKkSdq7d68kaerUqbrmmmv04osvKjY2VkVFRcGeDgCAhtHAq9aPHDmibdu2+T6XlZVp/fr1Sk5OVnJysvLz83XjjTcqPT1dO3bs0EMPPaSWLVvqhhtuCOo6QSfyW265xfffPXr00I4dO/Tvf/9bbdq0UcuWLYM9HQAAUam4uFgDBw70fZ48ebIkadSoUZo3b542btyo559/Xt98843S09M1cOBALVq0SAkJCUFdp973kZ/UtGlTXXLJJWZPAwBASLlkco48yP0HDBjge4T56Sxbtqz+wXxPQIn85G8RgZg5c2a9gwEAAMEJKJGvW7cuoJN9/8UqDemGjt3U2NUkLNcGQu2x7SXhDgEImarDXq1sqAeC8tIUAABsrIEXuzWUoG8/AwAAkcP0YjcAAGwhSityEjkAwBGserJbpKG1DgCAjVGRAwCcIUpb6/WqyF944QVddtllysjI0M6dOyVJs2fP1quvvmppcAAAWMawYItAQSfyefPmafLkyfrpT3+qb775Rh6PR5LUokULzZ492+r4AADAGQSdyJ9++mnNnz9fU6ZMUaNGjXzjOTk52rhxo6XBAQBglZOL3cxskSjoOfKysjL16NHjlHG3262qqipLggIAwHJR+mS3oCvy7OxsrV+//pTxN998UxdccIEVMQEAYL0onSMPuiK/7777NGHCBFVXV8swDH3yySf629/+poKCAv3lL38JRYwAAOBHBJ3Ib7/9dtXV1en+++/X0aNHNXLkSJ133nl68sknNWLEiFDECACAadH6QJh63Ud+55136s4779SBAwfk9XqVkpJidVwAAFgrSu8jN/VAmJYtW1oVBwAAqIegE3l2dvYZ3zu+fft2UwEBABASZm8hi5aKfNKkSX6fjx8/rnXr1umtt97SfffdZ1VcAABYi9b6Cb/+9a9PO/7nP/9ZxcXFpgMCAACBs+ztZ7m5ufr73/9u1ekAALAW95Gf2SuvvKLk5GSrTgcAgKW4/exbPXr08FvsZhiGKioqtH//fs2dO9fS4AAAwJkFncjz8vL8PsfExKhVq1YaMGCAOnfubFVcAAAgAEEl8rq6OrVt21bXXHON0tLSQhUTAADWi9JV60EtdmvcuLF+9atfqaamJlTxAAAQEtH6GtOgV6337t1b69atC0UsAAAgSEHPkY8fP1733HOPdu/erZ49e6pZs2Z+31900UWWBQcAgKUitKo2I+BEfscdd2j27NkaPny4JGnixIm+71wulwzDkMvlksfjsT5KAADMitI58oAT+YIFC/T444+rrKwslPEAAIAgBJzIDePEryJZWVkhCwYAgFDhgTDSGd96BgBARHN6a12SOnbseNZk/tVXX5kKCAAABC6oRP7YY48pKSkpVLEAABAytNYljRgxQikpKaGKBQCA0InS1nrAD4RhfhwAgMgT9Kp1AABsKUor8oATudfrDWUcAACEFHPkAADYWZRW5EG/NAUAAEQOKnIAgDNEaUVOIgcAOEK0zpHTWgcAwMaoyAEAzkBrHQAA+6K1DgAAIg4VOQDAGWitAwBgY1GayGmtAwBgY1TkAABHcH27mTk+EpHIAQDOEKWtdRI5AMARuP0MAABEHCpyAIAz0FoHAMDmIjQZm0FrHQAAG6MiBwA4QrQudiORAwCcIUrnyGmtAwBgY1TkAABHoLUOAICd0VoHAACRhoocAOAItNYBALCzKG2tk8gBAM4QpYmcOXIAAGyMihwA4AjMkQMAYGe01gEAQKShIgcAOILLMOQy6l9Wmzk2lKjIAQDOYFiwBWH16tUaMmSIMjIy5HK5tGTJEv9wDEP5+fnKyMhQfHy8BgwYoE2bNgX9Y5HIAQAIgaqqKnXv3l1z5sw57fdPPPGEZs6cqTlz5mjt2rVKS0vToEGDdPjw4aCuQ2sdAOAIVq1ar6ys9Bt3u91yu92n7J+bm6vc3NzTnsswDM2ePVtTpkzRsGHDJEkLFixQamqqFi5cqF/+8pcBx0VFDgBwBota65mZmUpKSvJtBQUFQYdSVlamiooKDR482DfmdrvVv39/ffjhh0Gdi4ocAIAglJeXKzEx0ff5dNX42VRUVEiSUlNT/cZTU1O1c+fOoM5FIgcAOIJVrfXExES/RG4qJpfL77NhGKeMnQ2tdQCAMzTwqvUzSUtLk/RdZX7Svn37TqnSz4ZEDgBwhJMVuZnNKtnZ2UpLS9Py5ct9Y7W1tVq1apX69esX1LlorQMAEAJHjhzRtm3bfJ/Lysq0fv16JScnq02bNpo0aZKmT5+uDh06qEOHDpo+fbqaNm2qkSNHBnUdEjkAwBka+FnrxcXFGjhwoO/z5MmTJUmjRo1SUVGR7r//fh07dkzjx4/X119/rd69e+vtt99WQkJCUNchkQMAHKMh32A2YMAAGWd4rKvL5VJ+fr7y8/NNXYc5cgAAbIyKHADgDIZxYjNzfAQikQMAHMGq+8gjDa11AABsjIocAOAMDbxqvaGQyAEAjuDyntjMHB+JaK0DAGBjVOQ4q+tvO6Drbjuo1MxaSdLOLXF6cVaqit+15qUBQENaPTdNpcta6MD2ODWJ8yrzkioNemC3WrarOe3+r01po5K/tdK1D5er7x37GjhaWIrWOpxq/94m+uv0dO3ZceJVfYNu+kr5hTs0YXBH7fxPXJijA4Kz85PmuvTW/Trvoip5PS6988cMPX9bB9319mbFNvXvnZa+naQv1zdTQmptmKKFlVi1HgKrV6/WkCFDlJGRIZfLpSVLloQzHPyIj5cnae2KRH253a0vt7tVNCNd1VUx6tyzKtyhAUG7tWibevzsoFI6ViutyzHlPbFTh/a4tefzpn77VVY00dL8NrpxVpkaNY7Qf8ERnJP3kZvZIlBYE3lVVZW6d++uOXPmhDMMBCEmxlD/oV/L3dSr0uJm4Q4HMK36cCNJUnxSnW/M65X+cU9b9bvzv0rpWB2u0ICAhLW1npubq9zc3ID3r6mpUU3Nd/NYlZWVoQgLp9G28zHN/uc2xbq9OlYVo9+OaatdW2mrw94MQ1o2rbXa5BxWaqfvEvb7z6QpppHUZzRz4tGE1noEKCgoUFJSkm/LzMwMd0iOsfsLt8YP6qhfX99Brz/fUvc+uUttOlCpwN7emJqp//47Xj97ssw3tmdjU31clKK8P+yQyxXG4GA9w4ItAtlqsduDDz7oew2cdKIiJ5k3jLrjMb7Fbls3NFWni48qb+x+PfUAf/6wpzfyM7XlnRa646UtSko/7hvfuba5qg421qzLu/nGvB6Xlk1vrTWFKfo/730ejnCBH2WrRO52u+V2u8MdBr7VJDZCfz0FzsAwpKX5mSp9u4VuX/gfnZPpvyK9+w0H1e4y/2m7F0Z3UPe8r9TjpgMNGSosFq2tdVslcoTH7b/Zq7UrErR/T6zim3s0YOg3uqjfET18S7twhwYE7Y1HM7XxtWTd/NwXim3u0eH9J/4ZjEvwqEmcoabneNT0HI/fMY0aG2re6viP3msOm+DtZ3CqFq3qdN/Tu5ScUqejhxuprDROD9/STp+uTgh3aEDQ1r6YIkkqvLmT33jeEzvU42cHwxESYEpYE/mRI0e0bds23+eysjKtX79eycnJatOmTRgjw/fNuod5cESPx7aXBH0M8+LRgdZ6CBQXF2vgwIG+zycXso0aNUpFRUVhigoAEJV4RKv1BgwYICNC5xwAALAD5sgBAI5Aax0AADvzGic2M8dHIBI5AMAZonSO3FaPaAUAAP6oyAEAjuCSyTlyyyKxFokcAOAMUfpkN1rrAADYGBU5AMARuP0MAAA7Y9U6AACINFTkAABHcBmGXCYWrJk5NpRI5AAAZ/B+u5k5PgLRWgcAwMaoyAEAjkBrHQAAO4vSVeskcgCAM/BkNwAAEGmoyAEAjsCT3QAAsDNa6wAAINJQkQMAHMHlPbGZOT4SkcgBAM5Aax0AAEQaKnIAgDPwQBgAAOwrWh/RSmsdAAAboyIHADhDlC52I5EDAJzBkLl3ikdmHieRAwCcgTlyAAAQcajIAQDOYMjkHLllkViKRA4AcIYoXexGax0AABujIgcAOINXksvk8RGIRA4AcARWrQMAgIhDRQ4AcIYoXexGIgcAOEOUJnJa6wAA2BgVOQDAGaK0IieRAwCcgdvPAACwL24/AwAAEYeKHADgDMyRAwBgY15DcplIxt7ITOS01gEAsDEqcgCAM9BaBwDAzkwmckVmIqe1DgCAjZHIAQDOcLK1bmYLQn5+vlwul9+WlpZm+Y9Fax0A4AxeQ6ba4/VYtX7hhRfqX//6l+9zo0aN6n/9H0EiBwAgRBo3bhySKvz7aK0DAJzB8JrfJFVWVvptNTU1P3rJrVu3KiMjQ9nZ2RoxYoS2b99u+Y9FIgcAOINFc+SZmZlKSkrybQUFBae9XO/evfX8889r2bJlmj9/vioqKtSvXz8dPHjQ0h+L1joAwBksmiMvLy9XYmKib9jtdp9299zcXN9/d+vWTX379lX79u21YMECTZ48uf5x/ACJHACAICQmJvol8kA1a9ZM3bp109atWy2Nh9Y6AMAZGvj2sx+qqalRaWmp0tPTLfqBTiCRAwCcwZDJRB7c5e69916tWrVKZWVl+vjjj/Wzn/1MlZWVGjVqlKU/Fq11AABCYPfu3br55pt14MABtWrVSn369NGaNWuUlZVl6XVI5AAAZ2jgl6a89NJL9b9WEEjkAABn8HoleU0eH3mYIwcAwMaoyAEAzsD7yAEAsLEoTeS01gEAsDEqcgCAM4ThNaYNgUQOAHAEw/DKMOq/8tzMsaFEIgcAOINhmKuqmSMHAABWoyIHADiDYXKOPEIrchI5AMAZvF7JZWKeO0LnyGmtAwBgY1TkAABnoLUOAIB9GV6vDBOt9Ui9/YzWOgAANkZFDgBwBlrrAADYmNeQXNGXyGmtAwBgY1TkAABnMAxJZu4jj8yKnEQOAHAEw2vIMNFaN0jkAACEkeGVuYqc288AAIDFqMgBAI5Aax0AADuL0ta6rRP5yd+O6nTc1D3+QCSrOhyZ/3gAVqg6cuLvd0NUu2ZzRZ2OWxeMhWydyA8fPixJel9LwxwJEDorLwp3BEDoHT58WElJSSE5d2xsrNLS0vR+hflckZaWptjYWAuiso7LiNSmfwC8Xq/27NmjhIQEuVyucIfjCJWVlcrMzFR5ebkSExPDHQ5gKf5+NzzDMHT48GFlZGQoJiZ066+rq6tVW1tr+jyxsbGKi4uzICLr2Loij4mJUevWrcMdhiMlJibyDx2iFn+/G1aoKvHvi4uLi7gEbBVuPwMAwMZI5AAA2BiJHEFxu92aOnWq3G53uEMBLMffb9iRrRe7AQDgdFTkAADYGIkcAAAbI5EDAGBjJHIAAGyMRI6AzZ07V9nZ2YqLi1PPnj313nvvhTskwBKrV6/WkCFDlJGRIZfLpSVLloQ7JCBgJHIEZNGiRZo0aZKmTJmidevW6YorrlBubq527doV7tAA06qqqtS9e3fNmTMn3KEAQeP2MwSkd+/euuSSSzRv3jzfWJcuXZSXl6eCgoIwRgZYy+VyafHixcrLywt3KEBAqMhxVrW1tSopKdHgwYP9xgcPHqwPP/wwTFEBACQSOQJw4MABeTwepaam+o2npqaqoqIiTFEBACQSOYLww1fFGobB62MBIMxI5Dirli1bqlGjRqdU3/v27TulSgcANCwSOc4qNjZWPXv21PLly/3Gly9frn79+oUpKgCAJDUOdwCwh8mTJ+vWW29VTk6O+vbtq+eee067du3SuHHjwh0aYNqRI0e0bds23+eysjKtX79eycnJatOmTRgjA86O288QsLlz5+qJJ57Q3r171bVrV82aNUtXXnlluMMCTFu5cqUGDhx4yvioUaNUVFTU8AEBQSCRAwBgY8yRAwBgYyRyAABsjEQOAICNkcgBALAxEjkAADZGIgcAwMZI5AAA2BiJHAAAGyORAybl5+fr4osv9n0ePXq08vLyGjyOHTt2yOVyaf369T+6T9u2bTV79uyAz1lUVKQWLVqYjs3lcmnJkiWmzwPgVCRyRKXRo0fL5XLJ5XKpSZMmateune69915VVVWF/NpPPvlkwI/1DCT5AsCZ8NIURK1rr71WhYWFOn78uN577z2NHTtWVVVVmjdv3in7Hj9+XE2aNLHkuklJSZacBwACQUWOqOV2u5WWlqbMzEyNHDlSt9xyi6+9e7Id/te//lXt2rWT2+2WYRg6dOiQfvGLXyglJUWJiYm66qqr9Nlnn/md9/HHH1dqaqoSEhI0ZswYVVdX+33/w9a61+vVjBkzdP7558vtdqtNmzaaNm2aJCk7O1uS1KNHD7lcLg0YMMB3XGFhobp06aK4uDh17txZc+fO9bvOJ598oh49eiguLk45OTlat25d0H9GM2fOVLdu3dSsWTNlZmZq/PjxOnLkyCn7LVmyRB07dlRcXJwGDRqk8vJyv+//+c9/qmfPnoqLi1O7du302GOPqa6uLuh4AASPRA7HiI+P1/Hjx32ft23bppdffll///vffa3t6667ThUVFVq6dKlKSkp0ySWX6Cc/+Ym++uorSdLLL7+sqVOnatq0aSouLlZ6evopCfaHHnzwQc2YMUOPPPKINm/erIULFyo1NVXSiWQsSf/617+0d+9e/eMf/5AkzZ8/X1OmTNG0adNUWlqq6dOn65FHHtGCBQskSVVVVbr++uvVqVMnlZSUKD8/X/fee2/QfyYxMTF66qmn9Pnnn2vBggVasWKF7r//fr99jh49qmnTpmnBggX64IMPVFlZqREjRvi+X7Zsmf7nf/5HEydO1ObNm/Xss8+qqKjI98sKgBAzgCg0atQoY+jQob7PH3/8sXHuuecaP//5zw3DMIypU6caTZo0Mfbt2+fb55133jESExON6upqv3O1b9/eePbZZw3DMIy+ffsa48aN8/u+d+/eRvfu3U977crKSsPtdhvz588/bZxlZWWGJGPdunV+45mZmcbChQv9xn73u98Zffv2NQzDMJ599lkjOTnZqKqq8n0/b968057r+7KysoxZs2b96Pcvv/yyce655/o+FxYWGpKMNWvW+MZKS0sNScbHH39sGIZhXHHFFcb06dP9zvPCCy8Y6enpvs+SjMWLF//odQHUH3PkiFqvv/66mjdvrrq6Oh0/flxDhw7V008/7fs+KytLrVq18n0uKSnRkSNHdO655/qd59ixY/riiy8kSaWlpRo3bpzf93379tW777572hhKS0tVU1Ojn/zkJwHHvX//fpWXl2vMmDG68847feN1dXW++ffS0lJ1795dTZs29YsjWO+++66mT5+uzZs3q7KyUnV1daqurlZVVZWaNWsmSWrcuLFycnJ8x3Tu3FktWrRQaWmpLr30UpWUlGjt2rV+FbjH41F1dbWOHj3qFyMA65HIEbUGDhyoefPmqUmTJsrIyDhlMdvJRHWS1+tVenq6Vq5cecq56nsLVnx8fNDHeL1eSSfa67179/b7rlGjRpIkwzDqFc/37dy5Uz/96U81btw4/e53v1NycrLef/99jRkzxm8KQjpx+9gPnRzzer167LHHNGzYsFP2iYuLMx0ngDMjkSNqNWvWTOeff37A+19yySWqqKhQ48aN1bZt29Pu06VLF61Zs0a33Xabb2zNmjU/es4OHTooPj5e77zzjsaOHXvK97GxsZJOVLAnpaam6rzzztP27dt1yy23nPa8F1xwgV544QUdO3bM98vCmeI4neLiYtXV1elPf/qTYmJOLJd5+eWXT9mvrq5OxcXFuvTSSyVJW7Zs0TfffKPOnTtLOvHntmXLlqD+rAFYh0QOfOvqq69W3759lZeXpxkzZqhTp07as2ePli5dqry8POXk5OjXv/61Ro0apZycHF1++eV68cUXtWnTJrVr1+6054yLi9MDDzyg+++/X7Gxsbrsssu0f/9+bdq0SWPGjFFKSori4+P11ltvqXXr1oqLi1NSUpLy8/M1ceJEJSYmKjc3VzU1NSouLtbXX3+tyZMna+TIkZoyZYrGjBmjhx9+WDt27NAf//jHoH7e9u3bq66uTk8//bSGDBmiDz74QM8888wp+zVp0kR33323nnrqKTVp0kR33XWX+vTp40vsjz76qK6//nplZmbqpptuUkxMjDZs2KCNGzfq97//ffD/RwAICqvWgW+5XC4tXbpUV155pe644w517NhRI0aM0I4dO3yrzIcPH65HH31UDzzwgHr27KmdO3fqV7/61RnP+8gjj+iee+7Ro48+qi5dumj48OHat2+fpBPzz0899ZSeffZZZWRkaOjQoZKksWPH6i9/+YuKiorUrVs39e/fX0VFRb7b1Zo3b65//vOf2rx5s3r06KEpU6ZoxowZQf28F198sWbOnKkZM2aoa9euevHFF1VQUHDKfk2bNtUDDzygkSNHqm/fvoqPj9dLL73k+/6aa67R66+/ruXLl6tXr17q06ePZs6cqaysrKDiAVA/LsOKyTYAABAWVOQAANgYiRwAABsjkQMAYGMkcgAAbIxEDgCAjZHIAQCwMRI5AAA2RiIHAMDGSOQAANgYiRwAABsjkQMAYGP/H87YvzX7bUSkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cm = confusion_matrix(y_test, pp, labels=clf.classes_)\n", + "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=clf.classes_)\n", + "disp.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "eeed3511-1c37-47bc-b18b-bcd5a7545d07", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy of Random forest classifier model is 89.28571428571429\n" + ] + } + ], + "source": [ + "print('Accuracy of Random forest classifier model is {}'.format(accuracy_score(y_test,pp)*100))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "38bb3b07-3826-4095-8ac5-a0f758168a95", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "8a59d445-be1c-4e4e-91fe-89f2f82051cb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABThUlEQVR4nO3deVxU5f4H8M+w75CyI7KoKC64QC5wzTTB7bpVikupKBZiKlB69XoLtZJWRHNXlDQXSsWs3KhUcEtFyAWvmqKAQooLoCAIPL8//DHXkcWZwwAyfN6v17xynvOcc77nDDEfnrPJhBACRERERBpCq74LICIiIlInhhsiIiLSKAw3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3CcENEREQaRae+C6hrZWVluHnzJkxNTSGTyeq7HCIiIlKCEAL5+fmwt7eHllb1YzONLtzcvHkTjo6O9V0GERERSZCRkYFmzZpV26fRhRtTU1MAT3aOmZlZPVdDREREysjLy4Ojo6P8e7w6jS7clB+KMjMzY7ghIiJqYJQ5pYQnFBMREZFGYbghIiIijcJwQ0RERBqF4YaIiIg0CsMNERERaRSGGyIiItIoDDdERESkURhuiIiISKMw3BAREZFGYbghIiIijVKv4SYhIQGDBw+Gvb09ZDIZdu7c+dx5Dh06BE9PTxgYGMDV1RUrV66s/UKJiIiowajXcPPw4UN07NgRS5cuVap/WloaBg4ciJ49eyI5ORn//ve/MX36dGzfvr2WKyUiIqKGol4fnDlgwAAMGDBA6f4rV65E8+bNERUVBQBwd3fHqVOn8NVXX+GNN96opSqJiIhIWfceFuNWfhFa2z7/6d21pUE9FfzYsWPw8/NTaOvXrx+io6Px+PFj6OrqVpinqKgIRUVF8vd5eXm1XicREVFjcO9hMc7eyMXZG7k49///zbxXiJbWJvg1rFe91dWgwk12djZsbGwU2mxsbFBSUoKcnBzY2dlVmCciIgLz58+vqxKJiIg0UlVBpjJlQuBxaRl0tevn7JcGFW4AQCaTKbwXQlTaXm7OnDkICwuTv8/Ly4Ojo2PtFUhERNTAqRJknJsaob2DOTyamaO9gzna2ZvD3LDikZS61KDCja2tLbKzsxXabt26BR0dHTRt2rTSefT19aGvr18X5RERETU4UoJMBwdzdGj2YgSZyjSocNOjRw/89NNPCm379++Hl5dXpefbEBER0f/ce1iMczdzcSZTc4JMZeo13Dx48AB//fWX/H1aWhpSUlLQpEkTNG/eHHPmzMGNGzewYcMGAEBQUBCWLl2KsLAwTJ48GceOHUN0dDS2bNlSX5tARET0QpIcZBzM0c6h4QSZytRruDl16hR69+4tf19+bsz48eMRExODrKwspKeny6e7uLhg9+7dCA0NxbJly2Bvb48lS5bwMnAiImrU7hc8ObTUGINMZWSi/IzcRiIvLw/m5ubIzc2FmZlZfZdDRESkkvIgc/ZGLs5mVh9knJoayUNMQw8yqnx/N6hzboiIiBoTVYNMewdzeGhAkKkphhsiIqIXwNNB5tz/H2J6XpDp8P9hpjEHmcow3BAREdUxqUGmg4M52tubw9yIQaY6DDdERES16Nkgc/ZGLjLuMsjUJoYbIiIiNSotEzh06Rbikm8iJeMeg0w9YLghIiJSg6zcQnx/MhOxJ9NxM/eRwrTmTYzQoRmDTF1huCEiIpKofJRm8x8Z+P2/f6Ps/2+uYmGki9c7N8Nr7tYMMvWA4YaIiEhFVY3SdHVpgjFdm6N/e1sY6GrXY4WNG8MNERGREqobpXmjSzOM7tocLa1N6rdIAsBwQ0REVK3s3EeIPZnBUZoGhOGGiIjoGc8fpXFES2vT+i2SqsRwQ0RE9P84SqMZGG6IiKhRKy0TSLh0G5v+SOcojYZguCEiokYpO/cRvj+VgdiTGbhx/3832uMoTcPHcENERI0GR2kaB4YbIiLSeFWO0jg3wZhuHKXRNAw3VGOFxaVIzcqFEPVdCRGRopwHxdh+OhO///cWSv9/mMbc8MkozZhuHKXRVAw3VGPj153AiWt367sMIqJqcZSm8WC4oRq7duchAMDBwhB6Olr1XA0R0f9oa8nwSisrjtI0Mgw3pDZrxnmhrb1ZfZdBRESNHP/MJiIiIo3CcENEREQaheGGiIiINArDDREREWkUhhsiIiLSKAw3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3COxQTMu8VYG7cOdwvfCxp/rsPi9VcERERkXQMN4R95//GoUu3a7QMbS0ZrEz11VQRERGRdAw3hLIyAQDo7toEk3u6SlqGs6Uxww0REb0QGG5Izs7cEK+529R3GURERDXCE4qJiIhIozDcEBERkUZhuCEiIiKNwnBDREREGoXhhoiIiDQKww0RERFpFJUvBc/NzUVcXBwSExNx7do1FBQUwMrKCp07d0a/fv3g7e1dG3USERERKUXpkZusrCxMnjwZdnZ2WLBgAR4+fIhOnTrhtddeQ7NmzXDgwAH4+vqibdu2iI2Nrc2aiYiIiKqk9MhNx44dMW7cOJw4cQLt27evtE9hYSF27tyJyMhIZGRk4IMPPlBboURERETKUDrcnD9/HlZWVtX2MTQ0xOjRozF69Gjcvl2zZxURERERSaH0YannBZua9iciIiJSB7VeLXXv3j1s2LBBnYskIiIiUolaw016ejoCAgLUuUgiIiIilah0KXheXl610/Pz82tUDBEREVFNqRRuLCwsIJPJqpwuhKh2OhEREVFtUyncmJqaYu7cuejWrVul0y9fvox3331XLYURERERSaFSuOnSpQsAoFevXpVOt7CwgBCi5lURERERSaTSCcVjxoyBgYFBldNtbW0RHh5e46KIiIiIpFJp5Gby5MnVTrexsWG4ISIionrFp4ITERGRRmG4ISIiIo3CcENEREQaheGGiIiINArDDREREWmUeg83y5cvh4uLCwwMDODp6YnExMRq+2/atAkdO3aEkZER7OzsEBAQgDt37tRRtURERPSikxxuevfujQkTJii0jR8/Hn369FF6GbGxsQgJCcHcuXORnJyMnj17YsCAAUhPT6+0/+HDhzFu3DhMmjQJ58+fxw8//ICTJ08iMDBQ6mYQERGRhpEcbpydnWFvb6/Q5uDgACcnJ6WXERkZiUmTJiEwMBDu7u6IioqCo6MjVqxYUWn/48ePw9nZGdOnT4eLiwv+8Y9/4N1338WpU6eqXEdRURHy8vIUXkRERKS5JIeb9evXY+HChQptCxcuxPr165Wav7i4GElJSfDz81No9/Pzw9GjRyudx9vbG5mZmdi9ezeEEPj777+xbds2DBo0qMr1REREwNzcXP5ydHRUqj4iIiJqmOrtnJucnByUlpbCxsZGod3GxgbZ2dmVzuPt7Y1NmzbB398fenp6sLW1hYWFBb755psq1zNnzhzk5ubKXxkZGWrdDiIiInqxKP34hSVLlii90OnTpyvdVyaTKbwXQlRoK5eamorp06fjo48+Qr9+/ZCVlYWZM2ciKCgI0dHRlc6jr68PfX19peshIiKihk3pcLNo0SKl+slkMqXCjaWlJbS1tSuM0ty6davCaE65iIgI+Pj4YObMmQAADw8PGBsbo2fPnvjkk09gZ2enVI1ERESkuZQON2lpaWpdsZ6eHjw9PREfH4/hw4fL2+Pj4zF06NBK5ykoKICOjmLJ2traAJ6M+BARERHV6Jyb4uJiXLx4ESUlJZLmDwsLw9q1a7Fu3TpcuHABoaGhSE9PR1BQEIAn58uMGzdO3n/w4MHYsWMHVqxYgatXr+LIkSOYPn06unbtWuHKLSIiImqclB65eVpBQQGmTZuGb7/9FgBw6dIluLq6Yvr06bC3t8fs2bOVWo6/vz/u3LmDBQsWICsrC+3bt8fu3bvll5NnZWUp3PNmwoQJyM/Px9KlS/H+++/DwsICffr0weeffy5lMzRKSsZ9nEiTdjPDP67eVXM1RERE9UcmJBzPmTFjBo4cOYKoqCj0798fZ86cgaurK3bt2oXw8HAkJyfXRq1qkZeXB3Nzc+Tm5sLMzKy+y1GbTgv2437B4xotY3RXR0S87qGmioiIiNRHle9vSSM3O3fuRGxsLLp3765wZVPbtm1x5coVKYukGioPNoM62EFfV/Wjjfo62gjs6aLusoiIiOqcpHBz+/ZtWFtbV2h/+PBhlZdxU92YP7QdLE146TsRETVekk4ofvnll/HLL7/I35cHmjVr1qBHjx7qqYyIiIhIAkkjNxEREejfvz9SU1NRUlKCxYsX4/z58zh27BgOHTqk7hqJiIiIlCZp5Mbb2xtHjhxBQUEBWrRogf3798PGxgbHjh2Dp6enumskIiIiUpqkkRsA6NChg/xScCIiIqIXheRwU1pairi4OFy4cAEymQzu7u4YOnRohTsIExEREdUlSUnk3LlzGDp0KLKzs9G6dWsAT27kZ2VlhV27dqFDhw5qLZKIiIhIWZLOuQkMDES7du2QmZmJ06dP4/Tp08jIyICHhwfeeecddddIREREpDRJIzd//vknTp06hZdeekne9tJLL+HTTz/Fyy+/rLbiiIiIiFQlaeSmdevW+Pvvvyu037p1Cy1btqxxUURERERSKR1u8vLy5K+FCxdi+vTp2LZtGzIzM5GZmYlt27YhJCSED7EkIiKieqX0YSkLCwuFRysIITBy5Eh5W/nzNwcPHozS0lI1l0lERESkHKXDzYEDB2qzDiIiIiK1UDrc9OrVqzbrICIiIlKLGt1xr6CgAOnp6SguLlZo9/DwqFFRRERERFJJCje3b99GQEAA9uzZU+l0nnNDRERE9UXSpeAhISG4d+8ejh8/DkNDQ+zduxfffvstWrVqhV27dqm7RiIiIiKlSRq5+f333/Hjjz/i5ZdfhpaWFpycnODr6wszMzNERERg0KBB6q6TiIiISCmSRm4ePnwIa2trAECTJk1w+/ZtAE+eFH769Gn1VUdERESkIsl3KL548SIAoFOnTli1ahVu3LiBlStXws7OTq0FEhEREalC0mGpkJAQZGVlAQDCw8PRr18/bNq0CXp6eoiJiVFnfUREREQqkRRuxo4dK/93586dce3aNfz3v/9F8+bNYWlpqbbiiIiIiFRVo/vclDMyMkKXLl3UsSgiIiKiGlE63ISFhSm90MjISEnFEBEREdWU0uEmOTlZqX5PP1yTiIiIqK7xwZlERESkUSRdCk5ERET0omK4ISIiIo3CcENEREQaheGGiIiINArDDREREWkUyeFm48aN8PHxgb29Pa5fvw4AiIqKwo8//qi24oiIiIhUJSncrFixAmFhYRg4cCDu37+P0tJSAICFhQWioqLUWR8RERGRSiSFm2+++QZr1qzB3Llzoa2tLW/38vLC2bNn1VYcERERkaokhZu0tDR07ty5Qru+vj4ePnxY46KIiIiIpJIUblxcXJCSklKhfc+ePWjbtm1NayIiIiKSTNJTwWfOnImpU6fi0aNHEELgxIkT2LJlCyIiIrB27Vp110hERESkNEnhJiAgACUlJZg1axYKCgowZswYODg4YPHixRg1apS6ayQiIiJSmqRwAwCTJ0/G5MmTkZOTg7KyMlhbW6uzLiIiIiJJJJ1zM3/+fFy5cgUAYGlpyWBDRERELwxJ4Wb79u1wc3ND9+7dsXTpUty+fVvddRERERFJIincnDlzBmfOnEGfPn0QGRkJBwcHDBw4EJs3b0ZBQYG6ayQiIiJSmuTHL7Rr1w4LFy7E1atXceDAAbi4uCAkJAS2trbqrI+IiIhIJWp5cKaxsTEMDQ2hp6eHx48fq2ORRERERJJIDjdpaWn49NNP0bZtW3h5eeH06dOYN28esrOz1VkfERERkUokXQreo0cPnDhxAh06dEBAQID8PjdERERE9U1SuOnduzfWrl2Ldu3aqbseIiIiohqRFG4WLlyo7jqIiIiI1ELpcBMWFoaPP/4YxsbGCAsLq7ZvZGRkjQsjIiIikkLpcJOcnCy/Eio5ObnWCiIiIiKqCaXDzYEDByr9NxEREdGLRNKl4BMnTkR+fn6F9ocPH2LixIk1LoqIiIhIKknh5ttvv0VhYWGF9sLCQmzYsKHGRRERERFJpdLVUnl5eRBCQAiB/Px8GBgYyKeVlpZi9+7dfEI4ERER1SuVwo2FhQVkMhlkMhnc3NwqTJfJZJg/f77aiiMiIiJSlUqHpQ4cOIDffvsNQghs27YNv//+u/x1+PBhpKenY+7cuSoVsHz5cri4uMDAwACenp5ITEystn9RURHmzp0LJycn6Ovro0WLFli3bp1K6yQiIiLNpdLITa9evQA8ea5U8+bNIZPJarTy2NhYhISEYPny5fDx8cGqVaswYMAApKamonnz5pXOM3LkSPz999+Ijo5Gy5YtcevWLZSUlNSoDiIiItIcMiGEUKbjmTNn0L59e2hpaeHMmTPV9vXw8FBq5d26dUOXLl2wYsUKeZu7uzuGDRuGiIiICv337t2LUaNG4erVq2jSpIlS6ygqKkJRUZH8fV5eHhwdHZGbmwszMzOlltEQOM/+BQBw6j99YWmiX8/VEBERqVdeXh7Mzc2V+v5WeuSmU6dOyM7OhrW1NTp16gSZTIbKcpFMJkNpaelzl1dcXIykpCTMnj1bod3Pzw9Hjx6tdJ5du3bBy8sLX3zxBTZu3AhjY2MMGTIEH3/8MQwNDSudJyIigucBERERNSJKh5u0tDRYWVnJ/11TOTk5KC0thY2NjUK7jY0NsrOzK53n6tWrOHz4MAwMDBAXF4ecnBwEBwfj7t27VZ53M2fOHIXHRZSP3BAREZFmUjrcODk5Vfrvmnr2vB0hRJXn8pSVlUEmk2HTpk0wNzcH8OQ5Vm+++SaWLVtW6eiNvr4+9PV5mIaIiKixkHwTv19++UX+ftasWbCwsIC3tzeuX7+u1DIsLS2hra1dYZTm1q1bFUZzytnZ2cHBwUEebIAn5+gIIZCZmSlhS4iIiEjTSAo3CxculI+SHDt2DEuXLsUXX3wBS0tLhIaGKrUMPT09eHp6Ij4+XqE9Pj4e3t7elc7j4+ODmzdv4sGDB/K2S5cuQUtLC82aNZOyKURERKRhJIWbjIwMtGzZEgCwc+dOvPnmm3jnnXcQERHx3PvUPC0sLAxr167FunXrcOHCBYSGhiI9PR1BQUEAnpwvM27cOHn/MWPGoGnTpggICEBqaioSEhIwc+ZMTJw4scoTiomIiKhxUek+N+VMTExw584dNG/eHPv375eP1hgYGFT6zKmq+Pv7486dO1iwYAGysrLQvn177N69W35OT1ZWFtLT0xXWGx8fj2nTpsHLywtNmzbFyJEj8cknn0jZDCIiItJAksKNr68vAgMD0blzZ1y6dAmDBg0CAJw/fx7Ozs4qLSs4OBjBwcGVTouJianQ1qZNmwqHsoiIiIjKSTostWzZMvTo0QO3b9/G9u3b0bRpUwBAUlISRo8erdYCiYiIiFQhaeTGwsICS5curdDOm+URERFRfZMUbgDg/v37iI6OxoULFyCTyeDu7o5JkyYpXKZNREREVNckHZY6deoUWrRogUWLFuHu3bvIycnBokWL0KJFC5w+fVrdNRIREREpTdLITWhoKIYMGYI1a9ZAR+fJIkpKShAYGIiQkBAkJCSotUgiIiIiZUkKN6dOnVIINgCgo6ODWbNmwcvLS23FEREREalK0mEpMzMzhfvPlMvIyICpqWmNiyIiIiKSSlK48ff3x6RJkxAbG4uMjAxkZmZi69atCAwM5KXgREREVK8kHZb66quvIJPJMG7cOJSUlAAAdHV1MWXKFHz22WdqLZCIiIhIFZLCjZ6eHhYvXoyIiAhcuXIFQgi0bNkSRkZG6q6PiIiISCUqHZYqKCjA1KlT4eDgAGtrawQGBsLOzg4eHh4MNkRERPRCUCnchIeHIyYmBoMGDcKoUaMQHx+PKVOm1FZtRERERCpT6bDUjh07EB0djVGjRgEA3nrrLfj4+KC0tBTa2tq1UiARERGRKlQaucnIyEDPnj3l77t27QodHR3cvHlT7YURERERSaFSuCktLYWenp5Cm46OjvyKKSIiIqL6ptJhKSEEJkyYAH19fXnbo0ePEBQUBGNjY3nbjh071FchERERkQpUCjfjx4+v0PbWW2+prRgiIiKimlIp3Kxfv7626iAiIiJSC0mPXyAiIiJ6USkdboKCgpCRkaFU39jYWGzatElyUURERERSKX1YysrKCu3bt4e3tzeGDBkCLy8v2Nvbw8DAAPfu3UNqaioOHz6MrVu3wsHBAatXr67NuomIiIgqpXS4+fjjjzFt2jRER0dj5cqVOHfunMJ0U1NT9O3bF2vXroWfn5/aCyUiIiJShkonFFtbW2POnDmYM2cO7t+/j+vXr6OwsBCWlpZo0aIFZDJZbdVJREREpBRJTwUHAAsLC1hYWKixFCIiIqKa49VSREREpFEYboiIiEijMNwQERGRRmG4ISIiIo0iOdyUlJTg119/xapVq5Cfnw8AuHnzJh48eKC24oiIiIhUJelqqevXr6N///5IT09HUVERfH19YWpqii+++AKPHj3CypUr1V0nERERkVIkjdzMmDEDXl5euHfvHgwNDeXtw4cPx2+//aa24oiIiIhUJWnk5vDhwzhy5Aj09PQU2p2cnHDjxg21FNbQCCEQvOk0kq7fq+9SiIiIGjVJ4aasrAylpaUV2jMzM2FqalrjohqinAfF2HMuu15rsDLVh5mBbr3WQEREVN8khRtfX19ERUXJH44pk8nw4MEDhIeHY+DAgWotsKEQEAAAmQz4edo/6qWG5k2MoKfDC+CIiKhxkxRuFi1ahN69e6Nt27Z49OgRxowZg8uXL8PS0hJbtmxRd40NigxAO3vz+i6DiIio0ZIUbuzt7ZGSkoKtW7ciKSkJZWVlmDRpEsaOHatwgjERERFRXZMUbhISEuDt7Y2AgAAEBATI20tKSpCQkIBXXnlFbQUSERERqULSCRq9e/fG3bt3K7Tn5uaid+/eNS6KiIiISCpJ4UYIAZlMVqH9zp07MDY2rnFRRERERFKpdFjq9ddfB/Dk6qgJEyZAX19fPq20tBRnzpyBt7e3eiskIiIiUoFK4cbc/MlVQEIImJqaKpw8rKenh+7du2Py5MnqrZCIiIhIBSqFm/Xr1wMAnJ2d8cEHH/AQFBEREb1wJF0tFR4eru46iIiIiNRCUrgBgG3btuH7779Heno6iouLFaadPn26xoURERERSSHpaqklS5YgICAA1tbWSE5ORteuXdG0aVNcvXoVAwYMUHeNREREREqTFG6WL1+O1atXY+nSpdDT08OsWbMQHx+P6dOnIzc3V901EhERESlNUrhJT0+XX/JtaGiI/Px8AMDbb7/d6J8tRURERPVLUrixtbXFnTt3AABOTk44fvw4ACAtLQ1CCPVVR0RERKQiSeGmT58++OmnnwAAkyZNQmhoKHx9feHv74/hw4ertUAiIiIiVUi6Wmr16tUoKysDAAQFBaFJkyY4fPgwBg8ejKCgILUWSERERKQKSeFGS0sLWlr/G/QZOXIkRo4cCQC4ceMGHBwc1FMdERERkYokHZaqTHZ2NqZNm4aWLVuqa5FEREREKlMp3Ny/fx9jx46FlZUV7O3tsWTJEpSVleGjjz6Cq6srjh8/jnXr1tVWrURERETPpdJhqX//+99ISEjA+PHjsXfvXoSGhmLv3r149OgR9uzZg169etVWnURERERKUSnc/PLLL1i/fj369u2L4OBgtGzZEm5uboiKiqql8oiIiIhUo9JhqZs3b6Jt27YAAFdXVxgYGCAwMLBWCiMiIiKSQqVwU1ZWBl1dXfl7bW1tGBsb16iA5cuXw8XFBQYGBvD09ERiYqJS8x05cgQ6Ojro1KlTjdZPREREmkWlw1JCCEyYMAH6+voAgEePHiEoKKhCwNmxY4dSy4uNjUVISAiWL18OHx8frFq1CgMGDEBqaiqaN29e5Xy5ubkYN24cXnvtNfz999+qbAIRERFpOJVGbsaPHw9ra2uYm5vD3Nwcb731Fuzt7eXvy1/KioyMxKRJkxAYGAh3d3dERUXB0dERK1asqHa+d999F2PGjEGPHj1UKZ+IiIgaAZVGbtavX6+2FRcXFyMpKQmzZ89WaPfz88PRo0erreHKlSv47rvv8Mknnzx3PUVFRSgqKpK/z8vLk140ERERvfDUdhM/VeXk5KC0tBQ2NjYK7TY2NsjOzq50nsuXL2P27NnYtGkTdHSUy2UREREKo0qOjo41rp2IiIheXPUWbsrJZDKF90KICm0AUFpaijFjxmD+/Plwc3NTevlz5sxBbm6u/JWRkVHjmomIiOjFJenZUupgaWkJbW3tCqM0t27dqjCaAwD5+fk4deoUkpOT8d577wF4cvWWEAI6OjrYv38/+vTpU2E+fX19+QnQREREpPnqbeRGT08Pnp6eiI+PV2iPj4+Ht7d3hf5mZmY4e/YsUlJS5K+goCC0bt0aKSkp6NatW12VTkRERC+wehu5AYCwsDC8/fbb8PLyQo8ePbB69Wqkp6cjKCgIwJNDSjdu3MCGDRugpaWF9u3bK8xvbW0NAwODCu1ERETUeEkeudm4cSN8fHxgb2+P69evAwCioqLw448/Kr0Mf39/REVFYcGCBejUqRMSEhKwe/duODk5AQCysrKQnp4utUQiIiJqhCSFmxUrViAsLAwDBw7E/fv3UVpaCgCwsLBQ+TlTwcHBuHbtGoqKipCUlIRXXnlFPi0mJgYHDx6sct558+YhJSVFwhYQERGRppIUbr755husWbMGc+fOhba2trzdy8sLZ8+eVVtxRERERKqSFG7S0tLQuXPnCu36+vp4+PBhjYsiIiIikkpSuHFxcan0cNCePXvkTw0nIiIiqg+SrpaaOXMmpk6dikePHkEIgRMnTmDLli2IiIjA2rVr1V0jERERkdIkhZuAgACUlJRg1qxZKCgowJgxY+Dg4IDFixdj1KhR6q6RiIiISGmS73MzefJkTJ48GTk5OSgrK4O1tbU66yIiIiKSRNI5N/Pnz8eVK1cAPHmMAoMNERERvSgkhZvt27fDzc0N3bt3x9KlS3H79m1110VEREQkiaRwc+bMGZw5cwZ9+vRBZGQkHBwcMHDgQGzevBkFBQXqrpGIiIhIaZIfv9CuXTssXLgQV69exYEDB+Di4oKQkBDY2tqqsz4iIiIilajlqeDGxsYwNDSEnp4eHj9+rI5FEhEREUkiOdykpaXh008/Rdu2beHl5YXTp09j3rx5yM7OVmd9RERERCqRdCl4jx49cOLECXTo0AEBAQHy+9wQERER1TdJ4aZ3795Yu3Yt2rVrp+56iIiIiGpEUrhZuHChuusgIiIiUgulw01YWBg+/vhjGBsbIywsrNq+kZGRNS6MiIiISAqlw01ycrL8Sqjk5ORaK4iIiIioJpQONwcOHKj030REREQvEkmXgk+cOBH5+fkV2h8+fIiJEyfWuCgiIiIiqSSFm2+//RaFhYUV2gsLC7Fhw4YaF0VEREQklUpXS+Xl5UEIASEE8vPzYWBgIJ9WWlqK3bt38wnhREREVK9UCjcWFhaQyWSQyWRwc3OrMF0mk2H+/PlqK46IiIhIVSqFmwMHDkAIgT59+mD79u1o0qSJfJqenh6cnJxgb2+v9iKJiIiIlKVSuOnVqxeAJ8+Vat68OWQyWa0URURERCSV0uHmzJkzaN++PbS0tJCbm4uzZ89W2dfDw0MtxRERERGpSulw06lTJ2RnZ8Pa2hqdOnWCTCaDEKJCP5lMhtLSUrUWSURERKQspcNNWloarKys5P8mIiIiehEpHW6cnJwq/TcRERHRi0TyTfx++eUX+ftZs2bBwsIC3t7euH79utqKIyIiIlKVpHCzcOFCGBoaAgCOHTuGpUuX4osvvoClpSVCQ0PVWiARERGRKlS6FLxcRkYGWrZsCQDYuXMn3nzzTbzzzjvw8fHBq6++qs76iIiIiFQiaeTGxMQEd+7cAQDs378fffv2BQAYGBhU+swpIiIioroiaeTG19cXgYGB6Ny5My5duoRBgwYBAM6fPw9nZ2d11kdERESkEkkjN8uWLUOPHj1w+/ZtbN++HU2bNgUAJCUlYfTo0WotkIiIiEgVkkZuLCwssHTp0grtfGgmERER1TdJ4QYA7t+/j+joaFy4cAEymQzu7u6YNGkSzM3N1VkfERERkUokHZY6deoUWrRogUWLFuHu3bvIycnBokWL0KJFC5w+fVrdNRIREREpTdLITWhoKIYMGYI1a9ZAR+fJIkpKShAYGIiQkBAkJCSotUgiIiIiZUkKN6dOnVIINgCgo6ODWbNmwcvLS23FEREREalK0mEpMzMzpKenV2jPyMiAqalpjYsiIiIikkpSuPH398ekSZMQGxuLjIwMZGZmYuvWrQgMDOSl4ERERFSvJB2W+uqrryCTyTBu3DiUlJQAAHR1dTFlyhR89tlnai2QiIiISBWSwo2enh4WL16MiIgIXLlyBUIItGzZEkZGRuquj4iIiEglKh2WKigowNSpU+Hg4ABra2sEBgbCzs4OHh4eDDZERET0QlAp3ISHhyMmJgaDBg3CqFGjEB8fjylTptRWbUREREQqU+mw1I4dOxAdHY1Ro0YBAN566y34+PigtLQU2tratVIgERERkSpUGrnJyMhAz5495e+7du0KHR0d3Lx5U+2FEREREUmhUrgpLS2Fnp6eQpuOjo78iikiIiKi+qbSYSkhBCZMmAB9fX1526NHjxAUFARjY2N5244dO9RXIREREZEKVAo348ePr9D21ltvqa0YIiIioppSKdysX7++tuogIiIiUgtJj18gIiIielEx3BAREZFGYbghIiIijcJwQ0RERBqF4YaIiIg0iuRws3HjRvj4+MDe3h7Xr18HAERFReHHH39UaTnLly+Hi4sLDAwM4OnpicTExCr77tixA76+vrCysoKZmRl69OiBffv2Sd0EIiIi0kCSws2KFSsQFhaGgQMH4v79+ygtLQUAWFhYICoqSunlxMbGIiQkBHPnzkVycjJ69uyJAQMGID09vdL+CQkJ8PX1xe7du5GUlITevXtj8ODBSE5OlrIZREREpIFkQgih6kxt27bFwoULMWzYMJiamuLPP/+Eq6srzp07h1dffRU5OTlKLadbt27o0qULVqxYIW9zd3fHsGHDEBERodQy2rVrB39/f3z00UdK9c/Ly4O5uTlyc3NhZmam1DzKuJX/CF0//Q1aMuBqxCC1LZeIiIhU+/6WNHKTlpaGzp07V2jX19fHw4cPlVpGcXExkpKS4Ofnp9Du5+eHo0ePKrWMsrIy5Ofno0mTJlX2KSoqQl5ensKLiIiINJekcOPi4oKUlJQK7Xv27EHbtm2VWkZOTg5KS0thY2Oj0G5jY4Ps7GyllvH111/j4cOHGDlyZJV9IiIiYG5uLn85OjoqtWwiIiJqmFR6/EK5mTNnYurUqXj06BGEEDhx4gS2bNmCiIgIrF27VqVlyWQyhfdCiAptldmyZQvmzZuHH3/8EdbW1lX2mzNnDsLCwuTv8/LyGHCIiIg0mKRwExAQgJKSEsyaNQsFBQUYM2YMHBwcsHjxYowaNUqpZVhaWkJbW7vCKM2tW7cqjOY8KzY2FpMmTcIPP/yAvn37VttXX19f4SnmREREpNkkXwo+efJkXL9+Hbdu3UJ2djYyMjIwadIkpefX09ODp6cn4uPjFdrj4+Ph7e1d5XxbtmzBhAkTsHnzZgwaxBN3iYiISJGkkZunWVpaSp43LCwMb7/9Nry8vNCjRw+sXr0a6enpCAoKAvDkkNKNGzewYcMGAE+Czbhx47B48WJ0795dPupjaGgIc3Pzmm4KERERaQBJ4cbFxaXa82KuXr2q1HL8/f1x584dLFiwAFlZWWjfvj12794NJycnAEBWVpbCPW9WrVqFkpISTJ06FVOnTpW3jx8/HjExMVI2hYiIiDSMpHATEhKi8P7x48dITk7G3r17MXPmTJWWFRwcjODg4EqnPRtYDh48qNKyiYiIqPGRFG5mzJhRafuyZctw6tSpGhVEREREVBNqfXDmgAEDsH37dnUukoiIiEglag0327Ztq/ZuwURERES1TdJhqc6dOyucUCyEQHZ2Nm7fvo3ly5errTgiIiIiVUkKN8OGDVN4r6WlBSsrK7z66qto06aNOuoiIiIikkTlcFNSUgJnZ2f069cPtra2tVETERERkWQqn3Ojo6ODKVOmoKioqDbqISIiIqoRSScUd+vWDcnJyequhYiIiKjGJJ1zExwcjPfffx+ZmZnw9PSEsbGxwnQPDw+1FEdERESkKpXCzcSJExEVFQV/f38AwPTp0+XTZDIZhBCQyWQoLS1Vb5VERERESlIp3Hz77bf47LPPkJaWVlv1EBEREdWISuFGCAEA8gdbEhEREb1oVD6huLqngRMRERHVN5VPKHZzc3tuwLl7967kgoiIiIhqQuVwM3/+fJibm9dGLUREREQ1pnK4GTVqFKytrWujFiIiIqIaU+mcG55vQ0RERC86lcJN+dVSRERERC8qlQ5LlZWV1VYdRERERGoh6dlSRERERC8qhhsiIiLSKAw3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3CcENEREQaheGGiIiINArDDREREWkUhhsiIiLSKAw3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3CcENEREQaheGGiIiINArDDREREWkUhhsiIiLSKAw3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3CcENEREQaheGGiIiINArDDREREWkUnfougIhqRgiBkpISlJaW1ncpREQ1oqurC21t7Rovh+GGqAErLi5GVlYWCgoK6rsUIqIak8lkaNasGUxMTGq0HIYbogaqrKwMaWlp0NbWhr29PfT09CCTyeq7LCIiSYQQuH37NjIzM9GqVasajeAw3BA1UMXFxSgrK4OjoyOMjIzquxwiohqzsrLCtWvX8Pjx4xqFG55QTNTAaWnxf2Mi0gzqGn3mb0UiIiLSKAw3REREpFEYboiIiEijMNwQUaPj7OyMqKio+i6jwZkwYQKGDRtWJ+t69jPKzs6Gr68vjI2NYWFhAeDJ+Rk7d+6stRpeeeUVbN68udaW39gUFRWhefPmSEpKqvV1MdwQUZ2bMGECZDIZZDIZdHR00Lx5c0yZMgX37t2r79LUytnZWb6d5a9mzZrVe02VBTshBFavXo1u3brBxMQEFhYW8PLyQlRUVL3cR+nkyZN455135O8XLVqErKwspKSk4NKlSwCArKwsDBgwoFbW//PPPyM7OxujRo2qMG3hwoXQ1tbGZ599VmHavHnz0KlTpwrt9+/fh0wmw8GDBxXat2/fjldffRXm5uYwMTGBh4cHFixYgLt376prUyooKirCtGnTYGlpCWNjYwwZMgSZmZnVzpOfn4+QkBA4OTnB0NAQ3t7eOHnypEIfIQTmzZsHe3t7GBoa4tVXX8X58+fl0/X19fHBBx/gX//6V61s19MYbog0iBACBcUl9fISQqhUa//+/ZGVlYVr165h7dq1+OmnnxAcHFxLe6b+LFiwAFlZWfJXcnKy5GU9fvxYjZUpevvttxESEoKhQ4fiwIEDSElJwYcffogff/wR+/fvr7X1VsXKykrhFgdXrlyBp6cnWrVqBWtrawCAra0t9PX1Ja+juLi4ymlLlixBQEBApVcjrl+/HrNmzcK6deskrxsA5s6dC39/f7z88svYs2cPzp07h6+//hp//vknNm7cWKNlVyckJARxcXHYunUrDh8+jAcPHuCf//xntXc5DwwMRHx8PDZu3IizZ8/Cz88Pffv2xY0bN+R9vvjiC0RGRmLp0qU4efIkbG1t4evri/z8fHmfsWPHIjExERcuXKi17QMAiEYmNzdXABC5ublqXe7feYXC6V8/C5fZP6t1uURVKSwsFKmpqaKwsFDe9rDosXD618/18npY9Fjp2sePHy+GDh2q0BYWFiaaNGkif19SUiImTpwonJ2dhYGBgXBzcxNRUVGVLufLL78Utra2okmTJiI4OFgUFxfL+/z999/in//8pzAwMBDOzs7iu+++E05OTmLRokXyPtevXxdDhgwRxsbGwtTUVIwYMUJkZ2fLp4eHh4uOHTuK6Oho4ejoKIyNjUVQUJAoKSkRn3/+ubCxsRFWVlbik08+Uajv2fU8a/ny5cLV1VXo6uoKNzc3sWHDBoXpAMSKFSvEkCFDhJGRkfjoo4+EEELs2rVLdOnSRejr6wsXFxcxb9488fjx//Z/eHi4cHR0FHp6esLOzk5MmzZNCCFEr169BACFlxBCxMbGCgBi586dFWosKysT9+/fV9jf5fbs2SN8fHyEubm5aNKkiRg0aJD466+/5NOLiorE1KlTha2trdDX1xdOTk5i4cKFz63z2X3n5OSkUPP48ePl+ycuLk4+T2Zmphg5cqSwsLAQTZo0EUOGDBFpaWny6eX1L1y4UNjZ2QknJ6dKP5fbt28LmUwmzp07V2HawYMHhYODgyguLhb29vbi0KFDCtPLf1aede/ePQFAHDhwQAghxB9//CEAVPiZfrp/bbh//77Q1dUVW7dulbfduHFDaGlpib1791Y6T0FBgdDW1hY//6z4/daxY0cxd+5cIcSTnxNbW1vx2Wefyac/evRImJubi5UrVyrM9+qrr4oPP/yw0nVV9nutnCrf3/U+crN8+XK4uLjAwMAAnp6eSExMrLb/oUOH4OnpCQMDA7i6umLlypV1VCkR1ZarV69i79690NXVlbeVlZWhWbNm+P7775GamoqPPvoI//73v/H9998rzHvgwAFcuXIFBw4cwLfffouYmBjExMTIp0+YMAHXrl3D77//jm3btmH58uW4deuWfLoQAsOGDcPdu3dx6NAhxMfH48qVK/D391dYz5UrV7Bnzx7s3bsXW7Zswbp16zBo0CBkZmbi0KFD+Pzzz/Gf//wHx48fV2qb4+LiMGPGDLz//vs4d+4c3n33XQQEBODAgQMK/cLDwzF06FCcPXsWEydOxL59+/DWW29h+vTpSE1NxapVqxATE4NPP/0UALBt2zYsWrQIq1atwuXLl7Fz50506NABALBjxw40a9ZMYTQJADZt2oTWrVtj6NChFeqUyWQwNzevdBsePnyIsLAwnDx5Er/99hu0tLQwfPhwlJWVAXgy+rFr1y58//33uHjxIr777js4Ozs/t85nnTx5Ev3798fIkSORlZWFxYsXV+hTUFCA3r17w8TEBAkJCTh8+DBMTEzQv39/hRGa3377DRcuXEB8fDx+/vnnStd3+PBhGBkZwd3dvcK06OhojB49Grq6uhg9ejSio6MrXcbzbNq0CSYmJlWOVpafV1SZdu3awcTEpMpXu3btqpw3KSkJjx8/hp+fn7zN3t4e7du3x9GjRyudp/zZdQYGBgrthoaGOHz4MAAgLS0N2dnZCsvV19dHr169Kiy3a9euz/2ur7Hnxp9atHXrVqGrqyvWrFkjUlNTxYwZM4SxsbG4fv16pf2vXr0qjIyMxIwZM0RqaqpYs2aN0NXVFdu2bVN6nRy5IU1R2V84ZWVl4mHR43p5lZWVKV37+PHjhba2tjA2NhYGBgbyv8gjIyOrnS84OFi88cYbCstxcnISJSUl8rYRI0YIf39/IYQQFy9eFADE8ePH5dMvXLggAMhHBfbv3y+0tbVFenq6vM/58+cFAHHixAkhxJO/xo2MjEReXp68T79+/YSzs7MoLS2Vt7Vu3VpERETI3zs5OQk9PT1hbGwsfy1evFgIIYS3t7eYPHmywvaNGDFCDBw4UP4egAgJCVHo07NnT4XRDyGE2Lhxo7CzsxNCCPH1118LNzc3hdGrp1U2muTu7i6GDBlSaf+nVTbi9rRbt24JAOLs2bNCCCGmTZsm+vTpU+nPhqp1Dh06VD5iUw5PjdxER0eL1q1bK6yrqKhIGBoain379snrt7GxEUVFRdVu56JFi4Srq2uF9tzcXGFkZCRSUlKEEEIkJycLIyMjhe8TZUduBgwYIDw8PKqtoyrXrl0Tly9frvJ17dq1KufdtGmT0NPTq9Du6+sr3nnnnSrn69Gjh+jVq5e4ceOGKCkpERs3bhQymUy4ubkJIYQ4cuSIACBu3LihMN/kyZOFn5+fQtvixYuFs7NzpevRiJGbyMhITJo0CYGBgXB3d0dUVBQcHR2xYsWKSvuvXLkSzZs3R1RUFNzd3REYGIiJEyfiq6++quPKiV5MMpkMRno69fJS9c6ivXv3RkpKCv744w9MmzYN/fr1w7Rp0xT6rFy5El5eXrCysoKJiQnWrFmD9PR0hT7t2rVTuE27nZ2dfGTmwoUL0NHRgZeXl3x6mzZtFP4qvnDhAhwdHeHo6Chva9u2LSwsLBTOC3B2doapqan8vY2NDdq2batwToaNjY3CqBAAzJw5EykpKfLXuHHj5Ov18fFR6Ovj41PhXISnawee/OW9YMEChb/UJ0+eLH+A6ogRI1BYWAhXV1dMnjwZcXFxKCkpQXWEEJLuDHvlyhWMGTMGrq6uMDMzg4uLCwDIP6MJEyYgJSUFrVu3xvTp0xXO3ZFSZ3WSkpLw119/wdTUVL5fmjRpgkePHuHKlSvyfh06dICenl61yyosLKwwSgEAmzdvhqurKzp27AgA6NSpE1xdXbF161aV65W6zwHAyckJLVu2rPLl5OSk9no2btwIIQQcHBygr6+PJUuWYMyYMRUekfDsMipbrqGhYa2fpF5v4aa4uBhJSUkKQ1gA4OfnV+XQ2LFjxyr079evH06dOlXliXZFRUXIy8tTeBFR/TM2NkbLli3h4eGBJUuWoKioCPPnz5dP//777xEaGoqJEydi//79SElJQUBAQIWTQJ8+lAU8+eVaflhE/P9JztX90q7ql/qz7ZWtp7p1l7O0tFT44nk6WCnzRWBsbKzwvqysDPPnz1cITGfPnsXly5dhYGAAR0dHXLx4EcuWLYOhoSGCg4PxyiuvVHsyspubm6QTPAcPHow7d+5gzZo1+OOPP/DHH38A+N+Jul26dEFaWho+/vhjFBYWYuTIkXjzzTcBQFKd1SkrK4Onp6fCfim/smrMmDHyfs/uz8pYWlpWeuXeunXrcP78eejo6Mhf58+fVzg0ZWZmhtzc3Arz3r9/HwDkh/jc3Nxw5coVSdtbk8NStra2KC4urrB9t27dgo2NTZXztWjRAocOHcKDBw+QkZGBEydO4PHjx/JAa2trC+DJJfvPW+7du3dhZWWl0jarqt7CTU5ODkpLSytstI2NTYWdUy47O7vS/iUlJcjJyal0noiICJibm8tfT/91pm76OlrQ15H+oC+ixiw8PBxfffUVbt68CQBITEyEt7c3goOD0blzZ7Rs2VLhL3BluLu7o6SkBKdOnZK3Xbx4Uf5FAzwZpUlPT0dGRoa8LTU1Fbm5uZWec6Eu7u7u8vMVyh09evS56+zSpQsuXrxY6V/s5aNIhoaGGDJkCJYsWYKDBw/i2LFjOHv2LABAT0+vwlUxY8aMwaVLl/Djjz9WWJ8QotIv6zt37uDChQv4z3/+g9deew3u7u6VBgIzMzP4+/tjzZo1iI2Nxfbt2+WXOVdXp6q6dOmCy5cvw9rausJ+qeqcoap07twZ2dnZCttz9uxZnDp1CgcPHlQITwkJCTh58iTOnTsH4MnIYGZmZoXvsZMnT0JLSwstW7YE8GSfP3jwAMuXL6+0hqd/Rp+1e/fuCiHu6dfu3burnNfT0xO6urqIj4+Xt2VlZeHcuXPw9vZ+7r4xNjaGnZ0d7t27h3379snP03JxcYGtra3CcouLi3Ho0KEKyz137hw6d+783HXVRL0/FVyZv1ye17+y9nJz5sxBWFiY/H1eXl6tBBxrUwNc/KR27rdA1Bi8+uqraNeuHRYuXIilS5eiZcuW2LBhA/bt2wcXFxds3LgRJ0+elP+lqIzWrVujf//+mDx5MlavXg0dHR2EhITA0NBQ3qdv377w8PDA2LFjERUVhZKSEgQHB6NXr14VDgmp08yZMzFy5Eh06dIFr732Gn766Sfs2LEDv/76a7XzffTRR/jnP/8JR0dHjBgxAlpaWjhz5gzOnj2LTz75BDExMSgtLUW3bt1gZGSEjRs3wtDQUH6owtnZGQkJCRg1ahT09fVhaWmJkSNHIi4uDqNHj8aHH34IX19fWFlZ4ezZs1i0aBGmTZtW4eZ9L730Epo2bYrVq1fDzs4O6enpmD17tkKfRYsWwc7ODp06dYKWlhZ++OEH2NrawsLC4rl1qmrs2LH48ssvMXToUCxYsADNmjVDeno6duzYgZkzZ6p0f6HOnTvDysoKR44cwT//+U8AT04k7tq1K1555ZUK/Xv06IHo6GgsWrQIfn5+cHd3x6hRo/Dpp5/C3t4eZ86cwQcffICgoCD5oc1u3bph1qxZeP/993Hjxg0MHz4c9vb2+Ouvv7By5Ur84x//wIwZMyqtT+o+Ap6MHE2aNAnvv/8+mjZtiiZNmuCDDz5Ahw4d0LdvX3m/1157DcOHD8d7770HANi3bx+EEGjdujX++usvzJw5E61bt0ZAQACAJ9/BISEhWLhwIVq1aoVWrVph4cKFMDIyUhg5A5784fLxxx9L3gZl1NvIjaWlJbS1tZUawipna2tbaX8dHR00bdq00nn09fVhZmam8CKiF1NYWBjWrFmDjIwMBAUF4fXXX4e/vz+6deuGO3fuSLoPzvr16+Ho6IhevXrh9ddfxzvvvCO/Twrwv7vcvvTSS3jllVfQt29fuLq6IjY2Vp2bVsGwYcOwePFifPnll2jXrh1WrVqF9evX49VXX612vn79+uHnn39GfHw8Xn75ZXTv3h2RkZHyLzwLCwusWbMGPj4+8PDwwG+//YaffvpJ/jtywYIFuHbtGlq0aCE/NCCTybB582ZERkYiLi4OvXr1goeHB+bNm4ehQ4eiX79+FerQ0tLC1q1bkZSUhPbt2yM0NBRffvmlQh8TExN8/vnn8PLywssvv4xr165h9+7d0NLSem6dqjIyMkJCQgKaN2+O119/He7u7pg4cSIKCwtV/r2vra2NiRMnYtOmTQCejEB89913eOONNyrt/8Ybb+C7775DcXExdHR0sH//fri6umLs2LFo164dZs+ejcDAQERGRirM9/nnn2Pz5s34448/0K9fP7Rr1w5hYWHw8PDA+PHjJe0HZSxatAjDhg3DyJEj4ePjAyMjI/z0008K589cuXJF4YhIbm4upk6dijZt2mDcuHH4xz/+gf379yscmp01axZCQkIQHBwMLy8v3LhxA/v371c4V+3YsWPIzc2VH56sLTIhVLzzlhp169YNnp6eCsNybdu2xdChQxEREVGh/7/+9S/89NNPSE1NlbdNmTIFKSkpOHbsmFLrzMvLg7m5OXJzcxl0qEF79OgR0tLS5LdSICL1+fvvv9GuXTskJSXVaKSEFI0YMQKdO3fGv//970qnV/d7TZXv73q9WiosLAxr167FunXrcOHCBYSGhiI9PR1BQUEAnhxSKr+yAACCgoJw/fp1hIWF4cKFC1i3bh2io6PxwQcf1NcmEBGRBrKxsUF0dHSFq/NIuqKiInTs2BGhoaG1vq56PefG398fd+7ckd9Qqn379ti9e7c8JWdlZSn8YLm4uGD37t0IDQ3FsmXLYG9vjyVLllQ5VEhERCRVZTc1JOn09fXxn//8p07WVa+HpeoDD0uRpuBhKSLSNBpxWIqIaq6R/X1CRBpMXb/PGG6IGqjyqxRq+06fRER1pfwGkM/e+VhV9X6fGyKSRltbGxYWFvLb/RsZGUm+nTsRUX0rKyvD7du3YWRkBB2dmsUThhuiBqz8lufPPs+IiKgh0tLSQvPmzWv8hxrDDVEDJpPJYGdnB2tra8nP5CEielHo6ekpPIxWKoYbIg2gra1d42PURESagicUExERkUZhuCEiIiKNwnBDREREGqXRnXNTfoOgvLy8eq6EiIiIlFX+va3Mjf4aXbjJz88HADg6OtZzJURERKSq/Px8mJubV9un0T1bqqysDDdv3oSpqanab3iWl5cHR0dHZGRk8LlVtYj7uW5wP9cN7ue6w31dN2prPwshkJ+fD3t7++deLt7oRm60tLTQrFmzWl2HmZkZ/8epA9zPdYP7uW5wP9cd7uu6URv7+XkjNuV4QjERERFpFIYbIiIi0igMN2qkr6+P8PBw6Ovr13cpGo37uW5wP9cN7ue6w31dN16E/dzoTigmIiIizcaRGyIiItIoDDdERESkURhuiIiISKMw3BAREZFGYbhR0fLly+Hi4gIDAwN4enoiMTGx2v6HDh2Cp6cnDAwM4OrqipUrV9ZRpQ2bKvt5x44d8PX1hZWVFczMzNCjRw/s27evDqttuFT9eS535MgR6OjooFOnTrVboIZQdT8XFRVh7ty5cHJygr6+Plq0aIF169bVUbUNl6r7edOmTejYsSOMjIxgZ2eHgIAA3Llzp46qbZgSEhIwePBg2NvbQyaTYefOnc+dp16+BwUpbevWrUJXV1esWbNGpKamihkzZghjY2Nx/fr1SvtfvXpVGBkZiRkzZojU1FSxZs0aoaurK7Zt21bHlTcsqu7nGTNmiM8//1ycOHFCXLp0ScyZM0fo6uqK06dP13HlDYuq+7nc/fv3haurq/Dz8xMdO3asm2IbMCn7eciQIaJbt24iPj5epKWliT/++EMcOXKkDqtueFTdz4mJiUJLS0ssXrxYXL16VSQmJop27dqJYcOG1XHlDcvu3bvF3Llzxfbt2wUAERcXV23/+voeZLhRQdeuXUVQUJBCW5s2bcTs2bMr7T9r1izRpk0bhbZ3331XdO/evdZq1ASq7ufKtG3bVsyfP1/dpWkUqfvZ399f/Oc//xHh4eEMN0pQdT/v2bNHmJubizt37tRFeRpD1f385ZdfCldXV4W2JUuWiGbNmtVajZpGmXBTX9+DPCylpOLiYiQlJcHPz0+h3c/PD0ePHq10nmPHjlXo369fP5w6dQqPHz+utVobMin7+VllZWXIz89HkyZNaqNEjSB1P69fvx5XrlxBeHh4bZeoEaTs5127dsHLywtffPEFHBwc4Obmhg8++ACFhYV1UXKDJGU/e3t7IzMzE7t374YQAn///Te2bduGQYMG1UXJjUZ9fQ82ugdnSpWTk4PS0lLY2NgotNvY2CA7O7vSebKzsyvtX1JSgpycHNjZ2dVavQ2VlP38rK+//hoPHz7EyJEja6NEjSBlP1++fBmzZ89GYmIidHT4q0MZUvbz1atXcfjwYRgYGCAuLg45OTkIDg7G3bt3ed5NFaTsZ29vb2zatAn+/v549OgRSkpKMGTIEHzzzTd1UXKjUV/fgxy5UZFMJlN4L4So0Pa8/pW1kyJV93O5LVu2YN68eYiNjYW1tXVtlacxlN3PpaWlGDNmDObPnw83N7e6Kk9jqPLzXFZWBplMhk2bNqFr164YOHAgIiMjERMTw9Gb51BlP6empmL69On46KOPkJSUhL179yItLQ1BQUF1UWqjUh/fg/zzS0mWlpbQ1tau8FfArVu3KqTScra2tpX219HRQdOmTWut1oZMyn4uFxsbi0mTJuGHH35A3759a7PMBk/V/Zyfn49Tp04hOTkZ7733HoAnX8JCCOjo6GD//v3o06dPndTekEj5ebazs4ODgwPMzc3lbe7u7hBCIDMzE61atarVmhsiKfs5IiICPj4+mDlzJgDAw8MDxsbG6NmzJz755BOOrKtJfX0PcuRGSXp6evD09ER8fLxCe3x8PLy9vSudp0ePHhX679+/H15eXtDV1a21WhsyKfsZeDJiM2HCBGzevJnHzJWg6n42MzPD2bNnkZKSIn8FBQWhdevWSElJQbdu3eqq9AZFys+zj48Pbt68iQcPHsjbLl26BC0tLTRr1qxW622opOzngoICaGkpfgVqa2sD+N/IAtVcvX0P1urpyhqm/FLD6OhokZqaKkJCQoSxsbG4du2aEEKI2bNni7ffflvev/wSuNDQUJGamiqio6N5KbgSVN3PmzdvFjo6OmLZsmUiKytL/rp//359bUKDoOp+fhavllKOqvs5Pz9fNGvWTLz55pvi/Pnz4tChQ6JVq1YiMDCwvjahQVB1P69fv17o6OiI5cuXiytXrojDhw8LLy8v0bVr1/rahAYhPz9fJCcni+TkZAFAREZGiuTkZPkl9y/K9yDDjYqWLVsmnJychJ6enujSpYs4dOiQfNr48eNFr169FPofPHhQdO7cWejp6QlnZ2exYsWKOq64YVJlP/fq1UsAqPAaP3583RfewKj68/w0hhvlqbqfL1y4IPr27SsMDQ1Fs2bNRFhYmCgoKKjjqhseVffzkiVLRNu2bYWhoaGws7MTY8eOFZmZmXVcdcNy4MCBan/fvijfgzIhOP5GREREmoPn3BAREZFGYbghIiIijcJwQ0RERBqF4YaIiIg0CsMNERERaRSGGyIiItIoDDdERESkURhuiIiISKMw3BBVIiYmBhYWFvVdhmTOzs6Iioqqts+8efPQqVOnOqnnRfP777+jTZs2KCsrq5P1vSifh5R1yGQy7Ny5s0brnTBhAoYNG1ajZVTm5Zdfxo4dO9S+XGr4GG5IY02YMAEymazC66+//qrv0hATE6NQk52dHUaOHIm0tDS1LP/kyZN455135O8r+4L64IMP8Ntvv6llfVV5djttbGwwePBgnD9/XuXlqDNszpo1C3PnzpU/OLGxfB4NSUJCAgYPHgx7e/sqA9aHH36I2bNn11lIpYaD4YY0Wv/+/ZGVlaXwcnFxqe+yADx50nZWVhZu3ryJzZs3IyUlBUOGDEFpaWmNl21lZQUjI6Nq+5iYmKBp06Y1XtfzPL2dv/zyCx4+fIhBgwahuLi41tddmaNHj+Ly5csYMWJElXVq8ufRUDx8+BAdO3bE0qVLq+wzaNAg5ObmYt++fXVYGTUEDDek0fT19WFra6vw0tbWRmRkJDp06ABjY2M4OjoiODgYDx48qHI5f/75J3r37g1TU1OYmZnB09MTp06dkk8/evQoXnnlFRgaGsLR0RHTp0/Hw4cPq61NJpPB1tYWdnZ26N27N8LDw3Hu3Dn5yNKKFSvQokUL6OnpoXXr1ti4caPC/PPmzUPz5s2hr68Pe3t7TJ8+XT7t6cMgzs7OAIDhw4dDJpPJ3z99iGLfvn0wMDDA/fv3FdYxffp09OrVS23b6eXlhdDQUFy/fh0XL16U96nu8zh48CACAgKQm5srH1mZN28eAKC4uBizZs2Cg4MDjI2N0a1bNxw8eLDaerZu3Qo/Pz8YGBhUWacmfx5PO3nyJHx9fWFpaQlzc3P06tULp0+frtAvKysLAwYMgKGhIVxcXPDDDz8oTL9x4wb8/f3x0ksvoWnTphg6dCiuXbumdB2VGTBgAD755BO8/vrrVfbR1tbGwIEDsWXLlhqtizQPww01SlpaWliyZAnOnTuHb7/9Fr///jtmzZpVZf+xY8eiWbNmOHnyJJKSkjB79mzo6uoCAM6ePYt+/frh9ddfx5kzZxAbG4vDhw/jvffeU6kmQ0NDAMDjx48RFxeHGTNm4P3338e5c+fw7rvvIiAgAAcOHAAAbNu2DYsWLcKqVatw+fJl7Ny5Ex06dKh0uSdPngQArF+/HllZWfL3T+vbty8sLCywfft2eVtpaSm+//57jB07Vm3bef/+fWzevBkA5PsPqP7z8Pb2RlRUlHxkJSsrCx988AEAICAgAEeOHMHWrVtx5swZjBgxAv3798fly5errCEhIQFeXl7PrbUxfB75+fkYP348EhMTcfz4cbRq1QoDBw5Efn6+Qr8PP/wQb7zxBv7880+89dZbGD16NC5cuAAAKCgoQO/evWFiYoKEhAQcPnwYJiYm6N+/f5Wjc+WHAdWha9euSExMVMuySIPU+nPHierJ+PHjhba2tjA2Npa/3nzzzUr7fv/996Jp06by9+vXrxfm5uby96ampiImJqbSed9++23xzjvvKLQlJiYKLS0tUVhYWOk8zy4/IyNDdO/eXTRr1kwUFRUJb29vMXnyZIV5RowYIQYOHCiEEOLrr78Wbm5uori4uNLlOzk5iUWLFsnfAxBxcXEKfcLDw0XHjh3l76dPny769Okjf79v3z6hp6cn7t69W6PtBCCMjY2FkZGRACAAiCFDhlTav9zzPg8hhPjrr7+ETCYTN27cUGh/7bXXxJw5c6pctrm5udiwYUOFOhvD5/HsOp5VUlIiTE1NxU8//aRQa1BQkEK/bt26iSlTpgghhIiOjhatW7cWZWVl8ulFRUXC0NBQ7Nu3Twjx5P/FoUOHyqfv2LFDtG7duso6nlXZ/ir3448/Ci0tLVFaWqr08kjzceSGNFrv3r2RkpIify1ZsgQAcODAAfj6+sLBwQGmpqYYN24c7ty5U+WQflhYGAIDA9G3b1989tlnuHLlinxaUlISYmJiYGJiIn/169cPZWVl1Z6QmpubCxMTE/mhmOLiYuzYsQN6enq4cOECfHx8FPr7+PjI/1oeMWIECgsL4erqismTJyMuLg4lJSU12ldjx47FwYMHcfPmTQDApk2bMHDgQLz00ks12k5TU1OkpKQgKSkJK1euRIsWLbBy5UqFPqp+HgBw+vRpCCHg5uamUNOhQ4cUPp9nFRYWVjgkBTSez+Npt27dQlBQENzc3GBubg5zc3M8ePAA6enpCv169OhR4X35ticlJeGvv/6CqampvI4mTZrg0aNHVX4Ow4cPx3//+1+V9kdVDA0NUVZWhqKiIrUsjzSDTn0XQFSbjI2N0bJlS4W269evY+DAgQgKCsLHH3+MJk2a4PDhw5g0aRIeP35c6XLmzZuHMWPG4JdffsGePXsQHh6OrVu3Yvjw4SgrK8O7776rcI5FuebNm1dZm6mpKU6fPg0tLS3Y2NjA2NhYYfqzw/ZCCHmbo6MjLl68iPj4ePz6668IDg7Gl19+iUOHDikc7lFF165d0aJFC2zduhVTpkxBXFwc1q9fL58udTu1tLTkn0GbNm2QnZ0Nf39/JCQkAJD2eZTXo62tjaSkJGhraytMMzExqXI+S0tL3Lt3r0J7Y/k8njZhwgTcvn0bUVFRcHJygr6+Pnr06KHUyd7l215WVgZPT09s2rSpQh8rKyul6qiJu3fvwsjISH4YkQhguKFG6NSpUygpKcHXX38tvxT4+++/f+58bm5ucHNzQ2hoKEaPHo3169dj+PDh6NKlC86fP18hRD3P01/6z3J3d8fhw4cxbtw4edvRo0fh7u4uf29oaIghQ4ZgyJAhmDp1Ktq0aYOzZ8+iS5cuFZanq6ur1FU/Y8aMwaZNm9CsWTNoaWlh0KBB8mlSt/NZoaGhiIyMRFxcHIYPH67U56Gnp1eh/s6dO6O0tBS3bt1Cz549lV5/586dkZqaWqG9MX4eiYmJWL58OQYOHAgAyMjIQE5OToV+x48fV9j248ePo3PnzvI6YmNjYW1tDTMzM8m1SHXu3LlK9zE1bjwsRY1OixYtUFJSgm+++QZXr17Fxo0bKxwmeVphYSHee+89HDx4ENevX8eRI0dw8uRJ+Rfbv/71Lxw7dgxTp05FSkoKLl++jF27dmHatGmSa5w5cyZiYmKwcuVKXL58GZGRkdixY4f8RNqYmBhER0fj3Llz8m0wNDSEk5NTpctzdnbGb7/9huzs7EpHLcqNHTsWp0+fxqeffoo333xT4fCNurbTzMwMgYGBCA8PhxBCqc/D2dkZDx48wG+//YacnBwUFBTAzc0NY8eOxbhx47Bjxw6kpaXh5MmT+Pzzz7F79+4q19+vXz8cPnxYpZo19fNo2bIlNm7ciAsXLuCPP/7A2LFjKx0B+eGHH7Bu3TpcunQJ4eHhOHHihPzE5bFjx8LS0hJDhw5FYmIi0tLScOjQIcyYMQOZmZmVrjcuLg5t2rSptrYHDx7IDycDQFpaGlJSUiocMktMTISfn5/S20yNRP2e8kNUe549ifFpkZGRws7OThgaGop+/fqJDRs2CADi3r17QgjFE0yLiorEqFGjhKOjo9DT0xP29vbivffeUzhp88SJE8LX11eYmJgIY2Nj4eHhIT799NMqa6vsBNlnLV++XLi6ugpdXV3h5uamcBJsXFyc6NatmzAzMxPGxsaie/fu4tdff5VPf/YE1l27domWLVsKHR0d4eTkJISo+uTSl19+WQAQv//+e4Vp6trO69evCx0dHREbGyuEeP7nIYQQQUFBomnTpgKACA8PF0IIUVxcLD766CPh7OwsdHV1ha2trRg+fLg4c+ZMlTXdvXtXGBoaiv/+97/PrfNpmvB5PLuO06dPCy8vL6Gvry9atWolfvjhh0pPfl62bJnw9fUV+vr6wsnJSWzZskVhuVlZWWLcuHHC0tJS6OvrC1dXVzF58mSRm5srhKj4/2L5iebVOXDggPwE9Kdf48ePl/fJzMwUurq6IiMjo9plUeMjE0KI+olVRET1Y9asWcjNzcWqVavquxSqgZkzZyI3NxerV6+u71LoBcPDUkTU6MydOxdOTk5qufsw1R9ra2t8/PHH9V0GvYA4ckNEREQahSM3REREpFEYboiIiEijMNwQERGRRmG4ISIiIo3CcENEREQaheGGiIiINArDDREREWkUhhsiIiLSKAw3REREpFH+D8SXI23GFpYUAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display = RocCurveDisplay.from_estimator(clf, X_test, y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "a51764c6-c1cf-40c6-9d5b-8b775fac0e6c", + "metadata": {}, + "outputs": [], + "source": [ + "import joblib" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "a132fcd8-0865-4e5f-8844-8dfd103d6f65", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['heart_model.sav']" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "heart_file = 'heart_model.sav'\n", + "joblib.dump(mdl, heart_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1f0a6616-21ff-48cc-9443-0b2d0e2b4765", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e3aa27c-1050-46cc-9c0e-a65f8fd60453", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6ed45717-3cb6-4f7c-bee6-c43c8e9e3af7", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e163807a-71d8-4095-a812-31ab4adcdafa", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "15f6f610-9422-40c1-a05c-12bc3c9dec85", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7b2bd7b4-1696-46b3-a652-1b506f370919", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5790ec8e-9a36-449a-817d-d9986898e970", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4d130da8-a439-4ed3-9e0f-9b2d8b17d075", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4a4bd3e7-9468-4b53-9fed-863182d3509b", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59f85a06-fad5-49d6-85ec-d2a0ef8cef0e", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0e043b11-daa3-4189-ad8c-adc956080216", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9b6f8ad7-1aa1-4bcf-88c9-a1b977d87466", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f0c307ba-82ec-49c4-9cea-3f25833b75a8", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "04f26b1a-c44b-4a70-91fd-59b3cbf499ea", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "302c2c19-b4c2-4d0b-9b97-a87528112ff1", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a78f416-4c1b-4aa7-be7b-758f0ef51030", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c7635531-e8b8-4daa-abaf-4c385c8a4f79", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}