{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#
Malria Disease Prediction
\n", "\n", "## Overview:\n", "Malaria is a life-threatening disease caused by parasites transmitted through the bite of infected female Anopheles mosquitoes. Symptoms typically include fever, chills, and flu-like illness, and if left untreated, it can lead to severe complications and death, particularly in children under five and pregnant women. Prevention strategies include the use of insecticide-treated bed nets, indoor residual spraying, and antimalarial medications. Malaria remains a significant public health challenge, particularly in tropical and subtropical regions of the world.\n", "\n", "* We are trying to detect whether the cell/tissue is Infected or not.\n", "## Dataset Information:\n", "\n", "Malaria Infected Tissues Dataset - [Kaggle - Malaria Disease Detection](https://www.kaggle.com/datasets/iarunava/cell-images-for-detecting-malaria/data)\n", "\n", "The Malaria dataset contains a total of 27,558 cell images with equal instances of parasitized and uninfected cells from the thin blood smear slide images of segmented cells.\n", "\n", "### Training : Testing :: 22048 : 5510" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 1. Importing required libraries\n", "* ```Numpy```: A fundamental package for scientific computing in Python. It provides support for multidimensional arrays, along with a collection of mathematical functions to operate on these arrays efficiently. NumPy is widely used in numerical and scientific computing tasks, including data manipulation, linear algebra, statistics, and signal processing.\n", "\n", "* ```Pandas```: A powerful library for data manipulation and analysis in Python. It offers data structures and functions for working with structured data, primarily in the form of dataframes. Dataframes are two-dimensional labeled arrays capable of holding heterogeneous data types. Pandas provides tools for reading and writing data from various file formats, reshaping and transforming data, and performing data analysis tasks such as grouping, filtering, and aggregation.\n", "\n", "* ```Matplotlib```: A plotting library for creating visualizations in Python. It provides a MATLAB-like interface for generating a wide range of static, interactive, and animated plots. Matplotlib is highly customizable and supports various plot types, including line plots, scatter plots, bar charts, histograms, and heatmaps.\n", "\n", "* ```TensorFlow```: TensorFlow is an open-source machine learning framework developed by Google. It provides a comprehensive ecosystem of tools, libraries, and resources for building and deploying machine learning models at scale." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "l9z2oNNdi80k" }, "outputs": [], "source": [ "import warnings\n", "warnings.simplefilter('ignore')\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.layers import Conv2D,MaxPool2D,Dropout,Flatten,Dense,BatchNormalization\n", "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "from tensorflow.keras.callbacks import EarlyStopping" ] }, { "cell_type": "markdown", "metadata": { "execution": { "iopub.execute_input": "2024-02-21T15:45:41.987329Z", "iopub.status.busy": "2024-02-21T15:45:41.987025Z", "iopub.status.idle": "2024-02-21T15:45:41.991872Z", "shell.execute_reply": "2024-02-21T15:45:41.990881Z", "shell.execute_reply.started": "2024-02-21T15:45:41.987298Z" }, "id": "U69K2DVKjbWm" }, "source": [ "# 2. Data Preproceessing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1 Displaying Uninfected and Infected Cell tissues" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABI4AAAJFCAYAAAC7lLzUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADG50lEQVR4nO39e7gtV1Xgf4+qtc85yUlOLi1BCEQSEiAB7Eaj0AoBDDcREfCCgMQk3Pm9rdLtBRBabsod9FHaaAATEhQbUNJ00zbYLYiID42P0CIIhEuADthck5xcz1mr6v3jJHuNOWbVmHNW1Vp773O+n+fJk7VOVc2adV21a84xZtW2bSsAAAAAAACAUW91BQAAAAAAALA98eIIAAAAAAAAnXhxBAAAAAAAgE68OAIAAAAAAEAnXhwBAAAAAACgEy+OAAAAAAAA0IkXRwAAAAAAAOjEiyMAAAAAAAB04sURAAAAAAAAOvHiCAAAAAC2keuvv16e9rSnyR3ucAepqkqe85znbHWVsl111VVSVZVceumlW7L+F7/4xVJVVfBvp556qlxwwQVbUh/gcMCLIwAAAACY0KWXXipVVcnf//3fD1r+5S9/uVx66aXy7Gc/Wy6//HI577zzJq6hyO///u9v2csd7f/9v/8nv/IrvyJnnnmm7N27V4455hg5++yz5Td/8zflmmuu2erqARCRja2uAAAAAABg6a/+6q/k3/7bfysvetGLVraO3//935fb3e52W9oT56Mf/aj82I/9mFx//fXy5Cc/Wc4++2wREfn7v/97eeUrXykf/OAH5X3ve9+W1Q/AIbw4AgAAAIBt5Otf/7rc85733OpqrNQ111wjj3vc42Q2m8nHPvYxOfPMM4Ppv/VbvyVvfOMbt6h2ADRC1QAAAABgxS644AI59thj5eqrr5bHPvaxcuyxx8pJJ50kv/IrvyKLxUJERD7wgQ9IVVXyxS9+Ud7znvdIVVVSVZVcddVVIiJyyy23yIte9CI544wzZM+ePXLKKafIr/3ar8ktt9wSre+tb32r3Pe+95W9e/fKiSeeKA984AM3e++ceuqp8slPflL++q//enMdD37wgzeXveaaa+Q5z3mOnHLKKbJnzx4544wz5FWvepU0TROs45prrpELLrhAjj/+eDnhhBPk/PPPzw4v+8M//EO5+uqr5fWvf3300khE5Lu/+7vlhS98YfBvf/EXfyHnnHOOHHPMMbJv3z551KMeJZ/85Cez1gdgOHocAQAAAMAaLBYLecQjHiH3u9/95LWvfa38z//5P+V1r3udnH766fLsZz9bzjrrLLn88svl3//7fy93vvOd5Zd/+ZdFROSkk06SpmnkJ37iJ+RDH/qQPOMZz5CzzjpLPvGJT8hv//Zvy2c/+1m54oorNtfzkpe8RF784hfLD//wD8tLX/pS2b17t3zkIx+Rv/qrv5KHP/zh8ju/8zvyC7/wC3LsscfKC17wAhE59KJGROTGG2+UBz3oQXL11VfLM5/5TPme7/ke+fCHPyzPf/7z5Wtf+5r8zu/8joiItG0rj3nMY+RDH/qQPOtZz5KzzjpL3vWud8n555+ftS/e/e53y9FHHy0//dM/nTX/5ZdfLueff7484hGPkFe96lVy4403ykUXXSQPeMAD5GMf+5iceuqpeQcBQLkWAAAAADCZSy65pBWR9qMf/ejmv51//vmtiLQvfelLg3m/7/u+rz377LODf7vLXe7SPupRjwr+7fLLL2/rum7/5m/+Jvj3P/iDP2hFpP3bv/3btm3b9sorr2zrum4f97jHtYvFIpi3aZrNz/e6173aBz3oQVHdX/ayl7XHHHNM+9nPfjb49+c973ntbDZrv/zlL7dt27ZXXHFFKyLtq1/96s155vN5e84557Qi0l5yySVdu2bTiSee2P6bf/Nv3Hlus3///vaEE05on/70pwf//i//8i/t8ccfH/z7i170otb+mXuXu9ylPf/887PWBSBGqBoAAAAArMmznvWs4Ps555wjX/jCF5LLveMd75CzzjpLzjzzTPnmN7+5+d+5554rIiLvf//7RUTkiiuukKZp5Dd+4zekrsM/9+ww9X3rOeecc+TEE08M1vPQhz5UFouFfPCDHxQRkf/+3/+7bGxsyLOf/ezNZWezmfzCL/xCch0iItddd53s27cva96//Mu/lGuuuUae+MQnBnWazWZyv/vdb3PbAawGoWoAAAAAsAZHHXWUnHTSScG/nXjiifKd73wnueyVV14p//zP/xwtf5uvf/3rIiLy+c9/Xuq6Hpxc+8orr5R//Md/TK7nS1/6ktzxjneUY489Nph+j3vcI2s9xx13nOzfvz+7TiKy+ZKsqywAq8OLIwAAAABYg9lsNnjZpmnke7/3e+X1r3995/RTTjllcNl2PQ972MPk137t1zqn3/3ud59kPWeeeaZ8/OMflwMHDsju3buTdRI5lOfoDne4QzR9Y4M/a4FV4goDAAAAgG3u9NNPl//zf/6PPOQhD3FDzk4//XRpmkY+9alPyX3uc5/e+frKOP300+X666+Xhz70oW597nKXu8j/+l//S66//vqg19FnPvMZf0Nu9ehHP1r+7u/+Tv7sz/5MnvjEJ7rznn766SIicvvb3z5ZLwDTI8cRAAAAAGxzj3/84+Xqq6+WN77xjdG0m266SW644QYREXnsYx8rdV3LS1/60s2eOrdp23bz8zHHHCPXXHNN53r+7u/+Tt773vdG06655hqZz+ciIvJjP/ZjMp/P5aKLLtqcvlgs5Pd+7/eytudZz3qW3PGOd5Rf/uVfls9+9rPR9K9//evym7/5myIi8ohHPEKOO+44efnLXy4HDx6M5v3GN76RtU4Aw9DjCAAAAAC2ufPOO0/e/va3y7Oe9Sx5//vfL/e///1lsVjIpz/9aXn7298u733ve+UHfuAH5IwzzpAXvOAF8rKXvUzOOecc+cmf/EnZs2ePfPSjH5WTTz5ZXvGKV4iIyNlnny0XXXSR/OZv/qacccYZcvvb317OPfdc+dVf/VV597vfLT/+4z8uF1xwgZx99tlyww03yCc+8Ql55zvfKVdddZXc7na3k0c/+tFy//vfX573vOfJVVddJfe85z3lz//8z+Xaa6/N2p4TTzxR3vWud8mP/diPyX3ucx958pOfLGeffbaIiPzDP/yDvO1tb5Mf+qEfEpFDOYwuuugiOe+88+T7v//75QlPeIKcdNJJ8uUvf1ne8573yP3vf395wxvesJodD4AXRwAAAACw3dV1LVdccYX89m//tlx22WXyrne9S/bu3St3vetd5Zd+6ZeC3EMvfelL5bTTTpPf+73fkxe84AWyd+9e+df/+l/LeeedtznPb/zGb8iXvvQlefWrXy379++XBz3oQXLuuefK3r175a//+q/l5S9/ubzjHe+Qyy67TI477ji5+93vLi95yUvk+OOP36zPu9/9bnnOc54jb33rW6WqKvmJn/gJed3rXiff933fl7VN97vf/eSf/umf5DWveY285z3vkcsvv1zqupazzjpLnve858m/+3f/bnPeJz3pSXLyySfLK1/5SnnNa14jt9xyi9zpTneSc845Ry688MKJ9jKALlWr+ysCAAAAAAAAtyLHEQAAAAAAADrx4ggAAAAAAACdeHEEAAAAAACATrw4AgAAAAAAQCdeHAEAAAAAAKATL44AAAAAAADQaWOrKwAAAICdq2ka+epXvyr79u2Tqqq2ujoAACBD27ayf/9+Ofnkk6Wu/T5FvDgCdogLLrhAPvCBD8hVV101aPn/8T/+hzzvec+TT3/603LLLbfId77zHTnhhBMmreOqjN32saqqkhe96EXy4he/WERELr30Urnwwgvli1/8opx66qlbUicA2C6++tWvyimnnLLV1QAAAAN85StfkTvf+c7uPLw4Aib04he/WF7ykpfIN77xDbnd7W4XTb/3ve8tt7vd7eQDH/jAWuv1rW99Sx7/+MfLve51L/lP/+k/yZ49e+SYY46ZdB2f+tSn5O1vf7tccMEFW/4y5V3vepdcfPHF8tGPflSuu+46ud3tbicPeMAD5FnPepace+65W1o3ADjc7Nu3b6urAMgf/OdPZs/btu3ys9PIbnvQzedzVUg4zbbWe73vqkrP2wbTmnYRfJ/NluVUZp16O+pqFpbTNJufF4uwTFvXZz/h3r11BXD4y/kd58URsEO88Y1vDB4CSnz0ox+V/fv3y8te9jJ56EMfOnHNDvnUpz4lL3nJS+TBD37wlr04attWnvKUp8ill14q3/d93yf/4T/8B7nDHe4gX/va1+Rd73qXPOQhD5G//du/lR/+4R/ekvoBwOGI8DRsB0fvzX+BuaNeHG2oF0fNal4cATiy5fyO8+II2CF27do1eNmvf/3rIiI7JjRtqNe97nVy6aWXynOe8xx5/etfH9wEX/CCF8jll18uGxvc9gAAAAAgF6+bgS30gQ98QKqqkre//e3yW7/1W3LnO99ZjjrqKHnIQx4in/vc54J5bQjYVVddJVVVyWtf+1q5+OKL5fTTT5c9e/bID/7gD8pHP/rRzfke/OAHy/nnny8iIj/4gz8oVVXJBRdcsDn9Ix/5iPzoj/6oHH/88bJ371550IMeJH/7t38b1fXqq6+Wpz71qXLyySfLnj175LTTTpNnP/vZcuDAAbn00kvlZ37mZ0RE5Ed+5EekqiqpqioIyfuLv/gLOeecc+SYY46Rffv2yaMe9Sj55CfjbuVXXHGF3Pve95ajjjpK7n3ve8u73vWurH150003ySte8Qo588wz5bWvfW3nm/PzzjtP7nvf+25+v+aaa+Q5z3mOnHLKKbJnzx4544wz5FWvetXgnl0AAGBnqdsq+7/ds13L/zY2gv9qkeC/qln+t1HNgv9mUm3+186b4D+9XNWIyLza/K+ZS/Bfu6g2/7PL6Xrb9dv/ACCFpndgG3jlK18pdV3Lr/zKr8i1114rr371q+Xnfu7n5CMf+Uhy2T/5kz+R/fv3yzOf+Uypqkpe/epXy0/+5E/KF77wBdm1a5e84AUvkHvc4x5y8cUXy0tf+lI57bTT5PTTTxcRkb/6q7+SRz7ykXL22WfLi170IqnrWi655BI599xz5W/+5m82X7J89atflfve975yzTXXyDOe8Qw588wz5eqrr5Z3vvOdcuONN8oDH/hA+cVf/EX53d/9Xfn1X/91Oeuss0RENv9/+eWXy/nnny+PeMQj5FWvepXceOONctFFF8kDHvAA+djHPrb5Qux973uf/NRP/ZTc8573lFe84hXyrW99Sy688MJksjYRkQ996EPy7W9/W57znOfIbJZ+CLrxxhvlQQ96kFx99dXyzGc+U77ne75HPvzhD8vzn/98+drXvia/8zu/kywDAAAAAA53vDgCtoGbb75ZPv7xj8vu3btFROTEE0+UX/qlX5J/+qd/knvf209Y+OUvf1muvPJKOfHEE0VE5B73uIc85jGPkfe+973y4z/+4/Kwhz1Mrr76arn44ovlkY98pPzAD/yAiByKi3/Ws54lP/IjPyJ/8Rd/sdlD55nPfKbc6173khe+8IXyvve9T0REnv/858u//Mu/yEc+8pHN5UVEXvrSl0rbtnLCCSfIOeecI7/7u78rD3vYw+TBD37w5jzXX3+9/OIv/qI87WlPk4svvnjz388//3y5xz3uIS9/+cs3//25z32ufPd3f7d86EMfkuOPP15ERB70oAfJwx/+cLnLXe7i7od//ud/FhGR7/3e7/V39q1e//rXy+c//3n52Mc+Jne72902t/3kk0+W17zmNfLLv/zLjBIEAAAA4IhHqBqwDVx44YWbL41ERM455xwREfnCF76QXPZnf/ZnN18alSz78Y9/XK688kp50pOeJN/61rfkm9/8pnzzm9+UG264QR7ykIfIBz/4QWmaRpqmkSuuuEIe/ehHBy+NbpNKpvaXf/mXcs0118gTn/jEzXV885vflNlsJve73/3k/e9/v4iIfO1rX5OPf/zjcv7552++NBIRedjDHib3vOc9k/vhuuuuE5H80X3e8Y53yDnnnCMnnnhiUK+HPvShslgs5IMf/GBWOQAAYOvdFibf9Z8NI5tV1eZ/dlpfuJkXChaFsc12ya5dy/9sfbTZbBb8V9d18F/btpv/Rdul5msk/795I8F/AJBCjyNgzbpetHzP93xP8P22F0Hf+c53kuUNXfbKK68UEdnMf9Tl2muvlQMHDsh1112X7PmUWs+5557bOf24444TEZEvfelLIiKbvX+0e9zjHvIP//AP7npuK2f//v3Z9frHf/xHOemkkzqn35ZQHAAAAACOZLw4AiZ01FFHicihRM1dbrzxxs15tL6cPHqY1T5Dl70tAfRrXvMauc997tM5z7HHHivf/va3k3XIWc/ll18ud7jDHaLpU41yduaZZ4qIyCc+8Ql57GMfm1Wvhz3sYfJrv/ZrndPvfve7T1IvAAAAANjJeHEETOi2PDyf+cxnovw4N954o3zlK1+Rhz/84VtRtchtCbKPO+44eehDH9o730knnSTHHXec/NM//ZNbXl/I2m3ruf3tb++u57Z9d1sPJe0zn/mMu24RkQc84AFy4oknytve9jb59V//9WSC7NNPP12uv/56t04AAAAAcKTjxREwoYc85CGye/duueiii+Tcc8+Vul6mEbv44otlPp/LIx/5yC2s4dLZZ58tp59+urz2ta+VJz3pSXLssccG07/xjW/ISSedJHVdy2Mf+1h561vfKn//938f5Tm6Leb+mGOOEZFDQ9xrj3jEI+S4446Tl7/85fIjP/IjsmvXrs713PGOd5T73Oc+8pa3vEWe97znbeY5+su//Ev51Kc+lUyOvXfvXnnuc58rz3ve8+S5z32uvOY1r4leZr31rW+Vu9/97nLf+95XHv/4x8uLX/xiee973yuPeMQjgvmuueYaOfbYYyfrDQUAwBBv+a9fzp7Xyzmop+X0Zh5rHetI5VjU2oJ5w5X0r7M2DVTRM4N6BlwsFsGkpl1+t9uxODAP522WSYhsOiK9aNsuzMSezxIfn5LzLFdraqvXOXPS7K7j3LFKziXNq6udNnQddjn9PTp3zHl2/mNOHbROoAt/FQETuv3tby+/8Ru/IS984QvlgQ98oPzET/yE7N27Vz784Q/L2972Nnn4wx8uj370o7e6miIiUte1vOlNb5JHPvKRcq973UsuvPBCudOd7iRXX321vP/975fjjjtO/ut//a8iIvLyl79c3ve+98mDHvQgecYzniFnnXWWfO1rX5N3vOMd8qEPfUhOOOEEuc997iOz2Uxe9apXybXXXit79uyRc889V25/+9vLRRddJOedd558//d/vzzhCU+Qk046Sb785S/Le97zHrn//e8vb3jDG0RE5BWveIU86lGPkgc84AHylKc8Rb797W/L7/3e78m97nUvuf7665Pb9Ku/+qvyyU9+Ul73utfJ+9//fvnpn/5pucMd7iD/8i//IldccYX87//9v+XDH/7w5rzvfve75cd//MflggsukLPPPltuuOEG+cQnPiHvfOc75aqrrpLb3e52qzsAAAAAALAD8OIImNgLXvACOfXUU+UNb3iDvPSlL5X5fC6nnXaavOQlL5HnPve5QS+krfbgBz9Y/u7v/k5e9rKXyRve8Aa5/vrr5Q53uIPc7373k2c+85mb893pTneSj3zkI/If/+N/lD/+4z+W6667Tu50pzvJIx/5SNm7d6+IiNzhDneQP/iDP5BXvOIV8tSnPlUWi4W8//3vl9vf/vbypCc9SU4++WR55StfKa95zWvklltukTvd6U5yzjnnyIUXXri5nh/90R+Vd7zjHfLCF75Qnv/858vpp58ul1xyifyX//Jf5AMf+EBye+q6lssuu0we85jHyMUXXyyvfe1r5brrrpOTTjpJHvjAB8qrX/1q+aEf+iEROdRD6a//+q/l5S9/ubzjHe+Qyy67TI477ji5+93vLi95yUuCkd0AAAAA4EhVtVvRHxAAAACHheuuu46X7Sty2X/7yubnVKjLFI/0ReFfBWE6U5kq3EfXzxuN3m7H7t27Nz/bXIp23nrWX1cdfiaNqUFb2Zk3Px4069DlLMyWBGF1tV/Xqll+r5xjV9L06e1Xbx22bt65NPR88MoZcw2sO0TTO69FRH7+J/w0D8Btrr322s0Rqvtsn64PAAAAAAAA2FZ4cQQAAAAAAIBOvDgCAAAAAABAJ5JjAwAAADvcVPl/hsrN7zImh0zltHk3lcrTY3O/xJXY/Dhz8tTUdih0Ndz54sA8XG4eDoXe1ss/s3QOoUPzLjMA2W086ug9wfdalbOrDued18ty5pVZv6r7ItpGm1cpmBhOcpIVefl27JHS09sqLDQ3j9FUObjGrGPoeV6SEyx3O0lVjHWixxEAAAAAAAA68eIIAAAAAAAAnbJC1Zqmka9+9auyb9++ybqzAgCAw1vbtrJ//345+eSTpa5pqwJERC77b1/JnrckhGbd19hisUjPNDE3pEnFW6X+WgnKsaFYaoj7Wb0rXO6mZXjaLdffFC52cxi6pqPK2gNhvZv5ct6ZzMJ17A3Xuefoozc/V0eF81bq66495vjvXn6fm40MayrSVrqy+SFV+nsUmmXD/ILP04RY2XNe1yc3/K1kWglvX9nvJfXJ3UYRkUuv+OKyHNNfJLi3mOUadQ20TTj1gp+6i7tOHL6yXhx99atflVNOOWXVdQEAAIehr3zlK3LnO995q6sBAACAAbJeHO3bt2/V9cBh6qI//njwfTYzrSrqTbl+u22n2e/27bv3pt6Wo1snUq1zJW/1S+rgzds483rLPfMJ3+vWDwC2Cs8RAAAAO1fWiyPC0zDU0XvDPxZ4cZSed+iLIwDYrrh3AQAA7FxZL46AqTSL/pdBTeO/mAnep9i/QdR3+zKoaczwpD2fk+tMRMzreSvzPqrkRVc0DCpDbQIAcNjwGpPsM4z+XpLjqKQxK8hnUvDMMfT5ZMxzjW1kDFT95UbNhOqZc2GeP+sgAdDBYNpC5Ti6+Vs3BNNu+s714ToOLsvdOBgej4MHDmx+bufh+vccuyf4fsxxxyzrZqaJynm05/ijgkm796ncSHvChtvdu8I8SgcWy+1szLmzaNX5Ea49bNQ10+z38Lj3P+t654eX06iknJLn8pKGDz3vfB5mkkrlPBqyTu9ajmcOp3k5jsLFaPjBIWSqBAAAAAAAQCdeHAEAAAAAAKAToWrYUiXdlXWXSm+5klxJJfPa7rEl3cCtkm6vXrdbwtgAAAAAAKvEiyMAAABgXUwunqpWuUZMLIButDpgcqY0B8McjtIs89Ts3XN0OEl9XizCRrON2e7O9YmIzBe3BN91g9XM5sKZL8u1A3207XLeWR3++WFzwczqZTlRQ5va5LgRrr+BMcr9ovZBbfJvbiyW5WyYdVz/tWs2P9909beCaUc3YY6hve3ezc/X/st3gmnf+vL/2/y8qw7zDS327Q2+b3zXsq777hhMkqNOOnY534bJj7Wh8jiZc+5gHZ47tToHm3ZmpqlBZdpwf8znKgeUyRW1a8OcA+oQ2HOwrpbr9PL0VLUpU8Lt8PJ1Bed2ZRqO9f4xx7xOfO9jUqyKzSSkc7u2bX99vLxS8b7qb+SOGpt1flgzeFGwvmRGWBwpCFUDAAAAAABAJ14cAQAAAAAAoBOhaij2R392ZfA9yv2j3kdGXYXb/u6nthzL67paMqRlSc6g8Kvt8to/lOei6R/yUkSk1d25E/NqXk6mN739Sjt7drlW0f5Un5/2M2dkrwMAgMPFJf/1K8H3YKhr87u5a8OGrKjwmrkJvVGPRjP7GGSGyd6tHuvn198ivUw583a5zl27w5CV2cz+5i8XvqUJQ8xEhzGZR45GDTnfVv3hRYeqF8X4bKrbvDbvqvGf7/S+jCJ4muU+uGn/TcG0/d/cv/l5fkNYz1sOhvv82//v25ufb/jWDcG0A9ce2Px83Y3XBdO+szv8fsP+ZbntRnh8mtlyf+zeCPfjMXuW0+w5OG/Cus72LsMVo6AlFVpYmWff2YY650zI4fxgWB89PX7OXPROC8IjTUiV/2xrQilVSGK8WP/6bUhm7vN0W/WHfx2i/16yz/f6c3/Ypb127J9SuXVdLPqvOeA29DgCAAAAAABAJ14cAQAAAAAAoBMvjgAAAAAAANCJHEcoVpn3jTZtkY5/T+UQKuHlJtJxzDac1+ZO8upgJ/lDXvbPGw2eaYesdYYLrexYvIpfB3/fevkWopJaHQfenyOq6zsAAEca77fR/o7adCJVMCx3OE2Pmt4cMLlOrr85+H7TTcu8Obtb++yzrMMtN4TLzVXexd1H7w6m1UfZnDpqu44K/4yod6l5a5vbcZnfZp54jpipocgrM22h8zo5eR/tctGzqkoeZXPY6Ge0yqRxOn7vvs3P110bHsjrv7E/+H7DNcu8RrMmPB779h6/+bk+GO7H/TfeGHy/+bplJQ5cF1Zo/0zlTjp4fTBtoSq/64TwuLazcP/cfKPK5TQL67qwCauCdTjDuLfh/glygYp99l1O8551F3Ob06f/mdled3XbP83728Wer9469PfZzH8+Lsm5aiYu1xf94WLyprr5Y9uOT7GSHKk4vNHjCAAAAAAAAJ14cQQAAAAAAIBOhKphNK97pT+8/fD1xF04+7uEe+qoGNN1tuezSDzUq17WjJDbMZRm/7ZUVX/X63jeqnea5YaqRcPbqnLdUsPuvQAAHJEW5rdbhWrZoa710PQiIhsq3MdGt1Sq3MUNB4JpB74ehiYd/M4ybOnmm8KCDty4HH59fsvBYNruPUcv13/M0cG0xbHh88Ix37UMsYrDYJbb0ewKp+lHm2oRbocNTQqeV8z+mB9Yhl/Z57Lc56VDM+jh121I/rI+R+3aFUzb96+W2784aEKxzLPUnj1HbX6++ZowPHB2YDnvd52wN5h2vA3d273cr9VeEzq4oYaqN9s4v3lZvwMqbE5E5OZ5eAxElVPtDre5UuenDTFrZ8tpNmysMVFsGxvqz87+x06pbUoML31C0/83SHTMM7tLpMLGgnKjPw6WHxu7r4r+XsoLj4vSW/iRa73r8ELuyEiB29DjCAAAAAAAAJ14cQQAAAAAAIBOvDgCAAAAAABAJ3IcHcYufdfn3ek6Fjka+rLtzxNk5/Vi060oL5BeZSqIVk934o2j1XsjWkYze0PP2/hfG4Oth/I064lil/uzJ9l4/qD+NveBrn9i97k5jpw47FSegErV/41/8tneciw7rWRI1aaZ905/+pPO7C0HAIBVsHly9LORfU6qzVD1tf6NuyWc98ANy9w4C5MnZ/6NcNj2G/7vd5afr74mmHbz/uWyxx11TDBt9wnL9e+vw1w4i2PCRDUbd13mv9n73fvCeY9Sv81Hm+XUJh48EP7+L+YmB5QZxl3TuZLsE4Z+jpjV4fqjVI7BxPCrPly3SJgPqlHJMXd9155g2r86IcwPtTFf1uGgyU/VqmIPmpxTN94QHuc9R+/e/DzbYzZk9/L7rqPCbQ5yI5n9scts9M03L+swO2jycqrEWzbH0Wz38lhVu8N11GbeeqbyfkWPh87fDtL/jJ/82yGYNy8Hqn2+t9er9zytv9tn1ankrt+K/tZzlvPKueRPzN+X9fIcsM/y5z/+jN5ysPPQ4wgAAAAAAACdeHEEAAAAAACAToSqAQAAACPUToj6zIThzEy77UwNYy8Hw3CS+Q3LcJd2/y3hOr4Tfr/xK/s3P1ffCSt0fLsMT9u4KazP/m98Y/PzgdqEgn9XGH61d+9y6Phqd/hnxFxFwG20u4NpG0cvQ9yikdhtSLwzhHithoaPwms2liXbkBkv9KaVcIVB+JOpbKPzCewKh623Q5/XG8t9cIyE4YE6dcMNN9wUTNu36/jg+0wNeX/jTeG8uq67bH3UtOaW8LjecFMYDnfw4DJUrTIbvaGPc23DuNRx3WX2sf2qdt3MHf7dGYo+FeKmyrHnQKOzO2QOd9/1XSsJlbO8FA259UvVVZfjbYcOI7TzxikrTF17S8XhhhdHhzF7Q/JyysQ3KC/Xjy+cNT+HUEmKo7gcb1p+DiZLxwN7N+Ou704F3Y21eZeCH/6FPYb9uZLcKiRixN3cRDa+vQqnBt+c9dj9uViEOQ288zOOU88/pgAAAACAfISqAQAAAAAAoBMvjgAAAAAAANCJULUjSDSkuQ57SgxRGS5bEn5m4mLb/Hk9Udid+hqPNN8/9HxVJ7ZbRbnZcr0R7eeJ8Dh3U6PwruVnm0NBFk4iAI+NibbvkJ36xaF+KpQuGnLYxJermH47vKmeJtIVx66mEZoGANhGomeYgp+pVuU1am8xw7bfuPzemCHdF9eE+W5u/MYNm5+PW+wNph3dLHPRXPfta4JpN9x4/ebnjX1HBdOOPS7MzbNrof50sKON62cmmydnY7ncLpNTSOfwERFZeM+GVX/Iu15nKi1BML3qT+1g09BU6h927/FTQrRqu25ehDtrl8oNdMwJYU6j+dzkmVLl7J2HuaNEPXfdcnN4fhy8afl9bnJXzWZh3W+4YZkvy+bg2nWUOnZ7wjxKM5X/aGNXeBzndZiCoK30fg3nDfddwUOynerl8XFTafSvvinI4hOeO/k3gZK8SiXLBfmQnO4i7nKpdRRsJ3Y2ehwBAAAAAACgEy+OAAAAAAAA0IkXRwAAAAAAAOhEjqMjmM1Ho3lDz5fkIqoafwj7Soc/5xfr5rix1WudfEPePji07LC45srm64nSAnnx+2Hct95WrzoldbU7u6oG5kqScP/aOnj7t2Tfe+ej/f6Hl/5zMM2LEy+aVtl9ps4jM+vTn3T33nIBAEeWDZMopxKT32W+/H255aZbgmmN+t7ecDCYdsv14by71Y/RwRvCad/ef91yuf03B9OOPnqZ12jv0ccF03bt2hPOe9Qyd9Jst8m3s0vld9ll8v/U3Z9FJM676KS78dKpuHlh2v48LTbfTpj/qP+5xqbQbOwzrqr87qPC/VjPlvvOLjfbFf55tji4PO7V7rCudbPcme0Bkx+r1vl2wrruOTpcx97F8hyoTH32qLxG0XGVfpVZ6cae5TbbZ3OzZLiOgudbfXxsnk2Pn9Mn/+8lvc44z2d/Od5zrcfON9sI16nr0EYXXj83V5TZrtmG/jul5G8R7DT0OAIAAAAAAEAnXhwBAAAAAACgE6Fqh7FUt0f9tSQUaEw3xGjZtn9a7lCUY+qQ2hbdrTQ1HGU4b9iVOO52q5cL61DX/XUaGjo3Zt70dgdTzTS7bbrLrH+8dTfmVHfjoedKVAd9bph5bQfjoDvyjKFIAeBI1u4KfwdmrQrvMb+Nu83w8+0ty1Cko8yj+YH58rfmlhvD4c1v/Ob+sFw1+cANNwTTrt9/0+bnfceGw7/f/s53XC63J/z123VcGGK1+7hdalo4NPvGXvXl6PB3e14vf0VnJtzp4CLcrkaF1NhHIh3WZZ8M9KzRs0od/orr3/Cm6k9pYMvRYWR2ePNa7LPf0sI8RbTtMqwsqqsNf9q9/L6Yh+UcnM83P8/NzmrVs8kB85wyn5l59y7DyGpzfh7crY75rvCYV7vVfqztPg+/H1B1tY9N3j4P6pl4dvSeM/vmEwlTDkRhdDZcMlg2XP9iodMs+M/hQ/+e0udd6hndmxaGa9aDpomI6EjPhbmWcXihxxEAAAAAAAA68eIIAAAAAAAAnXhxBAAAAAAAgE7kODqMNYv82Fo7RGRlA7eVWRTPa+JZ1fikUWz63MQmq8+1kzNIxMSj22nV8lT28iiVqlWcfWvy9bS2YJ2vycSOp4aeD4opGJJTT9vY2OidJuLHHdv4ZS8PlN2Wkm2bq/h2y4tTt6vwch61bX58dZRXSX232+0Nq9raMXkBAEcUmxdF/4bsPuqoYNqGyYVT71n+vtwkYW4i/Tt10403B9NuvCH8flyzzFNz843h0Ow6p8xst813s/xtPuZ2+8IyT/mu4Pu+k5bTF3vNc9vRah9smG1UeYRs/sOZ/f3Xv6n259XJA6nFqV76hyn3cr9EI5jrvD0F+WWiIcydnD72WUnnBmoOmnxQ8/5neZ23Z2byFtVHm3Nyt5pm6lqrnFTRs6aT49HujvC5atjw81buM/Kh+vQ/45WsXS/rnTtj8v24uYrURVFJ/jlYkg9JSx8bnoGPFPQ4AgAAAAAAQCdeHAEAAAAAAKAToWoAAABAh7f8l6s2P9vQjmCIdROyPFMhTZWNd7Lx1yq1wMJEdOvvBw+YtALmMf6Wm5fTD5p0BUftO2bz89G3Py6YdvSdlt9PvOtJwbRjviecd+N2e5br2xOG4rS7l+FQzcyETbU6TMiEttjQqKo/XN4LiwnWaMPfvDCdeGz45SRnKPLcUB+ReDvmovZdY0LhTYjTXIWnNQf70wXYUeQXep2JIdV37ZmpWfvD+qLUBs6xasWmweg/B7wwNq/eXnoH7/h4oWpjjqvePwOj74rXGU4bVo4XxpYMcRsekYcdhhdHh7HUjc+7YXgh5G3UUc3etPvj2O0PTuXk0rF1ahZ6WhirvYrYaCv1YxXENRfk/RlTJz2vjaWOjr+Xh8dM0zHT8Y9ydvUGH5fUst62evm5zGNlUT6pxsnP1Jrz+uK3fLp3Xntcnv7z9+idFwAAAAC2GqFqAAAAAAAA6MSLIwAAAAAAAHQiVO0I4sWJp4ZcD+OSp6uTLrdZ9E87tN5lnbyh0VO8oeY9JaF/bdHAngWicDMVHjfvP2Yi/nanwgS9ed23z85uiFYR1aG/oDje2ik3nNObODhErzblRuenGoZ4TPgeAGC97P08mKZCo2ub40gNf17Z3zf7O6q+btRhKP5NtxzY/HzzTbcE0+bmd//aa2/Y/Lxrbzjc+lF3OGHz87Emj9Hxd/vuzc8635GIyPzEsD4H9y4/H9gVTJID9bI+C7E5jtTvoE1xJIb6Ibe5iZo2M6GKWUdj11n3ryM3v0sy345K/hJN06kcTPh99Aye+fzW2PMsyLdj62aeReqezyJS6RxQNh2U81w1c6bN3WehkmHjvefZ/mfFklQFqeM8dFpuvixvuejvN+dvqbbq/1tpTI6jKGcZDlv0OAIAAAAAAEAnXhwBAAAAAACgE6FqAAAAQAcvEL5yQqp0iFvV+CHKQbhJHZZzUMWe3HzgQDBtbiJEDtQHNz+fcPt/FUzb9z0nLqed9l3BtL2nLMPT2hPCPw2aY8J1LPYs63qwtuFoeqRXs+e8cP7Khu6p/RrOKW3mUOlReE3BEPNBGoVodWpEYjtSqxOfb8PIRIejmV1lUw/o4c4XzjDyMjN7S8+bCM1q69xt7p8WhbENjMwvCRsrK7f7860l907zjmttrte257Ndh12PLce/8/QrCcHTqro/HM4L1xUJQytT82Jn48XRYczeLKIhzJv+eZsoXnU5vbb3IBt7G9zrTDkm9rbktujF9A4dwj6d68eJD3fWaXPelPB/MJ3l7Lzm+0Ld2NtETij7gBWuyHloKTAu1U9+vHe4zlSupP4fyqF5tEREKuK/AQAAAOxQvBYEAAAAAABAJ14cAQAAAAAAoBOhagAAADhiXPbuL21+jkPLw+8LL2+NXsrmd1HhzbvqcNz6Zh7mKtKrmJtprRp+fiHzYFq9Jyzmznc/efPzid8V5jHad+d9m5+PPfm4YJocp8Ly94ZtyhtHz4Lvi2aZR2l3VZtpy7ra/D+V6DQBJkw8rI2bG6eq+0PT3eHNE0OKa0G5znxxBHv/sO3RvCp1Q2tzGkXrUakGEiH3feu3s81m4XHVOXbiMP6g1Kz13foPvfPa8P/clBOp+bx0FCVD3udy0xgUJHmy5fh1bXrnG5q6ozKJrcJ0DX7dvLq+9Z3qXmvzjKlT8AmPOSVVXWwDvDjagf7ozz+/+bmZL3rns4kJ7Xd7kwg5N3ubp6jg5u+t0954vJuod6Muu/n7N7+SfDleOZ6hN3m7npJ1puadKp/UmB80vxxxv/cZuv7uOvQ/nHjrteW88ZLP9M7bhAnD5FkX3jOvsgl/eOk/B9+D4x0+S0bb9qzzzpqkDgAAAAB2BkLVAAAAAAAA0IkXRwAAAAAAAOhEqNoOFMY698+nY2APfTdhTtIf5lQ7IWWN+OV6YWQzCeNgvBAfW46OjfWmpcKaNBuxNSaUaapySkLgisLGgvfE4XJ1ZeOTVOhSY0LVzOH1w97sDtYf/Zj+klh0fT6U1CcOedP/4MfGe+Fn1tCwNpuDYCq2xUDXvm3yrx8A2Ilq5/nHf66yodvLz/bRp677C5qZnEdSqdxFG2F95qJzHIW5AmyOo+++6zLH0Z59RwXTjvruY5ar+67d4TqOWf7WtEeFvxAz85dCMw9+MaSP/Z3Rc1a1fa4waQP0T19rf1/7f3tLchwFJXoHfeGeEG45wXczbbFQx9WkkthlfvvbCdISRM/5Nt+M+l6WokCnNginLOzzY8GzUO76vf3hpbwYk+8od531bHjaCn+bp8nHlJuOo237zxWRMFeRtx3x+lbzjIvVoccRAAAAAAAAOvHiCAAAAAAAAJ0IVQMAAMARKQ6fyB/91Q2FV22zOixJRGRmQrzm81vUOsy05uDm56P2hiFuG0cdE867Z7mejWNNXY9fhqfNjwnLaVRU28KEyt3UmrpvLMNLFgcPBtNaFdbVeKPz2n+ow3XqNUapEyqVmqBkpNmBo92Whd7k8+o6n8/DeVVIjzcCsQ0B3FDHqkqkisjd5lj/KLxFoy4XHB9P7nbYcKu2Z74uuWFufjqE/NC5OCSzPz2HvX94aRXyQ9X886Fp8srxQkuxM/DiaAfSDyBVFPu9VNuY1MreJL2bgpjv/fPaC9/mMfJ4w75b/s0vb7lSJfWbivuD5KQFSh2Xkh+PYEh4J2dViv9jM90PSO6PX4p3vEvqV7bOacop4f14R39C8cMOAAAAHNEIVQMAAAAAAEAnXhwBAAAAAACgE6FqAAAAOGK0VX/4vQ2j1mH/UeiuE8a/ULmB6tnuYFplch7dfMsyp81NB8P8NgeOUjmFbn9UMG1hUhLsP35Zh42TzDr/1Z7lcrvC9W/sWq5jtsuEMpsY+QPzA5ufmyYsR1TemJmEeZTmB9X+SIXL6+G9TUYknXbBlhPM6RyrQ5OX0xc2SFst2tjlah3SbleRHzYf5ICq7LTQrFJDvJt8UPVsuT/89AB++L1OS1AWJq+vAT+1gZfTJ3edJakWomle+olW1y28ruLrPpgazqu+L+bh9RHlVVLltPb4qFm9lAE2f5pdh84/ZHMR6fXH69Dfbb3NuaMKmptt1ud2XLfl57e886pwMWebf/6n7tI7DavFi6MdqFHJB2d1fv4Re8EeVEkNbR4b+ywQlGMeVCp703TqZNfj5ZSZzcJcSUECwOgHz0nCWJCjx8v9UvJjVVd+EsKSOoS5iaR3mjVV3h/LnkdeuaNy9AQ/TPa49C+2rmSMQ7fNS3J4a8m9y178R5/OXo97/KNko+o6rPzr5eK3LOsQHe+6//ppnISNIiK1umTstT/bFX5/yk+e7tYRAAAAwHQIVQMAAAAAAEAnehwBAADgiGR7faaGFA+XXfaqtGFTQZ9ZU+ZBE15yYLEMT7v54M3hSlSHy73HHRtM2rM7DF07+vhjNj/vPi6cVu1ePvLXu8PH/0qFOx00Q8EfXITfG1V3O4pu0It8Hu63mQ4NM9tve5nO1XTbd1YfH6dzfGQVw72viu3Zbc8tLahP65zLlV/v4ds1rHd47pD2qWlxCKCaFnXT7w8z1LOm1uFFSwRRAqZ7hncviXrzq7ouzLXkhbGV9LL3oiomG1FX7/PGTuofwZkRfbcnXhztQDN1c6ma/htGuwgvwoWJmtbT7eUZhaPpm0vt36S8+GK7pnCyH34W/DaOCIkq+UHybqpD15Eqa+gP1Jjh4z1eHLxI+GM3Zrs90XZH54b3Q+l0rIwW80IT+3/wx+z73D9KutbjTfPODfvQ7q0zisl38jvYXBiVWtbmZYjuBYv+/bAo+vMAAAAAwJQIVQMAAAAAAEAnXhwBAAAAAACgE6FqAAAAOGKEQ4/781aqjTXKA6I+t3ZETxV+uzCRulHIt8rxU5n8Q0cdv8xrVO0Lyzlqz97w+3FHb36e7Z6ZmVVb8Sys0EE1mubchBzb0OYgDNoOIe6ESOuW6oUdZdOkUqhUeHIchr1Lpua1ojdtfmoB/1zqz7cj0Tr68910VEJ/cWbzQ/zDEXz90PL85fp5ofc2cL1olGC1r+yoz/Z8zV1Hybx62syG+hekNfDSDbTqkrRpAOzIuLl5jMYcO7eu7vmh763hlKpefS4xlOPF0Q4UXKAm10vwMDL3fyR2qQeVKXMG6e9x/pb8G9PQm9jQG3NqeipxXMkw9Xo/lOz7lSWvK1CSd2cMP1fW+DJT06N9m0gs6a3HOzc8Ns9Xx5qy6lCSeyp9PnoPIf11SG1LPeuvg7OZAAAAAFaMUDUAAAAAAAB0oscRAAAAdrRL3/2l3mm2lVT3hm4Wfi9l3WHU9vF1e1g3OvwrHNLermP3UUdtfj5WQu2xy3mbuT+M/ezoZRjXxoYJVZst63qwORiuQ1UvHhZ7Zr7r5cJ9N9dhOmYb5yrkbWMj/PPDhsM1amRfO21Xbg9kGx5oOxE7w68HvF7gBfN6oXt22PjKDlu+lm63Vc/n0FQRCs5Aqh3L5U/zOuKPiUDI5fXgtr3P9bwlI+x6y0VRAercqWfTRClE+0ofTHt+qFUWRSxEx3W57KXv+GIwLRzdObxfnP/Td+1fB4rR4wgAAAAAAACd6HG0Tfzh2z7dO61uTXI1nSvEvDzWb13rDf/NctXot+JRKrrgm36jncqrEyadHJ6/xzOmZWBoPqQUr5UhqoNO/Rc3WZmC9TrCc0Efb9sqN8bQ/VCSQ2hVdVjVeTQmndTQ5JFpXlnDrrVU/XS+QjtvI/3Xu00RNeY4vfE/f7a3HP39qT9zRvY6AAAAAHSjxxEAAAAAAAA60eMIAAAAhy0vf4jNO2J7OHq9qGeq12fUEqt6i8/nJseRqU4wLLbJW7Rrz/JRPe4kG/7Dxq5lOTP7hB8M221zlKie2Lb3spOnZeH0Krd9oPUmt6a37MIOm+6MYnpQ1c9r/U6NQuv1Nw6Oc9u/Fps3yeN1cLa9yeMogFz925weXbV/mjvcuu5An8hho0dXbRO5ebRaTbPn3NAe1GMiF3LXGY8Q259/qIRXd29aYy5KvRluJ/DkqML9+bGCXuqNPT91b3xbpL3u8kb/bduCixLFeHG0DdUF95E6+tVSF9aIZHp+iFnqohwWPjMm4V6w9oLka16iOmtVw86n1hPUydy8a/UgmB65fdiPayqkaOgPWCpMMHiQThxTb96hogSp0Y+Yqo/kP+SlH976fxzLtq1/n/j7umAVRvyDrctNbIu33fZhQ5Xb2L/AAAAAAEyKUDUAAAAAAAB04sURAAAAAAAAOhGqBgAAgMOXzS0ShMP6YfJeoP5ClVvZEFud78fkDWoO9o+C2lZhjiOZqTZeE16/UYfz6tDd2uYmckb3nKtpNh+UFzK9MKHCOkVCs+hfrj14sHeaiMhioUbyNdHItd7nkq8kfUO4zc6xKli/K07w0lsfP9x9WOqAFJ3HqCQFgZ+LJn/kVz1vf+abjnLM91UEtnuh/3Yb7X0gN81CY3NRqND/KOWGt1/tP+h5vZQGiVNHpwEbmmIhzgflbUd+ShJMixdH24TO4WFP/8omddQPI9Ek9WCQyNrnJ83zbmD+rde7EVbJRDzD6E3dqhuImzxwomR+3jqTuZ285HZRupmCnDcl2SEnUpKLSs87SyTH9M5d76yvxE+uGpRjrgEndVLRtTbFfCJ+As9b53CmDHugFRFzHvkJJL1EiDxAAAAAANMiVA0AAAAAAACd6HEEAACAHc3rbWrDOXTISKpnp102WKfqQdrYMBTVNmt7pW5smB6tqg7VLJxXr741w+7a77pUO2y5DZPJFXcqzgs3ikcbVb3c52aa7RV7cDndrkEPVW+3aKr+z0GvVmealRrBVNP7NZ5tWIiXJzlyseq9u5aeu63tqa2+lAzvGo3Qqs4dG66pLqbouAZ1SUQJ6N7+tjp6fWZaY8vt+WzFp4e6t9le1ysIV0yd1007NAjQube6de2/f85mYfjuW9551XKpxOi+5/3kqc46IUKPIwAAAAAAAPSgx9EKvfkdn9v8HLVomeREOu9JbRsB+lMciZhyq775OkTJ1hRbh6CwRMFeQ4H7/nhgbh8RkzvJtqrU+YnrhibrW5eS+q3L0Na31P7zppe88Q6uiYLlLHsNl+RZ8kQNNc5hHLrOVOuZd1zsvF7ru52iy7Kt1lEjYXTT6Z9XH4vW2ScXv+1KU465hutle/UzHn+P3nIAAACAIxk9jgAAAAAAANCJHkcAAADY0dzRLE3XTj2aZZ3oTRz0cLQ9MlWelijvhx32VrF5OIJ8TBsbvdPsFkY9YTdUfUzvUD3vfD7vXYetW/jN5GOy26ymbZghQ5vFsvYzW7eD4XbovC02d5TN3ZRraI9dbxu9HDoiIlW93HtRT99gUdtTvr9+Xk/5km2Mhoqf9+fAyh02PtXbWu8fr+eCzQVUNIKwQ+e4KeoZPrBHd8mIyl6vdq+nt12unk0THZF7zEU6es4HFco7P53FDn2foJf/wlxnXpnoxoujFXKT2UU/NurHxYSQuUNcR8nl8m+KlXOhlyQDjJadKIRrTOjaUN5NPnnjHPjDVlKux/thKS1z6PEu+ZEs2UfRtIEPDlPt69J5SwRJ/jaGdwodmkyz5BjG5Y5Yz8K5frzwPfudBwEAAABgUoSqAQAAAAAAoBM9jgAAALCj7ZrZoKqlxcEwDEf37EwNfDCT/nAj3SM8GmpbxW9UNnwkGhxAteNWtoft8qNt7Y3Cn4KBQmx43nLeDRMO5+0PG7q2a9eu3nmDntcm8qlVsSc2NC3ePyoczPQrbeeqHLv+Rf80b9+5PWvNyA5BCJGptyzCY9c0y50QraN2esdGg+I4g4XocqPgBmdgG/N9V708rjaUUau8ekedw+35ufy+aBb98zrD1reJ69Xt6d6oUE5vJBKjJDywViGaG7vC62xhwy6bg7rQsK76sxe1YL+bc0fXp6RDdhXcSrxYNJFKbZcXrlmbq7Bxe6nbiBpVeVOdWb3RN8m1FYMc7XT0OAIAAAAAAEAnehytkJdAz75ZDlolbI4jp+WhcpJ/pHJ9hC/384eld8cLN8vacmaz6fLwBDVyWo5sMjRvXi+/i32LXrbPQqt4yz1l/p6S5bzzPJU40uO2Bq6olcDN1+Qc/5Lh7r11RtNSTSe2ZbpH1ALk1M/ef2qb4FTXryQRppPs89Z/6a2ftxqbA85LTGmRDwkAAABIo8cRAAAAAAAAOtHjCAAAANvOZf/tK+E/ODl1bE6bXMmeskGOEJPPJOhVGbbFzhf9w9aXjDhaMrqrJ8x/lN9r19uvzaJ/39neq0HvZNuz3h15Ntyvi0bn37HHw8sbFG6HzjdTSZjHKdzPXq9gv/29qfrPAe8Q2LxSXk/a7BFU26jbb/BV5xwaOvx8dO7aPDXquEfRFLmjso7oKKxzN3k9sUt6U3vXpM1p5F1LJfcILdWzP7fHe9yxP/8csOdr37wl269zolm2J3y4DufeUvn52y674kv99VHl/Pxj79Jbt8MdL44Kvfkdn9v8HN08TQI970dS5jaZmvq+sDfekD6ZFxLelMI6JUKX+vPpJW7fiZt7f367opuGu4qCG+yGTaxY8IDSOg8h7gOkWcWsDm9Ofh2G7Yc4asmcj8HDRfYqIrbuTduf/DHaFie0Kip30TOjxElQh+5Pbzn7g7IoeFgbuk67rC0nun6covS5HD2kR+Fdy8+zDfOQHoXZdte1S3APjOpnz5Xl/rY//Dbdobt/1R9r9gHKhsoePLhczxv/9HPBtKruP6ZP/ZkzetcPAAAAHG4IVQMAAAAAAEAnehwBAADgiGTDlKJQINVf0oae5IacpQcrccJ9BoaqlYSaeB3U7bx6H9hQNd3L1IaqBWUmQtV0ObYHahhS5Ne1bzmRsEeqtx1e6E9jO1VHoVpeCE9/aJgX+mMFPZFtOFq4RrP+Yb2o497h/QNbiOSHauWq4jiMxPelts0bzCXVMzwM8eqPakhfr850J1TLM3zgHq+ufpnufbDR+yOcpq+fknvbwYMHg+9BxMesP6KnTQzQY+/vfes4krEXAAAAAAAA0IkeRxMaM8R68BbevJD33maPWedUb9dLDE3+VlruUPaNsm1N0sbkKVpJjiPnPLHTx5w3ltcyNibXj8e2Cnh18FoQNjbCW6Cu04EDB4JpVcF2Dk0sadnWuZLzZuj+LbkXTFmuPk6plh2v1dJbNtqftXMPLDhOAAAAwOGMHkcAAAAAAADoRI8jAAAAbHtFOX506pdo7G+VE8N0825Mb8NF058XxUtDMquXj9hRSqGBzbapHqtFeY0GCspZmBEvB67fy3HUzsN1BL1KoxFD+3m9Ue1ZFeRqcnIjScHQ51Z4SubnkCnpyT1ZTix9LTl1TZ2P3n4t6UE/VCX9ea366iIi0tp7ROYI0WNGi1YpsKLcQCWj7+buOy+XlxWPmD0sKkWfS3G97fmx/BzVVYWHLNr+UXhtCrDajJxdO6nFpozU2MnocQQAAAAAAIBO9Dgq1DgtT1Xb/4Y8mtcp1yvHmipXTkm5qRaNsAVuupxGq8izZHMYeTmNisp1270SA1/M8luTgt1rt8W0xDX6LXzBK+PU6Cuzqv8VvW2NDa4Jux77veBY5Oa8GdMaZtdR0qq0jpaKkvrFrd26fvk7PjVCil5vvEqz7ys9yT87cu9PqdFF9Dlmt6U2NXYGCAIAAAAOa7w4AgAAwNpc9t++svnZewGdanTz5tVDvkcvm9U0u/5oQIW502iV2TCxroa8oSrnzbjXoDY4bCoxjP2G2q8L0+rQBg08JeE1/Q0JNvRFf3cbZcaEqlW6Idqv6xSDmwwfpn015+CYxrih9HEtCQesJGwgbWzoazCvPlb925gy/DgPG1RlzPnglRM0qtt7rVe3KKxMHTunU0LrxA/XZrm4QdMJZ1WTLvmzL/TWzdbn5x97l94ydyJC1QAAAAAAANCJHkci8kd//vnNz+0iEdqgWp5sbI19Ax20NpkGrDjBomrdcN5kW1EU0YqGP9fsy9xVDVI9VYie11qW3if5+yxc7/AQPS+B41QtRG6yx8J11l5MmZlUEkbksa2MBw8e7J13Y6P/NnfgwIHeOsxmJgRvqpZdJyGkrUNq3kZlT4ySv4puPbPHd5rkmqlj5rVCRffAXRu90+LrSW9Pf9LKaB3mPNeTk+e5WvZNb7/S1Mcm0lx62s+c4ZYLAAAAbHf0OAIAAAAAAEAnehwBAABgbbyegZ6Sfp9eD1ddkB2W236vnHKGDiFeRbk0+vP/5JY5hleuzQui2X6uuT3Fq0SvbJ07qNpletrOvR00LIeMN4R5tWHqpgYwsZ21vc7lUQ/Yqj/fTsmQ6mHuqGkGjokHRXHOu4Keu9tJ1KtciXpImzO9zhzEpjXRJlVtz3P12elhXtJDv4oGrBl/7FI90VsntKMR3TO+INKgsj3E1X41Odm8qAk9rbY50cT24nd+M1YVXrPD0OMIAAAAAAAAnehxJCLtYvkm2Q5h7rZS2REBzJtlnUCjSbyFryS/1Sr8nt/CtRUtAakcLVryjbaT+6WtnRYXL/dUVD9bq2GvmGvzwr+2rQze6A3OdnuH0J6Ps6gcXZ/+EUSs5Hljz3tHkFPGSz6VWK+dtrExU9PCeUtatvX0aGSdEaOnDF0uSk1k1M4IECXWMmpPtDHDc1yFvHLtNWCuNW8koagtvX+d9vrWo+UAAAAAOx09jgAAAAAAANCJHkcAAABYGy//0NDenO76bA9X3dtwYXoImu8L1Wu1pBe17smbWi7shRyW4/a2nnAUzCH8PE6mbno5O6+p96zuz/8zUzlcbE/rxjtWTlu5LUf3OLYjs3o9xkvM1B5p7R5xmvXdPFvRYLA6TGKaCIC4x7+XS6wg79fA/VpyTepcTVG+IbVcFH1ibhHZubxS2xHsHzOvk1fKK3fwORkdq/66xJEw/b2sw9FrzcTKubfZfa4+z2wEgKq7d6wWszCSIIq2mPWfg02z6J22k3J7jUWPIwAAAAAAAHSix5GEb0BTIxlUBSM2eOVELSjSn92/pNySLPzeW+mZl9snsQtK3oQXjabi5TFyRg0oaTnxcv2kyg0LsqNwhMe3qGXFeV2vl7V1d0dJKcjXkxwFwcnnErXy6mW9UTpEpHYmL+b9Iyr4o5PY5ezxX94So+2eqBV8VS3EY87d6fIYDW8lXKiRjKJtqfqPqXcNj7nf2NM6aC136iMiUnknLwAAALDD8OIIAAAAa+O97HdfQBck8g9CRuw0FY5mB0I4ePBgbzl2CG/9PQq30g1Epq4loWolvP2qrSM80B10I9EC6U2tZ2p4bafBzL7Q98yq/uMa1a1gX7nHQA/AYIq0w4ZP0bjjhrGJiLR5oZV233hhp1Yw3Q5W4YXDZYa4HfoH77zvL9MfOMeGLfWfW8E1WDBOhjcYUxzG1l+3wyVsym0EXoTTgvtASeii4Q6mo1oTSxrqL/mzz/fWx9bt/Medll3XrUKoGgAAAAAAADodtj2O3vxnn9v8HL0JNG+Ag7CHKLTGfC0JrdJvr1PlDkyCVvQWfoQxISjawg7Brb5HyQEN3QJTUh8vLCvVqqDD4+J93d9it7GrPzSt67tbByexXDjv8OHt3d3pb7abcNKe126SvGhhJ3zTtkSo77XZD17LoReaaoePXzj3gtT56LbImX1kEzb2lWPXOzTRZemyQ8tJ0Xvb9g5oon2vFxzeulYH56M5V2t7Her7eXQhhvOqr2/8z581azVhyur8fMpPn5GoMQAAALB+9DgCAAAAAABAp8O2xxEAAAC2HzdHiPoc9WJ0Biipw1RFweAMNtn9QnQuoP5BEkREZtKfU0dP26jMI7WaNe4Xabdf50Pq7yU9S/TqbNSGtmYf68Eg7HDjlRqgxfa+tNusc0JVtvm57fksBcPGx4tmr6NV2xX1eHaG6bbDe+ueoF4unHROn+7lDinI5aV7vDrri3oBewOH2B2i9le94fUrMINBOB3f7eWqq1A757m3r1I5fXT+rJJcNF5+rKGDmsw2+vNB2e9lg9T0zprIn9a/79x7cuVvhzfNXb/0b3/lHDt3PzpXiD94joQRAHZe70Q395paD1w0c1617MB8VPQ4AgAAAAAAQKcjsseR23pgc1cYdeO9ER9eh1WMaJEqU+fpiEclKCsrtw5R4+HA/CnjcgaV5KlSLWvROsP3rt4w4GPyz3jT/Baafqnh2ItGIXDyc0WtT7q1qfVbgqKWTGXW9rd+RKPnBNd3WI5tjdKtD3FLRH/rWFLV31LijSyS4g1LP/Q8soa2kNl5S/Is2X0ftc3rZc3+W8z7R76IWx91yaY+Xmt9qpVZ3Vu9kYW61gsAAABsN0fkiyMAAADsbLkNJt4L8Jl9aWy/Z75Yty+8vWHjbcOI95I9GOChYFhwbwjxKPzMeeGuQ9NsOXH4l65Ab9XSA5N4xzWzjayoQdTuq4GhYV4DSUnj3tDGnNS8ueuMtku31ZSU6a7PCVVzQsVS258bSlhyzq2icT9Vbm6ImWXvCbnllJQZ3euSDWRpcaPqwMbwMZ06gs2yoXNe54XMusUTC2q3PRCqBgAAAAAAgE68OAIAAAAAAECnwzZUrWp1l0c7skLV+z2at6DrnB2ZQ/fka03f2mpmcm00/d0FbXdOCUYMyM+Q73VbDrpCS0e3aqe7bVE3WdOdbzbrzwtk6cNm1xj0jo66HIfdrGtnnV6G/XqWypeijqE5ZHb0Cr3ejV3+Zdgs+vPuBF3qUz1pC7pS2vPVK0fnKrL703Zx39hYbmvUxd1smx7lZD6fh9M27Hmvqtf05y2yo6xE+1MtWtuuqM4OTJ1H+t5Qm2vN0vusda5vu96S/FclXc1T95HceVOjm3j5muweC0fQCAX7xG63OR/1dZrKwRTez+1K7deq87OIiEQhIjuvqzIAAACOLIftiyMAAACsz0V/+k9y9N59IlI2bHkgaISzr4aH5b2IX+Z3z9f1Xb+4tg0KubWJX7hvwQtj9aY8akBVLTmpIavD4+qsbkROn9zcQEV5aQrS1ATb6MznNVwcKsebln99DL2Wgv3oNHCImMabqALdZXrr6xIOruE0AVc2d5duLMofGn6qPEZDp6UapLzBRqbITZQzvc+Y47wK4TqHDwY0mJf3rLEXl/peO+eA2Y+XXfGl7vk6q9PfqUBv84U/dbpbTilC1QAAAAAAANDpsO1xpENboje+5s2gDmdIDbM8VPrtbP+b5fKy8pbTITPJMLGmvzWqRNP0v3n1wuOskn3glRvtEzsygA5VS9QvaNkxb8O9ZW04l8cbPr6kpWdKOpxq4YSb2TrY6thtmwchZja8tH8kmdYJDYqHWPfqZ8NU88+5Ma1DfctNOW/JsmPqUNISN5Wyclffahb1ZigI/QMAAAC2g8P2xREAAADWp6qqzZeh+qWoN3xz/JJ+mrroCAHb1FDpRizbEGG7/TtDTW+oabahJHgpHJVp6uqsI8q92LcOCUPQvIY622DlHSs/h58TXmPq6jWgeNsRhQ5679rb/uWiWScYfj11qur2JtswHTQwmtW5+UELQpr6iuhchzNtqobc3BBEbzkb4lbbfdfk5U4dGh5ZIrUfc9c5prE8t+FyaKhcir+NznYNPK88qXp727yQ/tAwb9/Z8zNXeh9vTX5MQtUAAAAAAADQiRdHAAAAAAAA6HTYhqp5o2mIk1Im1R2vqma902y3saB7nh3lPepW198V2ZqqC+XQ/CPJLoHRSAm64FStnGLdLqfeyAT970ftpHjIdWe487p/Y2yX5DG5Xrwu7N60MSOaeIq6Nzs5maIhzG1/Tj1ryUg20WgcarlEOWFvcNt13pQ1sMtvVCe73eqknOrN/pj8VyXbMrTLeqo+JXUoKWdlnFGhmpYcRwAAANhZDtsXRwAAAFgfnePIG2o6V/Tyt2De3EaOqFHAtj2oN/i2sUZ/j3KLiLP90ejNeS/SVzVsu2cVw3K33vDV4jf+ejlTomPXU6Y1/PxMTR92PKZqhOmrS9d3ryFyyPq61uGtb7IBM6qg1dGss+qbVDQAyioG95jqmNtGbT0gR12UcEffv+wkp6OE06miZJ+7NfXyyXn70SaXszna1OSowdKpkXeP0h1ObP1apyfLVA2oUyNUDQAAAAAAAJ14cQQAAAAAAIBOR2So2phhBYd2T7Rv6FpneNWS4QJL2HKdVE8yc4ZYdXMYHZqhd52z2czOvKmpEsMbOvmGdJfX6PiaVQZ1Snb9U8MvmjxU3j4qGfa0JP+Mt93J4W1X0LXWioevNOvU3YSbxHmuLpqo7k4X58rpjt3aXGJ2GFfnXXpruv/aoY6DYqOwhP5rYqocQusaPnaqcr31pNa5jv3gqW13ZzuauJP/rN2iIVQBAACAoY7IF0cAAACYVtM08YAkhYY25tnlgnrYHBR63kQepdppFNI5OpqFeTmuGio2NsLH7WgwCIf3Ut3ua2/f62leOVHumai9JS9YYVWNsro+drF1NByE51z+vKuS2zCZaqTKravX6LOOhviSepeso1HN6baBJ8rJlSm5lDOYS7B+r8HJjivT9DfSeedAyX5cRQNjyfnpb4czyJEdxMrM6Z0u3jEYeg4OLdNaZ74jQtUAAAAAAADQaUf1OHrT26/c/LxYhIFW8cgK6u1ba7Ovh+Xq1pXFPHz767VgRSMS2LecelSIiUYzSJnqraN9Bx4mrPff9nstgDZSLXiDnHg3r+eN9teGeqNss+075dgtjSOM+kPB7NDueuENs6Elo714vHJS51BJeE9Zq9HyWrQjNjRNeJ0GrQKmvnPTrLmhps/n87Ac21qrG49Ny1CwJYlzd+bswmaxqmHp+6eNaaycYkSjFG8kCVuHkhDcVYXLWV7LtTjhZslyvZFk7O+P2rY/+OPPBNNsL4W26v/92bVrV+86L/zJ03qnAQAAACk76sURAAAAtj/3Bar6HL0Wdl4i25fVwctp0+IVvhjOb+Dy1hmtP6i2bbToDw3TjVJWPFK9ahgzySlLQrW8xoShYSpuOW5jQX5jgG0U86J7pmqUy58Wfh/ayBHlh1z0N7pNlRfR8hrGvfUPDakp2ecl27hwzs+FE67pqoY1ZkX5be1NylvlmodbHxNWuYqQTDccbWBd7C6N7m1BA3E4bS7LBuzUsfHyz5o5e6dUqby/7jWxuoAyQtUAAAAAAADQiRdHAAAAAAAA6LSjQtVKuhaLO6/tTqy6NZps9Pa7zlYfdaWU/iHCU/UtyQUSrLOgy2hJt8e4O2XV83l13WajOum0QbP+Yemjbs2V3df6c35eoDFDhEejlOj8V4kRaLwuj2NHrxliTBf3sJvyws4eaFRXS9t136TKCo+TnajPV3vtF+R2svmbSkw16kc8b3+376nWOaZburfcmHKnqoPNPRfMa07P4Pgn8h95oxfNokRvOj+bmRTVT+U0S+y/dXdzBwAAwOFrR704AgAAwPbUtm3ni92pXmS6jSfeUMoFeYu8pP92O2rvJbaa9eDBg+Ek02ilXyi3ppFC57upm/yGO287bA6dYJAYm1/HaRS1gmmJuuaWGe1zVdfUAA2eosbo/tr5U1fwAt/bH57UNrqNlHo5pz7JQTB6Plv5Tddl+W6malzPbVSuCjoNxI3e+ftV8xqqrdxpXt1E/EbsleTHEme/jrjm/Dxfy8/RQEBRB4X+zgH5nSvW38Cbg1A1AAAAAAAAdOLFEQAAAAAAADrtqFC1ki6GuteYzWPRNE5XwdZ28bPdv/q7462qS+SqypmqC63XVTrqzmg6oHpdbKOudyo1iM0ToouJixyxnepEirbTee+a6iY4VT6Xqc6jMeWW5HYqK0fnibHdpvvPOT/9zPBzoY4SK/XPG11r7bDjlOp+mntujDn29hh6+XuGhk2k6mBN1Q3XW0vr7PsqFZ6gs3AlqhpuS37379ms/7iIlF17wFSqquq8fuPfzyU3R6W9b9jwJ/W9afvvMfZq0M+FNpzEfpeFCjuIkp85zwgq4V5tnlmqxiY0U/drMwxz7TxTWfo+YO8Bi7ku19xrFv33oar27/N9prpP23Lmi3nPnNPl9guXC7972z8mdC5g79/6t9RZp/fMUPI3QEk4WskzQbBc75SyfVyybK7Us1duaFbHxPCrDg80s85VyKiXK9GGlkYnrFO34Hs8Vv1yHc49WiS8Z3rPHl54pGX3cJjXMf86D8NnexeL2KMY3MNNOe4z4czsq7r/Wl40y2O5a7d5RRNdlN5xXn6+9M+/0F+3W91043559pP/TXI+EXocAQAAAAAAoAcvjgAAAAAAANBpy0PV/ujPP2f+RfWvMiFli4UePcPPGt86mdFtB7RgJIF5YkQArwtiQXdWL+t9qjvpVMPd++Xkh5DFM6jjVBDKUs8S26lCM+JyhmbmDzsKRvtenSvxdjtDt5v9F3Ul7alPVx28ZXV31ZKs+mPOMUsft3iklrB7vrctJSFRXpBR416iUf/S8Gt/9aIupTqUKfUGPuwNnH+cvH3SVVafkq7dq7r/rGp4+KLu9yPCdUu2rfWmeaOqmHAWe9zcUU6c38A3/9mVPTWPPfWn7pY9LwAAAI4MW/7iCAAAAIev6IXpVq9fvZO1L2jDfD8SNmLaXHfi5Hdp+hueKtuGoV/e+4n6epcTEalVXqXWNL56w617vLwkcZuEzvmUn5OvaLhxp+GopBEkl82p6Q217eXCsS/79ffU8OZevkBv/VPltvRyL3pleA0nQ4cQH9MI5eVgXUXjVqrMoY1tq8gfVtQ4tqKcuZ6gg4VMs/6SnGCLef++aqr++ti8yl5eKXuv8erqNUiv8heWUDUAAAAAAAB04sURAAAAAAAAOm15qJrtbdcEeYxs1+JlVyyTDicYWlVEpA3eidmum7ZLqB5m2dbPDkHodeXrnZQcyjEcRdYmXunv5uZ3z/O78jVq2D/bPW5hMroEXZxNuXYI3F2zXb01mtthZtWwhG1iyNdZ0CW8/51nlGfHnizB+v13p42TK8vtWpyY1+sOWVrHvnKicivdzdJMinZRQfdmlW9sVvvdRTc2lrecoUPLH5p3WK4fe95E6yy5I6pF7VCltlh9CP1r36zCDP1sT/vKefevc97YodvtfSzoel8757WZ1+tW27Wsp+T4e9NKQhXaoDuxOafMeoJ7gQllsfthtuGEhJj8fMEQswtzfzS1sPdIr1y9WvceUpAfDkipqqrzevWuxTFhF0GohQkJ0CFmrY0xq/Q0c+1U/fc8+3zROOFou3apsLHUcNbBsvZ61eswUwYODV+SWy/OXahCrOw+zzyWqd9/9zk383QpCV8ZGkZXEu7kbfOY0J/c6yc13xRhfmOu5anuCZ6hz9MlSs4lL1xxitDBMYpynU4UKqbZv+vDBfPXMfTZ0isnuj6iZ3O1nEm8qv9eqMzfHCXngx+q1m/stUWPIwAAAAAAAHTixREAAAAAAAA6bXmomscb4jjVzVV/jbtlOd2/kiFG/fUdwxvtwoaG5Xa7i0bbyOyi2TVvfnhc3GVP25iFp1xJCIrOWm/D4+qC462NGVnEnZ4odmjXSXcob2fEDpHwuKSvn/5usN41sY6RFVLr8Ud/sNd3uGzjvEuPwq7UwjPnehEJu/PP5/Ng2sKO6KO+z5KjjgzsrhyFJ+lRYqa7yZWM4uONGhOFrc76Q0BsWEXfciISBOSW3B9T+1rXPxUCF9xbk6Mp5Xflzx2Fx7tfAwAAACLb/MURAAAAdp5V5SnJXV/lTVMvVlMvjet2aF6UqudzKt+NKSUz/9GhZRfqc35OHS3O49Q7a0mqkXC56I11SS7P/Nx5+fXJz0MZ5OKxdTPnUuvsPJsbMVhH7xTf0HyAIvnnx5hh4qfIY7SqPEoluUeH5nzy8t1696Gp8vRMZXjjbajkSvYa5yudL9eUqu9n6bxB0xzXYJpbUNbqthXaGgEAAAAAANCJF0cAAAAAAADotK1D1Upy1XjLlgyDWpI7qaSLW0lXwirqejzs/V6qfl7+EW/ZVO4knYvIy5UUlVvbOojh5IEKcrYU7OuCLpUlZcWn3DT9EYcOGSsSn1fBtIJzNzreawhHKLl+mmjW/K7R3mjns9mu4HuQBypx31io/qh2SHX3GkkMZ+92AS7o2myzqnnzDu9EHyrJ1+Vdp17+HivKf+QMfVpSP8utk5Mrq42iHvqvNbsOb5+VDIX+5j/7XO+8dh9d+Li7CgAAAA5/2/rFEQAAAHaGtm03X0bm5n2IG/fy1xc2PpmXp8GXcFACrZ7Zl+FmoIm2/wWzbqgoesHtvX83+X/c5PbROp2cOk6uD73NqcEJggEc3MFHotqqaSMG6FhBvpdFlDRl+bE2xyOYc0TDWUlOm9zGPVtmbq6mdVl33rOpDO0YUNIgNaZhOLc+njHnh75j2KX8HD/Dtsveo4IBSUyOo5L9mpu/yxuoRsRch06HCTsAjv6eapRf/9V7CKFqAAAAAAAA6MSLIwAAAAAAAHTadqFquuvVwuZwUN2Fo+xHUVew5edUF79VdZ0s6eZXMtTi0K50qZwYwTpqp8u1zUU0s5Xor2tb9ef3qOuwIK9+dlu87tnbQVGOq4nyLkV5dhbLfVSS/ypVrlRO/WzSFkfRee6cn1E3WafLe1l9TBdjdQ5W4ufk0eKQhf4ur+n6Tt9ZNZVfSCvJQ1cSmlAyhK17fbT+tTRTv4A2zCXKhac/p85VL7SlNXmWguVsFWw36jp73uD7VvVpxhHNy4/lnpIFz28efaedzcLnC7/c8BoNH3nMPcTJk+bdy721u7nrEmFkeud5Q97baSUhTY3z25d7vEqey8tCaPJ/P4fWdehw9FOFhrnP7gV18+qayuOXu85VKHlGHhp+lZpv6DaXHB99DLwQxFXt/1X8bTzVteSVM7Ohxjqnozmthx6P1N9BXgi1J7i/RyHU/fUb+rfNkGNMjyMAAAAAAAB04sURAAAAAAAAOm15qJqNMAq6pza2a29+KIPbXdTtmtXftffWhXuXLKmDt+zQ0DT7PdUlsNro765mR5EIFzRfC0YU8L6n5tXhaDY0zdvXTmCI1GO6TUZhMP3rmaoracn+m2oEjTHdVVtxRngpGPa9pNtwydDjXjkpwQgP4ocPVK1znLyVJMKn6mCSKalZTdfV3FFAbLmpcEhdlh79p2s9wbLmOrTLeusMQi4Kur9H9w0zvXHu5yUhZdE+c7tumzoE29a7mFRi7yk2VLG/PgAAADgybPmLIwAAAOx8VVV1vmAsyXHUurmBhjVk2BxH4fDRZmhn+8JeTfYaJqJtnDkNBmYV+qW2984/1UDp5eHwGgj09yjPXdP2freNJp6h+UyGmqrMdF6pvGleuW7jSGG52tCGnpJpJXmdco9Jyfqmygs6NvdLl5Lcsl59vDxjXoNYiany8pbsu9xGX2twDq7EJg7NUWbzAgf3YfdcNr89usEvsY261HjfuYuq+arg/zkIVQMAAAAAAEAnXhwBAAAAAACg00pC1S551xeC7163OS/Hkccu1zT93W6jLlxOX7VUFz8vP1I0MHVmt2A7b1Suu0/GDOWdt/5oeqLY2hmetqT7rT0WtktfXzlel85D5ahu1onu88HejfLW9FYnUtJlfGjOqGROq4KezsH1k8g95V7fTrneOg+tx5uWPxztOoYttbx7TnRcnO6oQ++PqXlXtY9K8rx552vU9XphynVu0yVdmHV+pLjM4b8TwSrsPvFCbRqz3fEMm5+iY+jkBJw5w7qStwhTetbP3itrvsve/aXNz3H+QOmd5j1T2Ge7tla/Y/P+a7ae2TLNo7Fzubv3Ti9VZN3/u2qLKcld6c2r95WXRy4d+pKXf3DU0PBOXsDUM2iu3N+9kueuVYTcjSm3JFRt6PpLnh+meNaYKjRtK6zi97bkeWSqMEtrivNjquPqLmdTYJrqNFV/Xb2cmIP/3h4Rvpu7e3LuwyX7mh5HAAAAAAAA6MSLIwAAAAAAAHTixREAAAAAAAA6rSTHUUlei5IQxnXEsSaHq3TmHRM7OlWsr5frx/LiTm3MbDCUbaqqelhZMylRo9762e8l212S66UkJt8Omaun1olT1YtJLomn90T1VV9Lzscxcc+ry5/i7YdphhS1vCF507m8dJ6BsFybeiPINWE3pbLHVJ0bdlbnJKycNoMxQ7t695F0vHb/9V3X/v1J0/eq6BpwjmFqOOSgrnZ46igHh8qjZnOsmbKC3E52mvN7Ge2j3tqW/VZ5y+6kXBLY3gYPexwlF1TfZ+GUWuUMW8zC5XZvLGe216jN/yNt/9U1k/57iL7Per/Hdnp0beucfolLt3F+G/V2leRdFPdemH9P9Y750PyXUz2f+M9+/WWkcup5v4FeXr+4Dv334SmGuLfTvefoMTn+ttpU+2qokufI3L95xuQ9m+rvi6F//051Lec+p9icrdHFrfPrmXtpcBsuuZa8+6f9rrfD/EgEf4eP0FX3kn1PjyMAAAAAAAB04sURAAAAAAAAOq0kVG0rFHVxM33DSrrKeVPHhBh5XT+9Lrwlmx2FkbT92z2PxqZe1mHmDIVuy4q6ZdqufwNDzKySbrxTlevNa8+UkrC7oWEl9jyx5SyaZTd1W6btAumduyVdbUu6zFrDQ2S8UFl/ycaZwe6jYD/YfW1CHaqmf1vcLuqL/n1967/0TrNhTmE54Xc9q+0eWxZSMnyIUi26H7b956t3fhaFn6XClEuGa1ahdVHYi7PsqsJC9bUvUhYy4oeFAsO45/oKTrnoOUrdq5JhQjYuXZfjXEv6LuaFJKSUPC/oqLqie3fr3Xv6fxPqgSEqU/3+jwnDza3PVNFWQ0OES8ot+p1KpKjILSd32phypzI0NMszNOx2jKFpSYaeVyXTSqyiHDc0bsT6S0LVckNUvT+nV3XudJ0PJecFPY4AAAAAAADQiRdHAAAAAAAA6MSLIwAAAAAAAHRaS46jSsdOR0OQ2lwWy3dZtYlGbPXQ062dZmIIm/51Wjq+fTFP5RTJp2McU7HDug4l8aqWN1xfSSz4hhn+upb+GNko5n5xcFkfmzvABHQ2QT6VVP3y6pDK9eMNK+rnkMnP7RSNGGysYojrg83cne7lcfDysNjlSoaEtMvq9dhyorxAA4f19eOyw+/x8MnOsTDz6nM7mVerUttqj8OiP/9MNLSyvS7VfS417LtZSe8km7PCu57i7bb3uYK4aef8bBb5eYy8c8Puo42N/p9Ar9zU0NELvR/MvHYrS3IV6N/S2gwRbr9rdsjs4Nqzy9l8LjQvYQV+/ifukjXfpX/+xfAfSvLdOFkpS36DvbyNC+fZruQ3zMtj1Fdml8ZPqebI36/ZJY54tplinevIEbKqclaRX6ZkCPEp5uuadxU5qFLrzJ1vzHD0fdNS27+qY5m73FTHYx35qaZYX/QXXlE5w+6Rdoq3Tv1sGT3/O+XEx9VdNFquZD/wSAgAAAAAAIBOvDgCAAAAAABAJ14cAQAAAAAAoNNachyVCOIEoxjwzOUkP7bdSsZ/DoyznSqu1C5b1/nl5MbkHlpH3vpTZUXrLNj3Q+PIU/mkSnKK6IjYklwqszrM31Oy773p3nk0JjdWyXIl5Xi5k7ycRnY9646f7jLmGHrzet9tHqjoOlVfvf03VU6G0rK842bL8fIWjanDKiTr58Sml+ShK52uBb8TMyd/VCLPm/6J2Q7XIaCV5DQLp3m52uxzS3+Z+ntJnomhv6uLgnxM67hP2jVkr7P1n4kr59nLSyI5+B7VestNn/8pZapyvfNh3fl1UvVZhZJnkNxpY+a1VvGbWnKcaydXp1emN71km6ZYrkTJUiV/k9q/xYO8eAXrDJ7bxf+N0F9LcqJ1zevlGI3mzZ4TAAAAAAAARxReHAEAAAAAAKDTSkLVxoSNBZFqdnjpRn+2XcjC7000LHR3OdaquuKXdAObqjvpqroWpnhl2W7eJfvFUxKWs44QqFS4nFYyXGdldlfYPTIMgYmGZ19RiJG3P73jbaelwrJyjQl53IpQnKnWWbLdUTiSOi5VdG9dzXkzxiqGKh4j/s0bts9SXZO9ae7xdtafvl+qcghVwxYreb6Qic5d//lCh4uHP9BThYevIoSj5PfBm3fR2nlVOe52DB9qWt8npzqu3t8pY9bhPQsWncuOVQw/P1UY1zrWOdWzxVTPnKuwitDFMessSY0w1fPaFGGHqb2YW1f7t6ubNmbouRtlynHel4xNo1NwHOhxBAAAAAAAgE68OAIAAAAAAEAnXhwBAAAAAACg00pyHFneMMtevHiJOMdE/zQvFDAZm7mimHVviErvezza/TRxpnbWshjV9Q9dOnQdU+WTslK5nIKcMnbfm9e5uUNpWkU5UDKGa8xdT24568pFVDL8qx9DPaI+avjgKP+NMwxwKk9V3XbEKt82zckn5c1rq1dyjnnTU/uoJBfEqvJCeVaVcyvYRyOactxhyRf9+cTs8Y33dX7+OGBqUz2DeeVGOTML8sv0lSniP/t67NpL7nZ6nd59M7qvt87vpPOcWTLAtfd7MPQ5ouQZLs5v2p9fbmheFq8+q3oGm2I5kdXc37fDkPer4OXgKuFdr7nny5hnaT3vVjyDeVb1nD90/TqNUfRXr7NO+1gXvJ/wtnHE3+H66/mPO61/HQPQ4wgAAAAAAACdeHEEAAAAAACATmsJVQMAAADWRUeg1SaUYN6o7yZCwwvZiKctV7JYLHqXKwkdTy3rzqurZ0MdgiGj84fTdsNrJxpqu8TQYbmHpsIoW8c0ZXoh4qllh87nHdepQoG888yzinNpzPqHhqpNFbrnLTcmdG3oOj2rCCMrEeyPEekqPN4x8FJDtHV/fRZR0HLIW8cqIwlX8uIojiNW08bcKJz4wjHx0kU3solO+pKTrKScVcV25k6zovrJsAeQ1LzeMSz5Ac5df8psoz+nUcrg/Vuw/6bk/SjY7dYP3XbamB/UVeQD2A65AlJ1mCrOXtc3OlXtMZX+3Elb/SBYqiS/QNExDZ5TTDlOvqm2GX6el+T20Gm1xuRVAgAAwJGBR0YAAAAAAAB04sURAAAAAAAAOq09x1FJSFkcKqDKGRGr7K1zlhhy0I2enmhIxFS53nIlw53WlTMk/IqGZ7eHrSSuPnfamBCYeFln+Fq3nPx1jglr0vUtCRsqiYkuCZdKHUMvNMjWf2iM/5h7TKWuiWhE4omuZ7udVZt/skTXZbCL+odQLgrDGjgEale5JfzzbKL7jzF0KNyMWvSWG805wdDWXXKH621MXhY770bd/zsB7BRRbiJ9320T85aUq8xms+xyhhr6uzRVaLg7/Lxzv4gjoifKmVLwe5prqpw+Uy03tMyhw5vb72Oev3PrPqauU5jqWWaqPEqryonmrb9kHVOlBPHWMYWtyLvmca9z6b+3rqo+OehxBAAAAAAAgE68OAIAAAAAAECntYeqAQAAACnnP+7U7Hnf/KefC75XKgqzNSFMdavCkqv80UCt3FQC8eiKvYtFAat+yIpdf/86c8NXU2G7Xoivt5y26J1ya7nqc23r0yyXjkdfdkbYrcLQQb3sIhoBOJixdzkrHkm4f5o4+9xTOSPSVisanbYkfYFHX1uLRJh0rlWEA9p7QEn6jqlCxbzrXl+DdpoNkdXbYm87JWG5pnLB19zwxZJ9PlWoWnDuOnUTCa+f6M5aq+2w05z96P2etHX/PdqmzrH3waf89Om961ylohdHF/3JP8rRe/eJiM2R0H9Ci/jZKaITo3F+9FSxqfwjQ0+4oXlVuuTGgafW629b/oOBpdcZ3yTFfO+/YDzRPlrBzdYqibFe1XDn+sEmVYeU3PWWXANT5oGaKh/SVDG58WYPi9sec32vLtePmXfgOr1jGP0gOrnmyo6hv4+GxvOPMfT6Ts6rh7tP/PhrjZMDLqXkj8Rgnfb3Oso9tvxsfyfe/GfhH+rabHZo3ptu3C/PftK/6Z0PAAAA2x+hagAAAAAAAOjEiyMAAAAAAAB0IscRAAAAdrQoXFOccE0n5NaqKpUPKZrXyeMzz8sFZKd74axWKtRUm2qI96Hh814Zbvh0lKtoWK4mj21FD9Y/0TqskmOVG+Zfcu7EYcn9eXOmyunjhVBPcV556xMZkdOnQFEOLJ32xbmWS45HtIUT5B9K3r+C1Q1PoZJrTBi/x6trU3Dde/ev/H3eX+ZWKnpx1LbtZsX1Cd40/RdCTpnB92aaHTP0gis5GYbWp+u7zh3hJUGLv/cnRUvla3JzHJlFpzphS3JIpRI05i5XMm9Jcjrv+5iufCX1H5q0s6QOqXxc8/m8d14vaZ+te0lC0lVxH1YLzt0S3jmX/LF2csIN/SOhJMfRGEXlVs7E1r+Gc5U8xKZzHA3L+2W3c8xvaZDAtu6vg03AWPIHnD1ZVnWNAAAAYGvxlAcAAAAAAIBOvDgCAAAAAABAp6JQtbquO7uiV4kQicW8P4azbmbhvO1yGPO6NaErbX78rReDbKMedJ0WiXK9MJIxYQWLhdpus4+HxhqnytGi4+KFbPWWcuv0ICzC30cloWBBRMeIMJIgHtydU6Rt1HGxx9vsieD8tNeJrZOz3TZAKzdW1h5Db3/u2rXLnVez55E+V0vqZ6eXnJ+x/JBCt5SJckmU5GuwWhuepM6ryoTuRsdCn4MmHEnPuVjYsMBwXp2LI6ppG2V/sHNsmnRIe8UPW3TOuXa6+pSEMXo5UWwYcLAOs5lRZFjwuxZOm8366yDmmg22dSNx7opzfdvf6EX8u7tNwvJxBGr0M0Pj/M4mw9C9aU4op/T/Lrm/GQW/H1PlyfFMFf6rlYS1RnV1qlOyjf6x61//VHlaPKNCpSdYblXb6P5tNvDvqynTkeTUzX5fx7ljlwv+Vo2T4WSX400ruu9MlPcrd/2eqdKVxPvDeQ5d/S1h26DHEQAAAAAAADrx4ggAAAAAAACdikLVAAAAgO0mDlEIBokOpgQhM2urT78gbGrEOoeOPlsSbpMbbuStc1RYjBM+W1JO7r6yLez9Z1Usd7+uI/ytKFzS8EKs9U5IpV7QZk7fhVWFUg4NVbNyR/216U/iEazz9sFUYadDQ+eGpkyx85aM2jo0BLHkvPZEx7igmJLRkYeUuZWKXhw1TbO5I4OhfhN7M8gpYy8S78Qo+PUcc5MpuQBKDF22ZBhyb6j01PpXFoeaGX9eWofcWYtylaTyIeWt0l1HV52m+lGcKs/OmHlLzrncddy6pt51riL+P2Xo8Pap6W6MtfPHjkhq3+fnk6pny3XOqjDvXHQ/UolDSh7arZLj5NXf/aOm4AoecwxL8p5Ef9pOdC5HD+zquM2cPEbJIxbkMfLvE9vlwQYAAADTIlQNAAAAAAAAnXhxBAAAAAAAgE6T5DhKhSvor9GQ1t5wwwVhBlOFm42Lu+5X0qXfG/Y7rkP4PQhdkXAI5tksDEFx62APTBDEnAqlyw8xKonTzT3GY+K4vXJTvPCPVZ2DJeV4ZY6bNy+PxKHvvatxlcQ+jwmXGZyTYsJQWf3dDrG+MMOq1/Wsd5o4+2Q+n/euc0zIlqckhLR02f5C/XLGhB9mVyEKVXNi/AvKSp1HYXhffvizt06LwDRsZ8G5G/1mqGcl04TaNGZe58J0703Oct511Ux071mHVf0Wr8MUQ6P3Z1+K5y3J/+Pt15IW/2AbK1umWWfT//viCbajYGj4obbid9wzNBePSEf6FkX/LbgVf0N4zxtRmWu+Z031943lpoqZOfe2gSla/GlORbcQPY4AAAAAAADQiRdHAAAAAAAA6DRJqBoAAAAwpTf+588G39umv2u/GxrtjDo5avTcME4nmOaFPdgpesmp0iCUjPbo2Q6jmg4x5Uizq6jPzJnWOM36bnSkPebqPPfCpFPlrPu4jgn/mmIdJaH13nlWryg1hrd+K3f/jAn5W8XZ4e7XgpF2g1HgC1JFWKsIxvPXvz1DloteHFXtMkRWh8raeGz7Y7lY9B/QunV2mrPP7Enj/SCkczDlX4BD57VKchx5MbBRmGUQzxxO3NgID7cein7KOOBVxbgPvamV/DhENxyn3NkWDPteMm/JNTHmfCx5GJ3q+hn6g1+yzlUNLb+uHExD2eMd7wfvfpR/HqXuy7ncfRLdH22lBq0yso48CiL5sfH2u38t+evUk7fTH4UAAABYH0LVAAAAAAAA0IkXRwAAAAAAAOhEjiMAAABsO1HIdcGyQWi0O6MdQjyaoXh9q7KqdawqZcNQfvj5sOPRDswZMmafD90/q0iFMGY7hkZ1u+kgKi/Vgv/d1fafO7n7YKqUAjbHUUn+nVXUx5oqz1duaHyJrciz5aZbUAnt4m3s32abpiFMKePVpX/aVip6cdS27ebOKjkxdLcmu5SXl6FZ5N+qipIA2q9qeioPh87vMmXuJM/Q5FnJxIDuvF59/I5qOneSzYfjJYsceoNPmSpnUDSvtz+zS1mf4NpK5rHJmzamDiXzetdhqtyS69ub5uUaSynJ+6Wnz+31YhddLHrLber+4z2bzcJ5Mx9eRERa5xGybYclLLx1zU65wx5uUveUoTmtxjzQNI2z7IgktO4DqXfq2j+ao8RQq8n1BQAAgJ2DUDUAAAAAAAB0IlQNAAAA247tHen2aYt6MS57y8WjgaoerYkQppKRG/uWi3opumvMr0vJ6JRTDVvu9aZfR0/xqTo25vY4nSpUraxn6iL4PsWx2w49QoeGYxXV3Zm1XfRPC+YriCix9L2mckYhttwInILe8lMZGuI2VEmZi0X/gUxF2wzl98zvPz+8aIXW9EDX89aJ6J6tUvTi6P877z5Z873p7VcG39u6P1TECxuzhg77Hf9g5w9bXHLCjRleuiRUZOhFEN14CsoJT/xECGHBzb9k3+uvq4p99R6CSo5Lqn6ruOmm1jE0XCqK9HSu2ZLtLMmjsBVWF17qy30gEYl/dPrWGZfZf5zsj1XRA3XBden+mCbqm2vKc6hkP5Tk5wh+q4ZXz+XtvVX93gwJawcAAMD2tD1fZwEAAAAAAGDL8eIIAAAAAAAAnchxBAAAgLV5y3+5avNzFM6oouFL0hJEg1DqESpNSoyZE4Fpw2gXzuiVXh4lT+vkLPFCvofmWkmZasTT3PD0dGqC/nBfHU5dMiz20HQSY1IN5KbYiLbftOvbFBv561B5csZkdJgod1ZuyPeYEUUXzjoafXNxq23KsION1v0LN3rZZu6tJLx/mbw9dTXrnK/UOs5zd587o2kH64sr1LsOt67OvWVmbonxadZ/Len7abRNVf+8UVqY4N5mJ/XntbL38ze/43Ody9l5L/jJ02RKa39xFA0ZbXJ06B1lc234OTtCJSd8yQ1qqsRuJckG4yR5eeXaPXDQ3JT07o1/tMKElOH6828uJQ8HqWVzl4v3X95Nq3Q9Vsl+WEUCy9R2V+qAV4k8NmFZqWHU+8spnZ4r3ra8fTbmfCxJxucpye1Ukreq6J6y6P+jJZUodmhyxzFJXUvqUCL4cZ8oAWpymnP4m8Q+Gf5bNfz3sGn7r3fvjxkAAAAcPghVAwAAAAAAQCdeHAEAAAAAAKATOY4AAACwNm5elrZ7vkMKwjWD9YUhl2FYaCrMu3+dXh6hoeGvY1ItDM0xNNTQ9A0p3vkxNDTdyk2V4IUBTxXiPCbFwjqO5VBuSPrA9Y0Ja8/dxpKUAt6yqfXnpriw8+nzY6pUCevIozSGd73k74NpUiTE6zPf2/xzQAuOq/lpKclnV5LfrtRKXhzZXCBVO+yHZUy+jKH5kFIno5e4aqqbWTrH0XK6d3LYHFHRDVzll7Ll2MSNJfkySnKgrONmM0Zusj47b0m5qWlDf8xXVZ9Uwrbc9ZRs55h8OFMst04l95iNaqN3mmaPkc1xNJupnGaL4Q/buQk8u77nriNVrsfLNzRl/dz7uZczqOD3JyXMFzj8WvPSGHn77Lbfn1X8MQIAAID1IlQNAAAAAAAAnQhVAwAAwLbgDz+fX47uaTmbmZ5vQW9OM+yzHRZblTOfh8NrbzhDZg/tRbuOXnpe7+8pe1cPlRvOMSYkY4qwnSlHGc6dViKIvigYXXOoknPDDcaz+2qiOuRGo4wZCTt3tNuuZYNpzlYHvcSNoSNJj4kIGXq9lMiNWBizDvee4Nx3oqidgpGK+5ZLRQ3p82Od0TwreXFkN8Ab8nhhwrBEhVC09sA4ce9xtKG+WUYV7K3vmOHEx4QVeOo6vEHoKnhhQ6k4/Up1OKts5zPnJLS5AqITVvp5D2Tp2NO8+Nap4tpL6W2x2+nd5FIPPmEsczivn3shPG/cH5M2LHcx1z+KYTnRzazpv5nHnIdB94fAD6UsCFYyX/vP3ZKwoSlDjLwHkijkbK7ul87+s8d+YfeY/rES/3pu9X3D1s8uW/AQHaY+yH9oGxUi7GxLCTdkq7bXVngsNjaWP8N1dHqW/GHhPJBW9iEzv9wNWynlaT97t95pAAAAOHwQqgYAAAAAAIBOvDgCAAAAAABAJ3IcAQAAYG3ckHHpD0X1I1O9EHs7qqwKGXVG/rXLjhntN9dUQ7yvYx1eSoQxI8SWjHa8CiXpDzy5Q6oPHZ22bN7Eee5cd1s9OuYqcrbEofZqml1/Ytm+ctqC/ebdP2obMj5wuPcSJdeAl5JmFYbmnCpKlmUMTU/R+tm8epeLUlM4oyx7qUje8q6rgu8bG8vUBbet78Yb98vTHn9WVh1X8uJoTD4K90QtyJdRUj/NS3Blv48aBtqZXrKPVnUv9y+K/IesaPjwjfCU8072OPlb3kXiJY0TGZ7jqOS4pM6jocYk3ywpt2Q/DE1OWbJOa2jS0VTd9ffoGDo5ZEqSiW71A9g66zDVHxFW7n04/Yec9wfqNIlMU3mq/PqFprrWSuq7DU5XAAAAbDFC1QAAAAAAANCJUDUAAABsiaGjL8Yzm+/uqKNqFNR5/+i0IomQImc0SM/QHoyp3oO5+3KqHr5De0FaJefARuY6S3oCr8oqwhUHlzlijqG9pof2CJ4yoiN3uXqi0Zm9+YZGDXgjwq7jPC7ZjlWNXO2NVjsVL5rF60HvRTNU3mjDZjkvYibad406B+w+r/q3o+sQlBwWehwBAAAAAACg01p6HJW8ca7UWzrnxV+ynJJ1TmWqBH4l5UQvGYOEXKt5Cz3VG3Q7r10ufvOb1+LhJWvsqsP2M6wl0m73YrEIZ2jzc6uUtC4NzaU0VctDiTHX/lTXd+p6marVelWqStffnjfD2yK2YruHJkAds34v/1nb+j0fphK2eDnTzPTtkJ8LAAAA60ePIwAAAAAAAHQixxEAAADWxut9uopRSKPcEaqHblP156ew5UQ9oxf9+Y/KcjetN9/OmPWtoufhVD14S8rMzWcyptd6bq/WVY0qW1aOMwrqwG4G3r4bmiupZJTqEovM4c2T63OOgS03yIUz0b7azqbs9a+tO5Ikdf8Ovg/c5ChqpEDueeX9W5+VvDiyP546MdSYi9E738rCpfrLKalfKoxg6EleFrriHWxbP1vO0B8xWz87pPmwodyn+uG0x3DKYcA9bfCjU5JYb5r6tI19oDXT2+U/pG4kXhK6kofjqYZcL5lWMm9ZWGX/OsY8WK7qB8/dbvGO4fDQ0yZ6flIPPsnh7r119t8Tx9xL9W/Tqh5G13d8nT9+S46hDfXtKxMAAABHDJ4CAQAAAAAA0IlQNQAAAGyJqDef1/twYO/OqDe507vcG2DD6zU9lVX1Upyqt3Vu/bY6LGXMkOpThQmtI8Qoex2JHrj+Nk/Vc3s5r71y+vs9h9+j/sh2OzLDDFfVM1yvMxUBMfQ804EerY1wKLh9rCIsuMTQ6yM3zLSUu+zAntt2zJgwDNYpJ7EZU0RTDNlX9DgCAAAAAABApy3vceTnMeqflspbsx2GXN+KOoRv08Np6eHu1bwjhtX21mkTVOrkX+mWvLyWArucl2CsJK9JSTLLVeVV8lpCbV6lMS0bYb4mv8Vk5rx/rky+K73WkqvD1rZxrvdUfYNynf0Q31P69/2USs6r2tn3XsuaTUPmjM5e1Jrofk/mOMo/FlthqhZob7vjfHH592FbJ72szT0V1CdxJW6HfQ8AAICtRY8jAAAAAAAAdNryHkcAAAA4cvi5JJz5Bo6YG/W4dnoQej17bQ/mtu3vlWx7WHv1yTWmJ/sqeg+uO2/SrTNvfvR6ZaZGSc4d1XerowesocPYu0PDFtjuvYO9OgQ9cZ3e6akRWXOPT8lyQ6Ma4vm2XwROn6F183pul0yzhp7b3rGzq9TnYF3n5xmz3xdOpMVMlr89Ux9/ehwBAAAAAACg00p6HEVvt9bwstN/22en9ZdT8nY41ZrhlVs2mkG/skaaaVqqkvlxdEKNaLSDMaMYDBtJo2ikgolyZQ1uEeoQZOdvbP2azvm6vs+80Sxac36qOaIRG8xxaKrleqLt9pKrpIYMCOpnljTnkVuSc+7WJSO3eKMfJAxuVTH7z+axEum/B4Upmbxccma5gaOHHFq2ZN7+USji62eakVGspunPseaZModZcG+t/d8JvzVs2Ppti32cKyn/3g8AAIDDEz2OAAAAAAAA0IkcRwAAAFibkpFRNdvpMugF5/VidPKZ2F61dv1ej/BF40wbOJKppeszpld8bs/xVO9Lrz5eOSW9Ot1Rf4PRZMP56p75cuoXlOPkwinqge+sQ58fJeEDTZRnqz/nU3CsEj1l3TwxTi/0cN78a2le5R3jW/9h82MT1c3Mmpm/zBuJdMy5690vSnJy6X1uAy6aRRvM2bd++93rYZx7zXXWdWBv5JKRq/U6ve2YuXVJjKQt/dd240S9uL3DbaSN2g4blBFul78/9LxePj3Pbfu0LYigWsmLo2c84R7Z8/7h5Z9ZRRUGGxemkX+jKfmx9dbjXuiJEAQ33GPMTdNZp00s6T2A2Hl1yd5FEj1IOD9cKatK/OgmvYvC0fpvrEEYm9lftuZBOW5tQyXn+Zgh1ovOT6esupr1TovYYtWPcTRM+czUT6+jHh62GlXJSaoXh8/l/+iaBQvmtavMS0JotXaSGXpeFk7YXcG9tOS80aF/U977vT8sxvzBViJ4QN7ov1/a8/zpP3e3yeoAAACAwwOhagAAAAAAAOhEqBoAAAC2PTf0xJnX64kcdTyNejt3L3do4f4e4GMG5phCSW/HknK8Xu9TrWPwvBP12iwZNn2r+YMBDQtlnGob/R7q+efOVOGBXhhZyX7M7QU9LsJh+ut16HDzqXmnCPNLrd+LNMndrlVdu6uITkkV6UYfqWW9sL7bPpfUnx5HAAAAAAAA6LTtehyFbwNXM/Sv92Yt1XoyVWtK9EbYGTp76NvbMcNLt4vWzqCql9hH6q1warhuL0dTnJtoOa9tEQwSo5m30lO9YU4dez194eRrsXWK80v1v8+1yQ2DNGqpXE7qq93vQ3PIrJL3Nt0e46mSfvaVmVq27W+gPlRW7aw3Ot56W/xyS1oTwzX4iQ6DeYvuefbeoL/5Odf0+bmqPGQl5701NJeXNSaZbEmSXP19Jk6Oo23Weg4AAIDthx5HAAAAAAAA6LTtehwBAADg8JWbdyLqWeeUmTu8uogZkTQarHLYSI1T9VC3SvLtlOSC6bPVuZmsku33WsO32/6oC0ZFXcVInSXn+VS5cTQv98oYudtRcl5tRc/cofvD66k8VQTLanL65J/XXu/xNoroKRhq3ttXBV1tsqMgxDs/83OAxcdxOe/5jzvVqWk5ehwBAAAAAACg05b3OLJvnGf1MhfDwuTZaRbz5edkLqIg+0swzXvjWld+fhzv5WzT9L85rGuTk8XmMaoWeqJbbkkLQliOfUO7/DybmXeIJkdPrfdn259NX0RE5jq3RqitnVwb4ieK0cc03sz+fDhjWgqG5hTZqEzrpnlzHCwZtaiG33U+Jy8XTWPzUkXy8yoFx9QWa5adVf37vq6d89FtOw5tbIS3qpLWjqBFo+hVuW3JzH/bH9Wv8VofCvaD02oejQRU9Ze7sPdElYNp1vq5srzryculY9ly8tuEhrcalpTjnWN2X9vzUx8Xb1q0HueYWSXXwMLcW/X1XZddFAAAADgCbfmLIwAAAEBkeOOYxwuDsOEC3rKrCA1bl6HhgVbQ2JoalGMCW71fpxogJB4QYtgx8M7lkmlWbiNM1FjscIeGL2izKAmjW/f5UhJCVNTo6TWntXnXsl2n1xDoHatUZ43c9XtS25F7fnoN7Jat21wtG93b1LSicywRCh3MGpznZjnTEK+/r/Ocp6kRAAAAAAAAnba8x1H09lN9nmro5JTgbWwiLCy3xabU0JAot35mHWOS3TXOW1jvTbSdtnCSfY2LmOg/LmNaxLxZo2gvZzjxsoR0/a0nNpQyKLMKw1GKzhuvNqnWHDUWvZ3mtUylDrcNpwpWOTRBaerQF4QKlbRwlCS2zG0d6vqerbXHcFgxydUMvA9PWa67DmeVbkjeLLwOS5J8usd/wkaj4D5c0MoIAAAAWPQ4AgAAAAAAQKct73EEAACAI4ffA3aaPEbeOsIBIMJp8/lc+kS9aFXvzWiAAseqhvveTr0Jx+RRyq27P9S1mddOH7jPi4Zxz85nMjxPTd98Jct5dSuZVnLOleTNGdp72YueWIep8i+VRBCklp1i/W7uqoJpJevMzbM1VU6yaJudnEL+9/7tiAcUyt8ucc7ztl3deU6PIwAAAAAAAHTa8h5H9o3eQr19814SjhkdwJs3tVjJm9PBQ4Yn3mTmvu1PvRX0WkIqk0snzHEkvdMOTV/OYFvg6o3+USWqJrHd9dA32sNb3Ure6ntKjqHdn/q7fYnstaxEb+uD/dufnd9Knkc99cmpkzfvLEh4ZoePz2/FKcoZ1PTXrzVDmg/NW2R5xzs1eklwPqwpb9FUVjH6Tuk6q4GJ1VLHRedAKmpJXtFBq02xlTrPG2/kFgAAAEC2wYsjAAAAHDkueOxpWfNd+udfdKd7IQFaySAZJfPmhmiMMVXIWW59xtQ7e/CWgtAXK3c4+KgBZxs0Vkxh6OALqYaz/GHCpzo/wmlBKJBziEtCs0pCQkv2a+76c89Vu1yJMfed3O1KbUfJdmolnSaGHp+hx8426s4GbqOnEjPgUauvge3Z+kuoGgAAAAAAADqtpMfRm95+ZfgPKsIjCstYtOa7Hto7fBNXEu5R8sZVL1ttg3dpqTfkXgLGIFQtFeZSUAfN5pbzcs3VNqRo4DpF4lC2YD3esNo2AZ+7lnz+W2zbYml3Uq2mmWugWZjv/aFq2sy8ubb7q5b+VpCSa8vydkO8bf1lea28Y0LehrY+2WmzjVnv9JKWvGhft/YaUedGIopoFaGUJYlpo+PrRMtVNtywKPnmalryteT90jkf7T1Zh6pF5djQMKfDRMk+8q7DqZKOAgAA4Mi09W9JAAAAAAAAsC2R4wgAAADbTtSD1Jsejb3R38t2Pp+rMk0uiw3T+1VN1svZdcS9Sbvn6/qujcntsY6ht6cw1bDcXrnRdhTM6ympe24v+9RxzB0IpSQ/l1efqc6BocfO9nzWvfbtICZ2UInc/Ehj8uJMNcT7UHob4/N82D1hTN633GuprBd1/33Qi16Y6n61qtxR4W+WiQxR+9kOyBOtX30t+c0Yix5HAAAAAAAA6LSSHkfRm67KmeZk2km1FuQa8+a85K3qqHkneoUXZoRPjDyg1mn3iX2bq6fbfB72TXSQM8qWOy8Z0aB/H3lvV+O3xL2rHCUaEUKv1+ahioZ9V60ntiCT96vSb5Wd+jTt8DxfVknunNZ56+0NNW+Nyk2kr7VZfv6mopbdaO+3PZ/9HD2pwzK0FbSEew9MrLKkxSj4XtDyOGad2qpGOUrVwb1+RjUE5bWWWt5+WGXLFAAAAA4P9DgCAAAAAABAJ3IcAQAA4LDl9aJO5e/wetV667AjZnq8XtO500T8UXe95YbmHikZ0dgdXdQxNEqgJE+N12vUGyUzo0K9k4aOdjl0f4zp5Tv0/Jyql29J/iV9PdtpNkfZULk9w1OjEk9dl1v/pbcOqzrnVtGbe2iZJZEN3rkT1ceOiOsI70P90+wWBtvsLGcXttsxm62uXxA9jgAAAAAAANBpLT2OSlpLKvW2L2q8KRqFIr9+QRbzxAvFklYZ/dbTe4t5aL39oyJYqel99bEa1TBld5fNl1MHx6W/5c6uN3rz6719T7z5bYNkWWbZOj8fzlSjQ3hqM2uU62fRv4/883xmvutWj/zjUjLSRVyH/taM9L7ubwlqW1tuf8updwztvpfgzX+i1cTJxzamFcPjHf9UOXpbvUPojfaTUpbTyJm+qmRjhntu2HuK2vVjrgmvx0J8TWQXO2p0pb76RPOS4wgAAAAJhKoBAABg2zn/cadmz/um//z54HvwSr6yAzWoSakGD6dBQS8bNeq1umHHDiHeb+E0zpWEAnkvnocOk25NNdx7SWhU7vqjxtysWt66rP6caCxdBRsel9tAVzIgidfg4U2z4ZC6rqn1e2FkuWFdtm5xw5gezKf/2JU0Kg9tOLSdEaY6z70GxqGN5SXntTco0joGISnZj1PdI3PLjMpx1lHXdjv6B7iy94SnPuF0tw6rQqgaAAAAAAAAOm15j6O4ZUe/iTNvDZ3QlWS52Qv6k1f1JtVbR1HyrpI3qzphWhRjYhIuzvvfti+c+L6opcZ5VVlVfmtDFcYRhRMbL4Qjil1S0/wDriLKilro3JAdGf52fqoQs5K35SXJ5FItRkVhqwUhR1O0ToqEjdK2mJJwpDGhf8F6FokWuBW0fKbqPvQe2NZ+Xatm+ntr8nfACXGtnB8DO693bsR1mCbpaapO3irX0WIOAACAwwc9jgAAAAAAANBpy3scAQAAAFMKeqJG09SXZI/RoUnp8+rWvc68aSUG9xZdQU/7tST+HzHvdub1cPZ6t6fk7rup9ltJ3qASbr4bWU1P8T5bEaWyimXHRAjkrm9V12NuRIJI/v5I5dkK8o5525wodzva/jUEAAAAAADAllh7j6PkSAr6s5P/aMw6reBtpMnD4b0RT7VelLzlrGfLd3hjct6UjKDgLueMdmDLsSMs6OlRLpCC1rl4//bXoeRNdZDrR/xjqNdi62cz3uv6zke18uTnsPLOlaG5sKzUvtWZ/seUG+f66b89te0a8p0Z9jwvydekRed1lNsnb+QIq2Q719EKJlK674ff93LnK9uf/XmL7P3SGx0mGh2n7T+PUobm77L5msIW6uzVAwAA4AhFqBoAAAB2tLixcfnRDtRREn7m5p1337wOfCk84m3u0IaSksEzcodtH9OYmrt+b9pU4U7rGF68JHRxFeu3dSgbDCY//Ci3nJK62cYZf/29s2afu13ftaEheFOFkk7VWDrFvURkNeeyve+UhGR63HM5McBLn5lz7tjOC3o7hoYDrhqhagAAAAAAAOjEiyMAAAAAAAB0WkuoWqNy0+jPIiKt7fqlvi7mc1uS+tzfPVakK2+ImubkrrB5Nlox9R04SkaqG13b5ncR1eux3fXqatll066zjaqg12mm1OE/bDj5cmw30SCbvKmDlw8p3Q1vOW+8O0vywnhdmYePbKIn6+PZtZ7w3LDl5ufSyV1H13dvmj5uJflcUsdwaFfoEiUjjpR0Bd2onBxhC//6DvN+mWWdOsV5n/LzlHl5ybzwgnR7grc/zZy663fTf44dWtYZCcU5pu5oFvYeGOVc0/m5bJ4389WpX3Rfmy2nzxcHg2n2flnWzb9/2uBezBVJjgAAAOAjxxEAAAB2tKc+/q7Z81781s8uv9hGAeelbDy8t/ocDfYyfa6RksaZKdYn4je4lDS+DM3vMnRaybxDc/FMNbz3VAOWeMejJHeV11gzZnCaoXmdSpbzGwt1I57fWJSr5LwquQaG5usaOqiKt1/HNESv+xrw5i0550o6FuSu3373chyNuc5WiVA1AAAAAAAAdFpLj6OhIShROEWj336G807Wbd/wRukoXtaZ5r3ZteEW3nD3npK30HFYm14wv9UiCkcxb1d1pGKb2LdDz6OhIxyMWWdJOVO1II4benyaCya1zqlaFGwooL4wq2r4dpe0ogwddWXMcSqxjnJS2x229PjlTjWiSUkrnReS6YUFWusaPcjbtrp26uBMawhVAwAAQAKhagAAADhiBA1wTeJFtcr5GL0GboY1IHhKXkSXhIXkvtAe05gxtKGrdPrhbmjD31TheJaXj3SqUDVvO6ZqiPfDLHtXMbhxsHZyY45ZxzoaBoeGOU4x36rKmarhtiT/qBtKafIJl5SzVQhVAwAAAAAAQCdeHAEAAAAAAKDTSkLVnvozZ2TPe/Gffib8h4Xq/mW6cIX9CMdkRh/WrbFjUbcOQ7tvjukSOLQ7ZUmuEptY3ubP8HIgVVG3zeWyM/se0xQTjYCg6J7mq+rOV9StNzFrUddvpw6507q+e7xNjcYZWNE1UbJcOH346A8lVjGySmreVY0uE+YlK8iFVnDfaM19orH3kbb//m6PaW4X6jFdv71z13Ynjka/GNgkM+V5lNvtf7uM1AEAAIDtixxHAAAAgHQM6pHZyBYP6DJs/WNyCpU0CPYpakhckaENFut+Eb6qhsroXMpsIBmatyi1rNdwMtTQ/FyrWoc/Qs+wIebHDP9e1KlB8Y5r0f5wrOK+UyK6R0+UW80zPP9QSZ6t6XPmTY1QNQAAAAAAAHTixREAAAAAAAA6bXmompdDaNzQhMO6zaWGmdT5fGxXuRJb0dV2zFCcXjnRdPU+0s5Z12O65Tk5O1o9l93O/i6NtmdqyT7y6zs8V8nQ4zRlfhSvXNtds3FWu66uluF6hg8zrDdtzPUy5hr21uPdc6bKsbZYhOvwuj2nuguXdGlfxTCtyTK9XF4Fw/967LzePlvFsNepdW7T3tAAAADYRrb8xREAAACwLk97UsEgLm/5bO+03CT0RS/2RzQseevMHdBhTKNJ7ryp/TFmUIZcqxo4YwpTbb9uNEg2jK9gQIWhOVyGNnzZZVfVEDt03qHlTJWbaKoG0KGN3+vqGNG3/pLlPKnjEeYE629QrWzrpR41xg48tU0QqgYAAAAAAIBO267HUW4WeTuse/RGsSAEalVZzEsy2U81SkGJqd78TjWk+VRDt8fs2281xUT+xBGPbffnqFRTTj2slWOMMS00JeWOudZWMYLDGHFrWN07rWkOZpdjDQ9NtPc5by22Dv3D28f3o2mGZ3fvcyYuNBpxyAmBm6q1zfJawka1sjvllrSMecvG07Kq2rGe7dmqBQAAgO1j2704AgAAALYD3bAXvcTWeTnNckHuxcQL5FXknNyKcBttaKhcSTmrCltbR2Pf0JAzyz0/BzbODt3nJeFwHm+5kvyykzU6tt52TNPoPVWo2laEta3bVKGtJcdqPp9vfradPWazmVOudzz6O5FEvycrCvMrRagaAAAAAAAAOvHiCAAAAAAAAJ22PFTt6T979+x5L37Lp9W3RJctt0vXiCHXW2eas2yq62Db9OeuEFnk12+gMXmgxgwLXdKFMMhEv6L8TH59/Pes/qgT03TZ9tZZNkpJSf6WQVXLqpM3b+60Eqluy4tF/7XmHcO63jDTpPe7l1fp0LyN+jz8Whu6P22XW8sbpcXt3t7411rlTBsc8tD6+0svWrItKfoY2i7N9vtUufC8/WCXC+4bvUsBAAAAh2z5iyMAAABgO8pt4Ipf3qqGMlPEoskrM70Os8am/6W199I/qJtpQLGNCUPz5pQMk547jHzJQA8ljSlNk9k4kVDSoOjVJ7fRzc6nj523j+28XgOSXa4kz5Yu9+DBg73zlpQ51RDzJWWGA3/0T2vbeTDNbcRxjs+owTp61ldSTmr9Xp6tVSi5PkoGnwobhM2xcjqs2Gsi7OjQv76FadxcLPpHb9qKQbS6bI9aAAAAAAAAYNvhxREAAAAAAAA6HTahalHXxYHlJPNaJHJm5Crq+to67/eqRH2ddXrdIMcMdeh1N22iPCfeOvu3e0zX1KHLTpVf5rCjrgmbxyaVimyoqbrblnRdj7tu53fj9cIHtuK8WtnQrq291vLrpDvl2j2yqkFIh17f6Xnzyx2ap6ykXLsDwxxHR9C9CpiY+8y1gnVMlf9tTDjL0Pumt46S50j/d3D6X5KSunl1LQnx8nLhWVPl/Bx6vky1vtztKFluzPN/rjH5EKdYbh3G5QftL2eqvKe5YX1Dw9bssqlz1cvvGTx/ueeuX5+tQo8jAAAAAAAAdOLFEQAAAAAAADrtqFC1sJvWdF22iroBOyMtlHSXjCvRP6louOkg9ivsFltiTJfV3JE77PTk/vQiZGTYEOFefUT8bo0lXcRXFVrnjQDgzZuaVnJcGmea7RoejEpQ+ftkHUPPe+tcVXfoklCDMUpGxNDTbZfjkvO8KmiLKOqK7xUUhccNGwnEC+W1ZZXUvUQqjNHvKj3N9Q0AAABYO+rFEQAAALAuXh6yXPEL+GF18V5oi/jDYufm90i9RJ9i2PQxL9unyk3nNoJk5p5b1Yt324CTu5/HNGDnbvNUQ8Ovw5hGW6+coefy0EbO7d7AM7R+UzX65h6PVJm521HUIcG57dqltvtxFiFUDQAAAAAAAD14cQQAAAAAAIBOOytUbabyO0TDupvvte5WGRZjl62Def1cJV6OCXco5dbPiVE7+YhascOA52mbsH6LaEjAZZ1quy12/waf/dxJ3j4aMxSiO63q76Y4puuf7aKdyxsq0hqTm0hv29C62nJS64+/F6zX61IdbafqRp7IKTNT0xeSf/xLuq7P4jHNe9dpleTKyq1f6bK5y9mcQVWUYajt/Hjo6/Au2+4QqgXlBMuZ/W6vES8f29D8ZofKUsva3xRnH6XqENTertNUV5e1sPXV19b2GOEVWKs3/ekXNj9XqXtR3kjT8XLbOEyn5LfD3je9cLhVhDQNzXc4Jvegt34vLMar65jflNz6TJWbcVTO1p4yS9bhKRkK3Zu2qvPDMzT/6Zi8s57cZUvyRU6Vt3NMrtih6/CU/I01RchZKuflVqHHEQAAAAAAADrx4ggAAAAAAACdeHEEAAAAAACATjsrx5GSjqFsez6XhZ3HeVi8dZpZ22Dm/mkiUqv8TVEcpTP8auvEM6fiI/V6phoatdQ6hp8ck0NmaLx+SZz5VLZq2NOh8d1T7pNg26PUSdPEtLu5aex5Y6Y3Kzr8ufuz5NwYk4csNVS05uXzie6BrbcDp8kNkZrXE91rveFXnUORql/j5XNyltW/L3Y9OscfcKQI7p1m2lS/pX6emP51esvNZmHOy5JhwnPvdyXPL1PlM1nF80tct8lXkVxnbq6g+Hd3eN4crz5TlLOOHEdjng9zt2Oq5/2S9XvzTpmftc9UecdK7jvaqv4WWsW5a5XkcQr//g/Lyb3XbpecRhY9jgAAAAAAANCJF0cAAAAAAADotKNC1YLu/4nYjzFDjQ7ld10Lx3O1YS+LhdNFsg3f7wXd5Qq6qHrbOWY4yZLpWxVO1WdM19CSYcDH1ElbV9fFofvBbnfb5ocueeWmjlMwvekPG0ttlndb8ULVkmGrQR38cKTt1NVfZNp7w1RWMYzvykInE9OK7hWVd4zzt80PkQAAAABCO+rFEQAAADBK1Z+DIpp1olyH4bSSeYc1EE710n+qnC1D118yr1+OV5/8F+j6ZXtJ3jxrNut/ge+1Z0/VSGQbkzc2ln8SljR+rKtBps9U+2NoOVNt46r2Ve52lRzzkulDc3GW5Mea6v7pGZo/zrvt2LrpHHZtu3Dn3So0NQIAAAAAAKATL44AAAAAAADQaUeFqj3j5+6RPe/Fb/n05uc4Z1D4NRwG2u9+5g2zPGbMbb8rnVmN0xU56CZsyom7wk6T28kaOvz5mC6/JV0Yh3Z3tFbVVXLoEKFb1Y3RH4ZzzDF1p4Zrmah7fNX0L9tUw68XHRVhD1PjDCefzIc0sDt7fK70nzv2PjF0/6bO82bh1HeiIePttpQMfTpV7qlRQxmrc8Xez+P8Yvqks+PBZlcBOCwF91nxf8vd+0TtDLss0/wuaSXPCzrsQSS8/3m5zVLPhrnbMlXOyJJ1DB96e5occVPlLLSm2D8luSJLnh+GhgINfdYtWYc1dB3rKGerTXctTaMkVG3oPWnM351eOeG0/nn935rt2bdne9YKAAAAAAAAW44XRwAAAAAAAOi0o0LVSrjd6moTeuGEftW17UbmjKZgVul1+ywJEysJgQrDE4Z3wXO7nmaXMq676aq6RpZ0qy0JZRnaLXtVw6ivq/ust49WNaqKFa7Gu16Gvytf1XGK6qtWY8O3ho56sR3CGFMhbzrsrqT7f8k164WqFY0UY06jeNb8+0ZYv4U/Qz2sXAAAAGCMw/bFEQAAAGA97WdPz573kj/54ubnolyR3gjNAxsi7PpK8rYNXWfJNuc2zJXkAiqZtroGnm7e/j/03av78vNiETYaeDmohjYSpc4HXYehOTxLhlT3TDWE+tD9Ma4hs/88947rdjNVY/jQvLJDr4FVNaKWHLvgPhw1NKrrxeROfcoT83+XtsrOOYMBAAAAAACwVrw4AgAAAAAAQKfDN1Qt6B7qd2v0hrAfvk5Tmh2m1ebeKOgimjuMapvIo1RN1GVyqlwbY4b4nGrY15Ku3WOGzF2FqfJmjbGu7S7JazPdMMjZxaTWEnyzV6FezWJFOaKGdvMtnTcc8jrcUlvdts7vJj40x5G9dw7PYZY/JHZKuOzw4ZK973XBvRVASN+Ho99Z53d30f8I6Jrq/pwKo+qT+g3NDU3y7rdThapZQ/PWiYT7Ksxv2v9sHz1FFxxoNx9fwf4ZGkZWUk5uXs7Ub27uc+pU58PQdaTkbkdJnsWhoVmpdQ697oaGC5Ysp7c49Tdg8Dw5867l/O23GrVo9IzqHCsbjhZcL1H1qq6POwY9jgAAAAAAANCJF0cAAAAAAADoxIsjAAAAAAAAdDpscxw9/bwzs+e9+JJPqW+p+M+Bw4JGcYzhvBsby0NhY2Dbpn/ITE8qXlTH7U819OTYsnJFsa8Fx2XoeqbM31My7OdUQ0tOlQPHm7dkH9kY4VUNoemtY6rhikvX4827ilwPJetc13DGUw2LGt0vC845d7lqmmM4dFjjru8670Zq3sqJow/2w6y3OgAkkQvNy1OzmOb3r+R5QZdbcp8vWUduzpCS3Eglhv52DH1eWtXw7yWmyk81hVXlU8zNVbmOvzFW9XfDqtaZW27JdV9y7IY+Q+o5S+47U50C0XOTV5+hz26VzWvVt8adgR5HAAAAAAAA6MSLIwAAAAAAAHQ6bEPVSnjd3+Kuc16Xv7x1dLHhaLnLlgzXHA0fOXCoxa3qWZfb/bOku+WYMJKSYWhLuuRaucN+Tmmq7ufe0KNjun9PFR65rn07NPys5Jybap+khs916yv9wy83bViOLdcLP/Pq6A13a8N6vesyvj+aYWOddZZd3/3hz5UZ03U2C+PIwqFi80PVFuIMAbzzekoD66VCDaraXL9t3rWeDq9X9/LoUS0vhKe7DuW2ImRmaIjXVCFN3rxeC3vJfdizjtC9VFi8F8pdUu4UxoQ5rivcPsfQ8yFVjjZVGo2p7iUlf5eWxJwF17bk79fgOc9Mq206AKecRi1tn9XsH8a6Pk990hm9Ze5E9DgCAAAAAABAJ14cAQAAAAAAoBMvjgAAAAAAANCJHEci0qhcFrUZmrgyCSDaxonHdIZeteHsi4XJ96Gml8SVerlAoikjYm3DoQXzh4NNxUzr+nv5cOz3qNxW5UdZ+PlRwnLtthQMRxnlKOhbR9nQu15Z6xiqPWVMbgI3j8DA+PquOo2dL2feoTkZUvHo7nrtvu/53PU9dx1Va87d1l4T/eXW9n6p837ZeW3+HnX9z0bk/Rp6Htl8Qla4z2xcvFmn+k3xcjmJmOvb7L+F2OPtnXNO7iSblyUYHpYkR0Cu6PdvouvHu794xuR0zF3Om7con0lmmSLjngemNib3yzry7XjHY6pjnlvOmO1dx9Dwuc9tY46xl+80teyQ+qz7HOv67v2d4uZo03kwzTrribZrq//eOtxsnzszAAAAAAAAthVeHAEAAAAAAKATL44AAAAAAADQiRxHIvLM8++ZPe/Ff/Tpzc9RHKdJkRHE2fppd/x42ipcOIzfnShv0QheTPVU8feWF0Nrc5WUxKl6uVNSdB3m83n2cmNi+XV9U+V4+9fb7jH5mqY6plOVO+acHxNzP3Q9Y3IQDN1HqWtgqlwDqZxmXrlDz40x98ei/AcDT7PUtebN66Xfe/rP3n1YhQDITF3QNqdR69wX9PWbuv8Fv1OSfy9fRa6Nkvx+3j1/zD19iu1a1e/wVM/OQw39PdyKXE0l+W6Grn9ojqNV/Q00VZ6vocsN3a6SZyfvfjY072k0zSw7Se6qRH10fko7KcplGSxnnpu3+B6xSvQ4AgAAAAAAQCdeHAEAAAAAAKAToWqlgu5oplth63RNi4ZKNpODRQvCu+wwy6pOM0kML+1WKD9kq6SbaElYU9Ew5QWG1s9yu2Endl8YxmhCdgpe5w7tkloytOa6rCrkzTNV9/ipzptViY53dH7qOk13LuSGNIxdz1BuWKC5Z3thYyXn7tBu3CIijb4vp7pRJ35zAOS54Il3zZrvj/74C8H3eqaGmm7M/a5xQjYKYl2nCqEeeg/b6mGpve2f6vd9HSkg1vEMMeY3dmgI4tBySqzi+KzrmS53Pau6ztYR1jb4mhATzqufTdv8676kbm5V1d/bT/+5uzkzHt7ocQQAAAAAAIBOvDgCAAAAAABAJ14cAQAAAAAAoBM5jgq5Q5rHMy8/JsoJv/sxmPmxrolYYzU9KnNEOK03tPeYYbVLyvVMFVft5Wyx+VC8Ic6jujvjarux5QUHbaoY5FVa1XD3Q6WGqfeU5AQIh2U27/btZaqXreysw4avTceA67wd+fukJIfZ2o6vygMU7a+BMfSpeVubimjg8MDR0N8ze5xoFwK2UsnzjZ9DTd1n2/zfbu95q2TaKkyVO8+bVvK8OfPyODnHxrLr1Me16DdvBfkrS577xjzvePXx1j9VnstcU+XASpXrrWOK7Rrz3DBV7ip9ng993o2unYI8jUE59jxXdbOXsq2q9zy2kEV2fQ5nPFkCAAAAAACgEy+OAAAAAAAA0IlQNQAAAGBCUw1x74Vz2HJ0iJEXMmJD41YRprPVIfBThSJ5+6pk+HlvWhQaZta57mHkh+67kjBuLxxuVaGMuddkantzr9epwvFWFcZXcg54SkL5s8v06lZQTnhP6p8Wz2umFa318MWLo0JPv+Cs7HkvvuRT6puJZ69mwfdK/xCZe2l8w9AXaH+nsdQNaysugTExtLlSsdmruFGWTLPr8XIblJSbuqkFiyY207t5bkVuBHtMh/4wjXnIaxb9251+WOpe7tBEO7P+2P9A0vW9r34ly1klf8R458ZUORNSyh7aVpNXyT033HPF7iO7bNv9OVEHAAAAYAxC1QAAAAAAANCJF0cAAAAAAADoRKjaCvnx5SZ2Uod/mHkXi/4hAMcMb+8FMpSUWxKy5Q1TXxLeNVnsfmvndatga9RfbBRy0m+qMKxJhztXRVX2XDXbXbKtU3HPzzb/XC0Zsr5kKFtPyXluz42h4VSpug8NXSsJ/SvZn1PlaSgx5vjG8+pwuXBK44V62mvN3Mv08LTRMbS5TtwaA5jaU37urtnzvumyzwffs3OY1OF8TbvonXeq1AAleUC85fSzrH1Os8+5U/y+TjWE+JjfYS90et05ZEpCy61VhJ17zyFjwum9dUx1TQytq5eaoiSlgJ5mr53ZbNb73R47/d0ul1sXEZG6Xr5OiI/rQn02fxOqz3Y5+3eyV5/gOcqE8eu/UapEf5mSe/iRih5HAAAAAAAA6MSLIwAAAAAAAHQiVA0AAADYIpONgugUkxvuVBLKbENfdCiODaHR0+xyNkxGTx8aNlwSpmSDr/Q2ey3sY8LAS6bl7oOphn9P1WcKU5U51bm8itDBqcIDPSVpKkrWUXYt9Yfn69G/o3JWkX7BrN8LSWX02XK8OFqhSv/amLwrbWV+pvT0atgPxq0FLT/lp7GJZh5zOy95yBgaJ1x08bfOz74dGX2qH8cod1L//o3ieOthN/kph1wvsYoHilS5rb18nB+toesc8wPvneclD5pjchGVKMkvNHQ/lFyz6/ox9/INlCjbNpvTTH+uzTSzP6tgYjCtru352lsFAAAAoAihagAAAAAAAOjEiyMAAAAAAAB0IlQNAAAAWJfKCQl2JiXDeGsv/F99j1KUTJ/vxguft9NKhryfKsw5N0R7VaHT68gxtJNyuJSkYhi6XG5uopTcZVMpJIJcWgND51eVt2dofi5PVFenTC9dREmOI0yLF0cr9LSfPyt73jf+0Sc3P1emI5jNgZN7MdvZvCSGJVI3paE5jkrWU/JA0jbTPGRMmV/GvQFKf36kpl30Tksdz6E/JvaYTZVsMLU/bR4jr07eOocmy0w92Hr721u25PqxCUOnSrxZwiun5JwbmuxzlbbiDwK7z4J57e50/rh8+hPOGFI1AAAAoBihagAAAAAAAOhEjyMAAABgTZ52Xn6PwTdeduXmZ68nrsjwXpR6QMeol6nTedX2oPR6QS8Wyx7TtjftVMOUl4zU6/WYDXrL2tEt9Taa5Up6Q3t1WQzsTbyukVhz12/ljjC71b2px/B6uQ9dZ8moyane8n3zpqILvGn62vbmjXpc9y7llxNXTW9zOLHkXos0XhxtE8EPkwlHqmoTrqIuimYR3iD0RWkv7Pk8/8ZT2R9x9blJ/MCvIzxlzNDzXv3Kwq76fxCapj+kTCQ8Tql9FN4sw3MhvFn6+2DoA026nP4fSVuloT+aJT9olvcg6e1r+2Dr/TCmyvWuyzF0uV4oXSrMTk8v2UcpQ0MVvT9GSpatZ/5DW+X8EdaavwhKQh7bun/eRsLzSIciV/YPGXseeRUGAAAAVoRQNQAAAAAAAHTixREAAAAAAAA6EaoGAAAAbENBaHtl85fYePAVjBTpjO4YrT+3yETIc+6ovyUj7Folo5328XIRpeozmyCPU2reI523r6ZKeVHCy3k0VV2j8HjnPPfWH4T9e6PBJurjzRfcz8wuHZznLKsmGIoXR9uQTcRXO+nDqtpeIvom4K9n6EU5NJlZypgfw0qW+Wjim9+Y4eNVPqkot8/wZI5Df3S8H4+o5tvwYSI3+aG3XKmS9eQmbrRSP6JTHQsvN5HNyaSnecul1jHGVNvtlmP+qKmc6kfH1MnP1Xh/LNl1murVTqJGWz+dh6neSOROsomXAAAAgDXgKRQAAAAAAACdeHEEAAAAAACAToSqAQAAANtQkOOoIKeOTfZRtf3llIR0e8vp8NrFYhFM09thw6VLQq2H1rUkb1DuOlLh2N70RWZ+mXVZxX7d6vWNSZcxdB1eOUNTJ6TWqXmpCYZeA6nrY4rzNZUeQq/DzV6w/bJ0HFZ4cbRNPOPCe2bP+8ZL/3nzc+skQnRSdByavoYbaomp8tjYutoHFP3dblZ888tPtBgkknPn9HPpDP2xkNY+XNmFp/nBmuoHY8x2T3U+rivPUgldp9QD89AHFO9hv2Rf22vL++Efs//8HEcjylH5z6LLxSm4TaRfbNSiqc3WdXrKT5/uzwwAAABsAULVAAAAAAAA0IkeRwAAAMA2VAW9hW2P33DeNjMczfaobBbd8x1avzeiqP3e38u0JEwm7Bk+bJTSrRhZdqre0atYLnU8vJ7wnqHhT0N7nZeEaw4dPXoML1zTOwZT9YD3Qry8eW1dvUiOoro59y/vfmFHxK6Cntze9vePGozxeHG0A+kLxhtqPorKKAgp8u4RY7qpLQaG1hyaQa/Zbvewh4zarnLRf8NpE2E5TaP2ffQwZ+oULhiWY+uYedxSYUNxMI5TP+fHrOQhwRr6Qz3VD/yYELeSfTTVeuJzrP8Yz+fzYJo+b7xcE7ac1MPcVPH7lntemauiCu57w88Ne//UFs71UkUPP+H01qmTvb69eyIAAACwHRCqBgAAAAAAgE68OAIAAAAAAEAnQtUAAACAba6JwmJDs6o/x5ENdda8/CFeCPJsNuudd2Mj/BNDr98uZ+ump0+V72cVofIrGy10C6w7d9TQfFCpEH6vzFUcy5JcXiWG5pzyrvuSNAVhWhR/hN+mXaZDqGyujkyp/bjdrpcjFS+OdiB9i6xNkh6dh6exF9nMXISqoPiG7efwyJW6aZckyqvUttppM51vJlGnSt0Am0T+Fm9odP8mlp+8L7Vk7o9HKhdNFSV0yqtf6mY9NIGeV07OenNN9TDgP3Sv5gdtzP7USpIlripP0Zj1eAlYS5aLcsI5OY6qtv94R/dWu39nzsOY2fUFqecAAACALcEjKwAAAAAAADrR4wgAAADYhhrdWzjqmRvO24rTA1jNG43QqXpfRv0wm/7e4DpE5VB91Lxtf0/XZI9TXayZdbaRN4R5ZbpzlgzS7YXp6FFKp+plnRoVV3/3ej97PeNToYu5PZFLRlr1ejuX9OIuWf/QIe49Q3v7l4xmPTQ0a6r94dXVO1YiIhvVMrS0MaNT1zOnZ7d3nZkrdqamu9ErI0baRRovjnagZ5x/ZtZ8f/CmTwXfvRt46sZTElLmmdkL2hvSXOysQRC+mbe/HDsUeVioH6JXq7gSe1Mrucm2YrfN+eGPqpgXCpb6kfEmjwm1Gvrjn1Iy7Ps6YvPXFV+d+4Aokp9PYteuXb3T7DqnDBksWrbqv8f43/Oviag+0fWvSnWu75mZFJ3n6vvTn3i33nIAAACAnYBQNQAAAAAAAHTixREAAAAAAAA6EaoGAAAAbENP+dnTs+d989s+nzWfF15rh3qsK5u6QH1uvHDk4WHOrTMK7JiQ/VxD8+Rs9QirJSH+3vepcgOVHKuh6yzZ59t5SPdVjUo7dB0ly+nps9ksmKZTc5TkcbLlaBc+6TS3PlgdXhwdQeILtO35XJZcrOTmHw2HHcw74ubvJI/cVfv5XfrrY35ITV4iW4yuU/ommz8cevAA45aZ2H9tf/2q6MFwWC6idT00TfXgOCbn0qoeLL2EmV7iS289Q5MupsodM29033AeLrztLlmH/b5w8ip5OS1T5Xp/9AAAAAA7DaFqAAAAAAAA6ESPIwAAAGCHC3pGt/m9Mb1hV+2UYORPr7et1znVqZtdR9Sjd2CYztCey9s5vEkkPzwtNWLq0FC1VYU/TbHcVD3FS5T0iF/FuVWyjqn2h77v2BCzRoWz2mmVE45mI1Tm8/ng+mE69DgCAAAAAABAJ3ocHcZKcqmUlFWSYK+MLcfmIhrYOmHzjUTlqnmdN/XRdpm8QPVs+R62WST2gZNvSKqwfnp6PVEywRJjWp5K8l+VtH6tI3FjybKp7fTOozGtZzr3j22N0S07qVxJXt6vEiX5hjrm2PyUyuUUfu/fn8lcY2o1cQO8cy9ItNZX1TT7EwAAANgO6HEEAAAAAACATvQ4AgAAAHa4oK+j6RXtdYQMciOZDpVNSa6kTFEHbqfXbrSOgiHnvWm5PY5tD9ih6xiTz2Zo/iGvN/E68utYuT3Ji3r/O3UoGtl1otxZ3jpWoSinUdRdRO/z4XVo1C6IilHXj+2tXTkj22J74sXRYeyZTz0re96LL/lU8L2S/h/KdmHHoQ+/zlTIlv3BXcz7w7CsssR9/eXYH05drq5rV7klP/rBsvUinOb9eJt9ZMPRvBu7nnfR+uFIYV3DeZtmeLhPWG7+D/qYsrxypgpjs+vwziPL2/cl693YCG/Rdtt0nUquF7stuQ9s9nsUUmY2u+hht+4/lytzfYffzXlf9d9/PLZ+Cycs8BlPOCO7XAAAAGCnI1QNAAAAAAAAnXhxBAAAAAAAgE6EqgEAAAA7nA6pjULvay+/TH+Z3iiRrRMObBcL1hmlLcpPP5DLhlnHaQDyl123VeTbsYbm+FlVqoChKRJKwum1dYxKvKrzqCyPUd5yY+j9HF13s+V3myZhobJ6PP3n77aSumFavDiCiMQJy2qTVFE/VTSN/2NTO9NKlN3g+n9w3KHGK5u3xkxvht1koxunM7x4UWI7p9xmsbCzZxvzY6KHfbe8XDpj6jR0SPspczB5y5U8kHnTFuaYeuspyXHknUcleYHi/dW/LakB6r2Hen//5u+TqE5tf46o2pzWI9JWAQAAADsaj8IAAAAAAADoRI8jAAAAYIebbaiwkEV/L9SoJ7bTOdPvt+mFzNie6+pjqguq7fWuDB211PZqze0BXTKk/dDexkN7UacMHcl2aDjaVtS7pBw3AmEiU4XAuftZXQJjohaGisqp9LkTTvKiErDz0OMIAAAAAAAAnehxBBEJk5eJiFRt/xvsdhbmXbEvxVvdApXIGxK8UW/yW278N/p+y01uq4qISOW8KPdbXfx3srm5aex3b9pWJXMc2oIztCWsdNkplutadmhZqdaoklbIVbQetYlsRO68XoLVRDOFn/fL7ofl58YWrJPDpvaPXtTMalu1h7ZyAwAAADsdT8IAAAAAAADoRI8jAAAAYIdrW538xMuRYkd6dXp0t/1tzJUzyq7tu6pLtX1BS3rP1qqXaUk+maagN/dKevM660j2fnem617fY3py5+YuGjOCqzdtq49HidxlVzWSb4nsY+DdLxL19DZT7wPbc7upVp9zCtPixRFEROTp552ZPe+bL/tM8L3kBt82tfmubhqp/Gk6qm1hh3nvX/+4bnXDf4SDUib6MXd/6EcMoz7mB7TkoWXofhjzMNJXZqmSMLGhD2T2eyo8Knd7onLMA4IOOasS57x7PjrVrSv7h4ofjhaY2fqrfeSEsT39SXfrLxMAAABAFkLVAAAAAAAA0IkeRwAAAMAO14oavMR2Hm3zQ6NCTg9lE2qii23DcVQmM9Vw59pUIUND6zZlL/C+ckt6QnvlTFUfzzqGtN8KJT3X3Wl1/3xTRT+U1M0LZbzwSadlrxPbHz2OAAAAAAAA0IkeRygW5zGxb7u9t+QmH4kzfrd9a90svNYyPSy9mRLNm58crx7YWJFq2Rk8lLttWdBljkjCN6a1a2NjeRuxy+n8R13fvTpMlTjS25YxLW6raskKtttca3HS0rxyOqb2lpsedr4/x5FNPhrWITz2dR0mNWuc+toq1bW+hsNp60g2CQAAABxJ6HEEAAAAAACATvQ4AgAAAHa4euYMm646fXq9V6NJtqOwmj4zw+EuFsvERl7Pa9sxtGjE1UXeEN5xL2ZbkProFGl74Xq9jW2v6tls1jvNyz/krbOkF3W4z/N7bk/Vw9qrj943OfWbQm7+n2Q0QsEoxrmi7Vcjxka99b3IDq8HvvSfgyXnnF3HQs/rRBZg56PHEQAAAAAAADrR4wijxW/mndYQm1vFa2Ew0+pZ2zutbWo1Kb+lJGpZs60jXl4g81I9bK3oXaxYsD3OW/8x+XpW1dIzZgQHr/XLy5XkGZOXyGstHLU/K3POBc2gfjlTtXqF9fVblsJcROYaNcPo6Flt66L9HowG5NYv/O40hgMAAACYAC+OAAAAgB1ONybEoS/qhbtpCHHDS7yGEacBLWjsOzRVrdAP/6qdaXq0BLdhsHfKrbXR21F7IV75DTRDQ7zGNLLlhrGlrCX8SimpqxdyN7Thc8yALLkhbwWnjnhnrHdsvBC35Bozz51kmKO+flY0cAy2B0LVAAAAAAAA0IkeRyj2tCffI3veP3zrp4PvM/tiPGiB8ltqgrAx8/Z95rwC1WFsXeXmipLDmXUGYWMFkVQl9dHDkFuV5Le6eOWIiLRNfytEVN8mP0lfSYuON32qFqZRLSwDw9Hi5fJb5Er2Z1twEk4V8ljX/ckuq41wmr2Ga2+9Zt6nPuGM7DoCAAAAGIceRwAAAAAAAOhEjyMAAADgcKZ7vtpmY294bye/SmvzqegcR17bdCLHUZB7xdbH6Zw6psdsbzlRqqiBQ6EPzOmTWrakJ3ffclNZVa4mf5CbiaII3B7cw47Hqni9xG1EQW6PcttHPVjODF7yjCffPbeqOMzQ4wgAAAAAAACd6HGElaps01DrvAmP2pX6l41yvejZ7Bv1yg6jrr44+XlsWd467fR4W/rLjaY5rQUlb3rHtKZo0egrtnWjMrlrMuuQyt9j1+vNO1RJOasYcaSrDno93j4QsXmM8kca8aYlt1NdT3HLVm2+q+NtizX3BjdHVz2sRREAAADAePQ4AgAAAAAAQCd6HAEAAACHkVSvXjPRmeT0HPZGrTVFhtNsb9r+Hue2as2iUdNsvfvz5Hg93l1eUiU7q2mO152Cx/SULumtPXSal2NoqFXkXCop025Hqhf3bcb0MA/2Y+MfK/f4uFXQx8psU73LFKSjDfojCCqxdVWf6WeCW3EmAAAAAAAAoBM9jrBS9m36og0z88eJT/TC9ruTF2jROykaEUS3ONj0PDbPSqVaC2xLRWPrrlsZUi1UajWp1qMqmNeuctgoHSUjRMxm/TmMDtVvWcFoHy3yyy0ZpcLLu7SxkX9bi87PxfJEilqcnGOaakUKGlqT8/a3tNp9pveDra8ux1suqsNuf7SbSrfa2rqbfRTk+kpdEhveyDDkOAIAAAC2Ci+OAAAAgB3OC7HxBvsIBiCw7+lNJEzYCBVOCxqSattApT7bMs0qvQFP9KK13Q6npS0an0G3gTiNmF44UbLhL2iz6W8ASw064h27qcLKtHUMKV8ygEvutK5ytcZpZW4liCt01+HtnWDQkOj0zA9VazLni8o0152uT9v27yuvbqs4x7AzEaoGAAAAAACATvQ4wko9/UlnbnUVtoU/fPM/B9/dlj9XfwLJ2Sy8nL0WgjGtB16Ym23tnM28lqD+bREJG3zssO/eO++o5S6zBVbED8trbBOpkjqGXmuZF2Jmedtmw890yF7JPlkkkkc+48l3d6cDAAAAOLzQ4wgAAAAAAACd6HEEAAAA7HCrGFLdK6UVkzMmGDvByZliBlJomv7vdjNmeiAF0/6te9OmBgHxegrXOheMM8hHqjfv0GMw1bEr6dG+irxGJfmhwgW9aaYcc4a20n8NeL2tS/Ioeb3Tg/M80T3DO8p6jbbeYR4jP8dT7rn0tCedkTUfjmz0OAIAAAAAAEAnehwBW2xMi5A3dLvlzVtV+e+QvdaMMbl+vHKjlkJTXV3WYrEw89ad84nErZy6VceWU1f5LYlxa1XeNCvVUNToAWRMHqhgWlS/MI+R3pamoFUWAAAAwOGPF0cAAADADucN8Z7bCBAv54T3OKFZZkT5MISnKWisMmFLMy9YQs06Zth2PW9TO/O1/j7NbVizoUiNEx43lXWHpsUz9w+I4oVfpUKvcudNnR+5ojAyfe54IXcpuoGvsoOWLNdh128bPbVWwnIK2owBESFUDQAAAAAAAD14cQQAAAAAAIBOhKoBa9DYnDJBN9Ph3YV1F3Kbm8Z2kHVHbyiogu352zZBAh8zb/9aa9tN2HZ5V13udff7Lrqk1pS70F3FzXLRPtJdnE05GzaHkKqT7eJsj6mX22kRjQgSLBiWE+2juVqnDRlY9E6zuZ3C5fJHIQEAAABw+OPFEQAAAHAYKcnh4jXyRHlRgoYQ07DgNNSYQoKvXp6YyKI/h00r/fld7NjoucOUe/tRN9AcmmYWdtq8amfgDm9kjNx6p5TkwMrN/1OWJ2iaHENe7iq7jTr/T8n14O0r93ikNqnqb4BML9xTpLddDHaCkWhKBgAAAAAAQCd6HAFr8Oyn3Gsl5f7BJZ/a/ByHKon5XqvP+S1WyZYXFZYVh931h3fZVsyo9UltzsYsHJ7Fhq7p7zMzr9f65LVURfvTvmZXFYxC3sx+0NNtg09llm6aZYuY3ZYqGoWkPwSu5Bg/4/wzs+cFAAAAcGThxREAAACww13w2NMmL/PSK77YO83LP+jmVTQNMVEETaunmQYoPVuUr88J0ynI7ae/z8RpjLINNrbguj8PpSk0+DqbeSFF+Y1EJQ1IfnRgf0hV8N02jHlhU43XwNY/LWoAtAWrZRf2/NT71eairPsbV6P9qBa1jYq6MXXRzsVT6XynBaGlT33CXd1ygVUhVA0AAAAAAACdeHEEAAAAAACAToSqATuYN1R63M217fmcYvPq2PX018F2Y/dyCJWMqBHnc1Llmi7e3tDzNieTnteW43f5doZOifjb6Y20EtVhtpz34CIc3WVj17J7ve5mLiJSbTCyBgAAAIA8vDgCAAAAELENFrpByB2q3rSnDB1u3VNUZjTi/XK7SgaXKBnGXSq9Djtz5pDuI5Tsn9YZYn7osfO2yxvIxKoK6qbbMm0D4EI1sI1pvPQGJgmmJRoK3XVW/ecnsFUIVQMAAAAAAEAnehwBO5kKVfJGNxER09xV0LKSmF63+XXIbaURKWvxsy1Xueu0/NA/W59gDBC3XK8ObR01g6ppvZOiOtiIwdoZIcTbTgAAAADQ+OsBAAAAAAAAnehxBAAAACDi9fD1ehkPzRmT4vWmdXMF1WZaMF5Ifw/oxh38wgzUYaZ6W9VKf/6jxhnAxOaOmkrQJ32qYxf11M4ttD+PUSpvUNmgMZnVqW199Geb12p5gOoqkUfJyWNU0lseWBd6HAEAAAAAAKATPY6AHewZT7579rxv/OMrNz8XtdIlBK1xJtVQPTOtcTp/j2lRa+yQ8dWyMJvDaGGGntfNP3Za0Dpp6m63W69nYVpSN2wuomD1fr6mJmzKC6aVHEMAAAAAWDdeHAEAAACIXPDY07LnvfSKLy6/ONE1NoSnZDAMHd4TL9Y/bHuz6G/giQaQ0NO80DAbUmUm62KjBrumfwfZcJBgWS/8q11NSJMXKmUH5jBTnUm2AXO5o204WkmoltsQ2j+OStiwGTWuhvPWYaxaOK+eb+ZvR6V23oU/fWp/5YBtglA1AAAAAAAAdOLFEQAAAAAAADoRqgYcIdrgNbHpLmu+65FSUvmPaqcrsu2W65UVdw1e1mFucxo57OgXrfQva3Mw6dEwZhth3W0p3m6Jetbr1TA4BgAAAIAdhBdHAAAAALZE0XDjmfPaMmtxkhW1YfKboPFsRE4hN2+OU27d9ueAaszAHVPlP9LlRI1+at/Fx2pYa9jC7g/1uTYNgDo3UcngLlHuKi/QJth3Zrna5ibq/hwVabYjalSkIRE7DKFqAAAAAAAA6ESPIwBlI5rESzvz9re2xOu0o5MsZ46Gt2/6Ww7jUSvyQ+k8brleK5+Zt6hlFQAAAAC2GC+OAAAAAEzGDSGqvDHuEzkEg1iJkkav/CCLIDSpyV/OG8bdblPb9Dci2VA13Vg2uPEpsdgiCFUrKMYJcYuWDaYvzDT9uX+fJ7dfNeS1jQ2H69+PXmNlFPZY173TwgXD87ykYRPYjghVAwAAAAAAQCdeHAEAAAAAAKAToWrAEeIZT7xb9rwX/+lnsudtVTdu22k8GplDjzBiy7HL1k437tmsd5rXPT6a150WTn32k++RXS4AAAAAHC54cQQAAABglAsee1rWfJde8cXge5TrxR1wYlheGCdtjj9UfX87lZunSCRRUzvkvC43GqpeNbqZuuY3lfnrWMUgHnY4el3bemAeI52n6NA67LzL7zoXUWod7rx1/0Av3q46/3F37Z8I7ECEqgEAAAAAAKATL44AAAAAAADQiVA1ABGvy27UvVl14051b/aGpo06davhaG193NxJ0XC4QztyAwCAdRsaKrWK4c3dMm0oln3+cELZ9JTUc0pYh/xnGr2cF5rW9X0V9DrqWcn62s6PIv7zofc8GC2njmW8L9a/r4DtiB5HAAAAAAAA6MSLIwAAAAAAAHQiVA1ApI5GqdBsl938USt0N+GmaezsvcuOCYHz6jdmnQAAAABwJODFEQAAAIC1KMlFaKfl5mAsavyp+odbb9uwkcurazQ0fKWW9ZZrTYOcmd42y22ualuf3mLD/I9N/7Rb/2W5jonyH9mGu6Acu6t0/iNzjHVDY23zSpmkR/oYtI05d7xcUXqVqc3Vm0EjI44ghKoBAAAAAACgU1aPI0YlAo4sN924P3ve7RGq1j+qWklrEKFqwGrwHAEAALBzZb042r8//49IADvf/+/nv2+rqwDgMLJ//345/vjjt7oaAAAAGKBqM5oBm6aRr371q7Jv3z5a4QEAQJa2bWX//v1y8sknu7lJsLNdd911vBjEjnLJu76w+dnL6ZPqHe3R5bh/bpkcR7Xtrd30l5ObHyqd4yhPyXL2nh98Nz8HYf6jsLL6GKT+Dh3ac1x3nvd6y4uInP+YU7PLBXaKa6+9Vo477jh3nqweR3Vdy53vfOdJKgUAAI4cvFAAAADY2Wj+AwAAAAAAQKesHkcAAAAAcDjwwph0aNKYFB3eEPN96zv0D2adagj6qukPq3PDyOww9tGo9nn7I1L176to7BQ1bz2z69ODnIRTZrNZXl0S9DGIB1IZXCxwxKDHEQAAAAAAADrx4ggAAAAAAACdeHEEAAAAAACATuQ4AgAAAHDEWHeOI2+I9yjfjjh5jEyuorAcs46ez13fq8rLHaT3h53Wv41D2XJ0jqOmadxl3elV/x7xUieNyasEHE7ocQQAAAAAAIBOvDgCAAAAAABAJ0LVAAAAABwxzn/MqVtdhcld8udfDP9Bh7Et/GWDIK6BoVlRqFrq+4Byq0SXB72GCx576qD1AehGjyMAAAAAAAB04sURAAAAAAAAOvHiCAAAAAAAAJ3IcQQAAAAAh5EgV1Flh58Ph62vZDnkvc1V5OY8qlQ5NqVRHfZPqGs1g6lPlB9JaVSCJlsXu1xd0ycCWBWuLgAAAAAAAHTixREAAAAAAAA6EaoGAAAAADuYG1KWUNX9y+pgsHgdy6k2bMz9bsPaqv5y9Dq9kLac6QCGo8cRAAAAAAAAOvHiCAAAAAAAAJ0IVQMAAMBgY0JkAEzjphv3B9/1dWmv0aYJvwcjnjm8a92OaOZ+d0ZVKxrVzSBUDRgm5zqrWn7tAQAAMND//b//V0455ZStrgYAABjgK1/5itz5znd25+HFEQAAAAZrmka++tWvyr59+2jxBwBgh2jbVvbv3y8nn3xy1EvQ4sURAAAAAAAAOpEcGwAAAAAAAJ14cQQAAAAAAIBOvDgCAAAAAABAJ14cAQAAAAAAoBMvjgAAAAAAANCJF0cAAAAAAADoxIsjAAAAAAAAdPr/AygkEfNKcrqhAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import cv2\n", "upic='C:/Users/prajw/Downloads/archive/Dataset/cell_images/Uninfected/C100P61ThinF_IMG_20150918_144104_cell_131.png'\n", "apic='C:/Users/prajw/Downloads/archive/Dataset/cell_images/Parasitized/C100P61ThinF_IMG_20150918_144104_cell_164.png'\n", "plt.figure(1, figsize = (15 , 7))\n", "plt.subplot(1 , 2 , 1)\n", "plt.imshow(cv2.imread(upic))\n", "plt.title('Uninfected Cell')\n", "plt.xticks([]) , plt.yticks([])\n", "\n", "plt.subplot(1 , 2 , 2)\n", "plt.imshow(cv2.imread(apic))\n", "plt.title('Infected Cell')\n", "plt.xticks([]) , plt.yticks([])\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 Training and Testing Data Preparation" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "MAd3M91Smb3j" }, "outputs": [], "source": [ "datagen = ImageDataGenerator(rescale=1/255.0, validation_split=0.2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 22048 images belonging to 2 classes.\n" ] } ], "source": [ "trainDatagen = datagen.flow_from_directory(directory='C:/Users/prajw/Downloads/archive/Dataset/cell_images/',\n", " target_size=(128,128),\n", " class_mode = 'binary',\n", " batch_size = 16,\n", " subset='training')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "7I7zFilVoUDm", "outputId": "fe3e90da-2503-4e36-e206-6b8cacfffcba" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 5510 images belonging to 2 classes.\n" ] } ], "source": [ "valDatagen = datagen.flow_from_directory(directory='C:/Users/prajw/Downloads/archive/Dataset/cell_images/',\n", " target_size=(128,128),\n", " class_mode = 'binary',\n", " batch_size = 16,\n", " subset='validation')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3. Modelling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3.1 Convolutional Neural Networks Model Training" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "eGj3RRNRomKa" }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Conv2D(16,(3,3),activation='relu',input_shape=(128,128,3)))\n", "model.add(MaxPool2D(2,2))\n", "model.add(Dropout(0.2))\n", "\n", "model.add(Conv2D(32,(3,3),activation='relu'))\n", "model.add(MaxPool2D(2,2))\n", "model.add(Dropout(0.3))\n", "\n", "model.add(Conv2D(64,(3,3),activation='relu'))\n", "model.add(MaxPool2D(2,2))\n", "model.add(Dropout(0.3))\n", "\n", "model.add(Flatten())\n", "model.add(Dense(64,activation='relu'))\n", "model.add(Dropout(0.5))\n", "\n", "model.add(Dense(1,activation='sigmoid'))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "3qesYVQMpqn6", "outputId": "ab924654-3993-48ea-f843-ba09426c5243" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n", "_________________________________________________________________\n", " Layer (type) Output Shape Param # \n", "=================================================================\n", " conv2d (Conv2D) (None, 126, 126, 16) 448 \n", " \n", " max_pooling2d (MaxPooling2D (None, 63, 63, 16) 0 \n", " ) \n", " \n", " dropout (Dropout) (None, 63, 63, 16) 0 \n", " \n", " conv2d_1 (Conv2D) (None, 61, 61, 32) 4640 \n", " \n", " max_pooling2d_1 (MaxPooling (None, 30, 30, 32) 0 \n", " 2D) \n", " \n", " dropout_1 (Dropout) (None, 30, 30, 32) 0 \n", " \n", " conv2d_2 (Conv2D) (None, 28, 28, 64) 18496 \n", " \n", " max_pooling2d_2 (MaxPooling (None, 14, 14, 64) 0 \n", " 2D) \n", " \n", " dropout_2 (Dropout) (None, 14, 14, 64) 0 \n", " \n", " flatten (Flatten) (None, 12544) 0 \n", " \n", " dense (Dense) (None, 64) 802880 \n", " \n", " dropout_3 (Dropout) (None, 64) 0 \n", " \n", " dense_1 (Dense) (None, 1) 65 \n", " \n", "=================================================================\n", "Total params: 826,529\n", "Trainable params: 826,529\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "id": "3TOyOrioptrq" }, "outputs": [], "source": [ "model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "early_stop = EarlyStopping(monitor='val_loss',patience=2)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "dSnFw-V2p2B9", "outputId": "e59014ac-3bf1-41c9-b7f7-5b2d84835949" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/20\n", "1378/1378 [==============================] - 38s 24ms/step - loss: 0.5782 - accuracy: 0.6745 - val_loss: 0.1920 - val_accuracy: 0.9283\n", "Epoch 2/20\n", "1378/1378 [==============================] - 33s 24ms/step - loss: 0.1897 - accuracy: 0.9409 - val_loss: 0.1791 - val_accuracy: 0.9374\n", "Epoch 3/20\n", "1378/1378 [==============================] - 34s 25ms/step - loss: 0.1623 - accuracy: 0.9524 - val_loss: 0.1672 - val_accuracy: 0.9466\n", "Epoch 4/20\n", "1378/1378 [==============================] - 34s 25ms/step - loss: 0.1506 - accuracy: 0.9542 - val_loss: 0.1711 - val_accuracy: 0.9436\n", "Epoch 5/20\n", "1378/1378 [==============================] - 38s 27ms/step - loss: 0.1397 - accuracy: 0.9572 - val_loss: 0.1779 - val_accuracy: 0.9452\n" ] } ], "source": [ "history = model.fit_generator(generator = trainDatagen,\n", " steps_per_epoch = len(trainDatagen),\n", " epochs =20,\n", " validation_data = valDatagen,\n", " validation_steps=len(valDatagen),\n", " callbacks=[early_stop])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "qWX7Iy53qTZy" }, "outputs": [], "source": [ "def plotLearningCurve(history,epochs):\n", " epochRange = range(1,epochs+1)\n", " plt.plot(epochRange,history.history['accuracy'])\n", " plt.plot(epochRange,history.history['val_accuracy'])\n", " plt.title('Model Accuracy')\n", " plt.xlabel('Epoch')\n", " plt.ylabel('Accuracy')\n", " plt.legend(['Train','Validation'],loc='upper left')\n", " plt.show()\n", "\n", " plt.plot(epochRange,history.history['loss'])\n", " plt.plot(epochRange,history.history['val_loss'])\n", " plt.title('Model Loss')\n", " plt.xlabel('Epoch')\n", " plt.ylabel('Loss')\n", " plt.legend(['Train','Validation'],loc='upper left')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "id": "jdB5PpS1sIhE", "outputId": "75956d00-c8c1-418a-dcf3-79895b908b05" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYAUlEQVR4nO3dd3hUVf4G8HdmMpkUUkkPMaEZiiFBSgRRQaOhGBIWaSJNyqqAYCwLghT9LVgRWVhRl2KhiUJwBUEIICJ1qQlNmoSSCqRN+sz5/TGZIUMKmTDJzcy8n+eZJ8mdc2++N5d13j3n3HtkQggBIiIiIhsil7oAIiIioobGAEREREQ2hwGIiIiIbA4DEBEREdkcBiAiIiKyOQxAREREZHMYgIiIiMjmMAARERGRzWEAIiIiIpvDAEREDUomk2HOnDkm7/fXX39BJpNh5cqVZq+JiGwPAxCRDVq5ciVkMhlkMhn27t1b6X0hBIKCgiCTyfDss89KUKF5bNmyBTKZDAEBAdBqtVKXQ0SNCAMQkQ1zcHDA6tWrK23/7bffcO3aNahUKgmqMp9Vq1YhJCQEqamp2Llzp9TlEFEjwgBEZMP69u2L9evXo6yszGj76tWr0alTJ/j5+UlU2f1Tq9XYtGkT4uPj0bFjR6xatUrqkqqlVqulLoHI5jAAEdmwYcOG4ebNm9i+fbthW0lJCX744Qc8//zzVe6jVqvx+uuvIygoCCqVCqGhofj4448hhDBqV1xcjNdeew3e3t5wcXFB//79ce3atSqPef36dbz44ovw9fWFSqVC+/btsXz58vs6t40bN6KwsBCDBg3C0KFDsWHDBhQVFVVqV1RUhDlz5uDBBx+Eg4MD/P398be//Q0XL140tNFqtfjss88QFhYGBwcHeHt7o3fv3vjf//4HoOb5SXfPeZozZw5kMhlOnz6N559/Hh4eHujRowcA4OTJkxg9ejRatGgBBwcH+Pn54cUXX8TNmzer/JuNHTsWAQEBUKlUaN68OV5++WWUlJTg0qVLkMlk+PTTTyvtt2/fPshkMqxZs8bUPymRVbGTugAikk5ISAi6deuGNWvWoE+fPgCAX375BTk5ORg6dCgWLVpk1F4Igf79+2PXrl0YO3YsIiIisG3bNrz55pu4fv260QfuuHHj8N133+H5559H9+7dsXPnTvTr169SDenp6XjkkUcgk8kwadIkeHt745dffsHYsWORm5uLqVOn1uncVq1ahV69esHPzw9Dhw7FtGnT8N///heDBg0ytNFoNHj22WeRmJiIoUOHYsqUKcjLy8P27duRnJyMli1bAgDGjh2LlStXok+fPhg3bhzKysrw+++/48CBA+jcuXOd6hs0aBBat26NefPmGcLj9u3bcenSJYwZMwZ+fn44deoUvvzyS5w6dQoHDhyATCYDANy4cQNdu3ZFdnY2JkyYgDZt2uD69ev44YcfUFBQgBYtWuDRRx/FqlWr8Nprr1X6u7i4uCA2NrZOdRNZDUFENmfFihUCgDh8+LBYvHixcHFxEQUFBUIIIQYNGiR69eolhBAiODhY9OvXz7BfQkKCACD+7//+z+h4zz33nJDJZOLChQtCCCGOHz8uAIhXXnnFqN3zzz8vAIjZs2cbto0dO1b4+/uLrKwso7ZDhw4Vbm5uhrouX74sAIgVK1bc8/zS09OFnZ2d+OqrrwzbunfvLmJjY43aLV++XAAQCxYsqHQMrVYrhBBi586dAoB49dVXq21TU213n+/s2bMFADFs2LBKbfXnWtGaNWsEALFnzx7DtpEjRwq5XC4OHz5cbU1ffPGFACDOnDljeK+kpER4eXmJUaNGVdqPyNZwCIzIxg0ePBiFhYX4+eefkZeXh59//rna4a8tW7ZAoVDg1VdfNdr++uuvQwiBX375xdAOQKV2d/fmCCHw448/IiYmBkIIZGVlGV7R0dHIycnB0aNHTT6ntWvXQi6XY+DAgYZtw4YNwy+//ILbt28btv3444/w8vLC5MmTKx1D39vy448/QiaTYfbs2dW2qYuXXnqp0jZHR0fD90VFRcjKysIjjzwCAIa/g1arRUJCAmJiYqrsfdLXNHjwYDg4OBjNfdq2bRuysrLwwgsv1LluImvBAERk47y9vREVFYXVq1djw4YN0Gg0eO6556pse+XKFQQEBMDFxcVoe9u2bQ3v67/K5XLDEJJeaGio0c+ZmZnIzs7Gl19+CW9vb6PXmDFjAAAZGRkmn9N3332Hrl274ubNm7hw4QIuXLiAjh07oqSkBOvXrze0u3jxIkJDQ2FnV/1sgIsXLyIgIACenp4m11GT5s2bV9p269YtTJkyBb6+vnB0dIS3t7ehXU5ODgDd3yw3NxcPPfRQjcd3d3dHTEyM0V1+q1atQmBgIJ588kkzngmRZeIcICLC888/j/HjxyMtLQ19+vSBu7t7g/xe/bN5XnjhBYwaNarKNh06dDDpmOfPn8fhw4cBAK1bt670/qpVqzBhwgQTK61ZdT1BGo2m2n0q9vboDR48GPv27cObb76JiIgINGnSBFqtFr17967Tc4xGjhyJ9evXY9++fQgLC8NPP/2EV155BXI5/78vEQMQEWHAgAH4+9//jgMHDmDdunXVtgsODsaOHTuQl5dn1At09uxZw/v6r1qt1tDDonfu3Dmj4+nvENNoNIiKijLLuaxatQpKpRLffvstFAqF0Xt79+7FokWLkJKSggceeAAtW7bEwYMHUVpaCqVSWeXxWrZsiW3btuHWrVvV9gJ5eHgAALKzs42263vEauP27dtITEzE3LlzMWvWLMP28+fPG7Xz9vaGq6srkpOT73nM3r17w9vbG6tWrUJkZCQKCgowYsSIWtdEZM34fwOICE2aNMHnn3+OOXPmICYmptp2ffv2hUajweLFi422f/rpp5DJZIY7yfRf776LbOHChUY/KxQKDBw4ED/++GOVH+iZmZkmn8uqVavw2GOPYciQIXjuueeMXm+++SYAGG4BHzhwILKysiqdDwDDnVkDBw6EEAJz586tto2rqyu8vLywZ88eo/f//e9/17pufVgTdz1O4O6/mVwuR1xcHP773/8absOvqiYAsLOzw7Bhw/D9999j5cqVCAsLM7lHjchasQeIiACg2iGoimJiYtCrVy/MmDEDf/31F8LDw/Hrr79i06ZNmDp1qmHOT0REBIYNG4Z///vfyMnJQffu3ZGYmIgLFy5UOub777+PXbt2ITIyEuPHj0e7du1w69YtHD16FDt27MCtW7dqfQ4HDx7EhQsXMGnSpCrfDwwMxMMPP4xVq1bhH//4B0aOHIlvvvkG8fHxOHToEB577DGo1Wrs2LEDr7zyCmJjY9GrVy+MGDECixYtwvnz5w3DUb///jt69epl+F3jxo3D+++/j3HjxqFz587Ys2cP/vzzz1rX7urqiscffxwffvghSktLERgYiF9//RWXL1+u1HbevHn49ddf8cQTT2DChAlo27YtUlNTsX79euzdu9doCHPkyJFYtGgRdu3ahQ8++KDW9RBZPeluQCMiqVS8Db4md98GL4QQeXl54rXXXhMBAQFCqVSK1q1bi48++shw+7VeYWGhePXVV0XTpk2Fs7OziImJEVevXq10W7gQutvWJ06cKIKCgoRSqRR+fn7iqaeeEl9++aWhTW1ug588ebIAIC5evFhtmzlz5ggA4sSJE0II3a3nM2bMEM2bNzf87ueee87oGGVlZeKjjz4Sbdq0Efb29sLb21v06dNHHDlyxNCmoKBAjB07Vri5uQkXFxcxePBgkZGRUe1t8JmZmZVqu3btmhgwYIBwd3cXbm5uYtCgQeLGjRtV/s2uXLkiRo4cKby9vYVKpRItWrQQEydOFMXFxZWO2759eyGXy8W1a9eq/bsQ2RqZEHf1txIRkVXp2LEjPD09kZiYKHUpRI0G5wAREVmx//3vfzh+/DhGjhwpdSlEjQp7gIiIrFBycjKOHDmCTz75BFlZWbh06RIcHBykLouo0WAPEBGRFfrhhx8wZswYlJaWYs2aNQw/RHdhDxARERHZHPYAERERkc1hACIiIiKbwwchVkGr1eLGjRtwcXG5r9WeiYiIqOEIIZCXl4eAgIB7rnnHAFSFGzduICgoSOoyiIiIqA6uXr2KZs2a1diGAagK+kUer169CldXV4mrISIiotrIzc1FUFCQ0WLN1WEAqoJ+2MvV1ZUBiIiIyMLUZvoKJ0ETERGRzWEAIiIiIpvDAEREREQ2h3OA7oNGo0FpaanUZZAZKJVKKBQKqcsgIqIGwgBUB0IIpKWlITs7W+pSyIzc3d3h5+fHZz8REdkABqA60IcfHx8fODk58QPTwgkhUFBQgIyMDACAv7+/xBUREVF9YwAykUajMYSfpk2bSl0OmYmjoyMAICMjAz4+PhwOIyKycpwEbSL9nB8nJyeJKyFz019TzusiIrJ+DEB1xGEv68NrSkRkOxiAiIiIyOYwAFGdhYSEYOHChVKXQUREZDIGIBsgk8lqfM2ZM6dOxz18+DAmTJhg3mKJiIgaAO8CswGpqamG79etW4dZs2bh3Llzhm1NmjQxfC+EgEajgZ3dvf9peHt7m7dQIiKySkIIFJdpy18aFJdq0URlBw9ne8lqYgCyAX5+fobv3dzcIJPJDNt2796NXr16YcuWLZg5cyaSkpLw66+/IigoCPHx8Thw4ADUajXatm2L+fPnIyoqynCskJAQTJ06FVOnTgWg62n66quvsHnzZmzbtg2BgYH45JNP0L9//wY9XyIiMqbVCpRotCguLQ8g5UGkqLRCKCm7836JIazcCSxVtTO0KdXU2L6kTFuppslPtsLrz4RK8NfQYQAyAyEECks1Df57HZUKs925NG3aNHz88cdo0aIFPDw8cPXqVfTt2xf//Oc/oVKp8M033yAmJgbnzp3DAw88UO1x5s6diw8//BAfffQR/vWvf2H48OG4cuUKPD09zVInEZEl0mhFeaioKkDUImCYEERKqmhfoqkcQKQikwEqOzmkvu+WAcgMCks1aDdrW4P/3tPvRsPJ3jyX8N1338XTTz9t+NnT0xPh4eGGn9977z1s3LgRP/30EyZNmlTtcUaPHo1hw4YBAObNm4dFixbh0KFD6N27t1nqJCKqC41W1CJAmNbTUX2gqdwjUqoRUv8JDGQywMFOAZVSDpWdHCo7he6rssL3+u33aqNUGN63N+xXcftd39spoFTIGsVjRxiACADQuXNno5/z8/MxZ84cbN68GampqSgrK0NhYSFSUlJqPE6HDh0M3zs7O8PV1dWwxAQRWQchBMq0AmUagVKtFmUagTKNFqVaAU2FbaUabXk7LUo1AmX6tto77cs0WqPjVNynut9RptFWOURTeYjnThAp0zaeAKKQy0wLGfdqY9TeuG1VocRO3jgCiNQYgMzAUanA6XejJfm95uLs7Gz08xtvvIHt27fj448/RqtWreDo6IjnnnsOJSUlNR5HqVQa/SyTyaDVNp6uVyIpCCEMAaBUc+fDvVSjDwS67RrtnQBw93vG7e4+zl2BQivu2reaY94dSCpsuxNIdNsqBpvGFCbqQqmQVerFsFfITejtqE1wqfp9e4UcdgregN0YSB6AlixZgo8++ghpaWkIDw/Hv/71L3Tt2rXKtqWlpZg/fz6+/vprXL9+HaGhofjggw+MhlfmzJmDuXPnGu0XGhqKs2fP1ts5yGQysw1FNRZ//PEHRo8ejQEDBgDQ9Qj99ddf0hZFVEeFJRpczy7AtduFuJ5diJzC0ko9CkYf/vqQYdRDUXVvhUYrqgksd/a38LxQKzIZoJTLYaeQwU4ug1Kh/14OpUIGO4Wu58FoW3l7Zfl7+n0UcpnhWErDfsb71DWI2NvJoZCz94MkDkDr1q1DfHw8li5disjISCxcuBDR0dE4d+4cfHx8KrWfOXMmvvvuO3z11Vdo06YNtm3bhgEDBmDfvn3o2LGjoV379u2xY8cOw8+1uaWbjLVu3RobNmxATEwMZDIZ3nnnHfbkUKOVU1iK6+Xh5trtAsP3up8LcUtdc8+lFBRyXVCo6sO98of+nffsFHIo9UHC8P2d/RVymSFw6N+zU9wJFPrtimpCyt37VDxexZBy53i67+UMFWRhJE0GCxYswPjx4zFmzBgAwNKlS7F582YsX74c06ZNq9T+22+/xYwZM9C3b18AwMsvv4wdO3bgk08+wXfffWdoZ2dnZ3TrN5luwYIFePHFF9G9e3d4eXnhH//4B3Jzc6Uui2yQEAI31SW4fruwvAenoELYKcT124XIKy6753FcVHYI9HBEoLsjPJ3tjUKDsrzXoXKgqBxO7oSU6nsw7OR3ejuq7MGQyxgYiCQmWQAqKSnBkSNHMH36dMM2uVyOqKgo7N+/v8p9iouL4eDgYLTN0dERe/fuNdp2/vx5BAQEwMHBAd26dcP8+fNrvHW7uLgYxcXFhp+t+YN+9OjRGD16tOHnnj17QojK/fMhISHYuXOn0baJEyca/Xz3kFhVx8nOzq5zrWQbNFqB9NwiXY9NhWBz7XYBrmcX4kZ2IYpK79376Olsj0B3RzQrDzn6sNPMwwmBHo5wc1Te8xhEZDskC0BZWVnQaDTw9fU12u7r61vtfJ3o6GgsWLAAjz/+OFq2bInExERs2LABGs2dZ/BERkZi5cqVCA0NRWpqKubOnYvHHnsMycnJcHFxqfK48+fPrzRviIjMo6RMi9QcXbi5Vh5yDD052YVIzS6656RamQzwcVHpwoxRuNG9AtwdrW4eHhHVL4v6L8Znn32G8ePHo02bNpDJZGjZsiXGjBmD5cuXG9r06dPH8H2HDh0QGRmJ4OBgfP/99xg7dmyVx50+fTri4+MNP+fm5iIoKKj+ToTIitw9wVg/LKXv0UnPK0IVnYNG7OQy+Ls76MKNu67HppmHI5qVhx1/N0fY2/HOGSIyH8kCkJeXFxQKBdLT0422p6enVzt/x9vbGwkJCSgqKsLNmzcREBCAadOmoUWLFtX+Hnd3dzz44IO4cOFCtW1UKhVUKlXdToTIyuknGOuHpOoywVhlJ7+r18a4J8fX1YF35hBRg5IsANnb26NTp05ITExEXFwcAECr1SIxMbHGJw0DgIODAwIDA1FaWooff/wRgwcPrrZtfn4+Ll68iBEjRpizfCKroJ9gfKfX5v4nGDfz0AcbJ8M2ryb2Df/gNSGA4jwgPx3IS6vwNQ0oKwbsVICdY/lXB0DpoPtq9FIBygptKm63cwAUSt34HBFZHEmHwOLj4zFq1Ch07twZXbt2xcKFC6FWqw13hY0cORKBgYGYP38+AODgwYO4fv06IiIicP36dcyZMwdarRZvvfWW4ZhvvPEGYmJiEBwcjBs3bmD27NlQKBSG5RmIbEl9TzAOLO/NadAJxlotUHjrTpjJS6/ia/mrtKB+a5HJKwSiqsKUubZXEcrk5nsQKpEtkjQADRkyBJmZmZg1axbS0tIQERGBrVu3GiZGp6SkQC6/M+5fVFSEmTNn4tKlS2jSpAn69u2Lb7/9Fu7u7oY2165dw7Bhw3Dz5k14e3ujR48eOHDgALy9vRv69Ijq3d0TjI16cu5zgnGghyOCGnKCsaYMUGfc1VtTxdf8DEBbWvvjqlyBJr6Ai9+dr0pHoKxI1xNUVgSUFlX4ufDe2/WEVheySgsA3Db7n6RGcrsGCl93bbdzAOScjyUZIQBtGaAp1X2t+Kpym/770rt+1m/T3ONYmgr7lrev8/Hu2rfzWODRVyX7U8pEVfcu27jc3Fy4ubkhJycHrq6uRu8VFRXh8uXLaN68eaVb8smyNcZrW3GC8bUKE4vve4JxhaGqep9gXFpUQ09Nha/qLAAm/OfIqSnQxA9w8a35q72Tec9HiDtBqLaB6Z7bi2oXyDSN5IGOCvtahKYKvVZmC1+q6occtdoG/GCv0L7GD/sK72nKzLOvsKIH0j46FXjavHdg1/T5fTeLuguMyNpUN8FYH3bqMsG44rNv6m2CcU3za+4ONkU5tT+uTAE08ancY2P4Wh5snH0AO3vznlOta5TpPqCVEoRkraZC+KoQkkoL63+7uPO4EWhKdK/i6kutN/ogJGAcWKwpGNSFXKnrFZTbAYryr4ZtCt18Nf37crsKPyvutFMoy3+usK/Czng/o33v3qYwoQ4l4Oov6Z+MAYionlQ3wbhiT46pE4z1t4fX2wRjrRYovF0eYO4xFGXK/BqFqoaemgoBx6kp57bURK7Q9WiZu1erNjRl9whM5ugJq2Z7xZ5B/e+vrTp/uFcVDKr7cFfUPhjcsw5l1YGlpuPL5JyMXwcMQFRrPXv2REREBBYuXAhA97ToqVOnYurUqdXuI5PJsHHjRsOdfnVlruOYU9UTjO88D8fUCcbGd1CZeYJxQ86vqeqrgxv/A23pFHaAogmgatKwv1cI3bDQ3cFIJq8+eOh/ZjCgGjAA2YiYmBiUlpZi69atld77/fff8fjjj+PEiRPo0KFDrY95+PBhODs7m7NMzJkzBwkJCTh+/LjR9tTUVHh4eJj1d9XFb39mYunui7iWXWDSBOO7h6XMNsFY0vk1voC9ea8/USUymW64U6ohT7JaDEA2YuzYsRg4cCCuXbuGZs2aGb23YsUKdO7c2aTwA6BB76xrDIvbCiHwTkIyUm7dGfqxk8vg5+ZgNCxVcYKxn5sDVHYmDunY8vwaIqIGwgBkI5599ll4e3tj5cqVmDlzpmF7fn4+1q9fj2nTpmHYsGHYs2cPbt++jZYtW+Ltt9+u8flJdw+BnT9/HmPHjsWhQ4fQokULfPbZZ5X2+cc//oGNGzfi2rVr8PPzw/DhwzFr1iwolUqsXLnSsCabfk7LihUrMHr06EpDYElJSZgyZQr2798PJycnDBw4EAsWLECTJrru+dGjRyM7Oxs9evTAJ598gpKSEgwdOhQLFy6EUlm3IaWjKdlIuVUAJ3sFVozugiBPJ9MmGAsBFNzi/BoiokaAAcgchKj/B65VRelU6/FtOzs7jBw5EitXrsSMGTMMAWP9+vXQaDR44YUXsH79evzjH/+Aq6srNm/ejBEjRqBly5bo2rXrPY+v1Wrxt7/9Db6+vjh48CBycnKqnBvk4uKClStXIiAgAElJSRg/fjxcXFzw1ltvYciQIUhOTsbWrVuxY8cOAICbm1ulY6jVakRHR6Nbt244fPgwMjIyMG7cOEyaNAkrV640tNu1axf8/f2xa9cuXLhwAUOGDEFERATGjx9fq7/Z3RKOXQcARLf3Q2SLpnfe0JQB6sxaDEWlmza/xt7l3rd4u/gCDu6c50BEZCIGIHMoLQDmBTT87337hklzMF588UV89NFH+O2339CzZ08Auh6WgQMHIjg4GG+88Yah7eTJk7Ft2zZ8//33tQpAO3bswNmzZ7Ft2zYEBOj+FvPmzTNanBaAUe9TSEgI3njjDaxduxZvvfUWHB0d0aRJE9jZ2dU45LV69WoUFRXhm2++McxBWrx4MWJiYvDBBx8YHqTp4eGBxYsXQ6FQoE2bNujXrx8SExNrH4BKCnThJT8DZTmpaHLid7xhl4WBxUrgu+zyHpt0XfgxZX6No+e9Jw27+HF+DRFRPWIAsiFt2rRB9+7dsXz5cvTs2RMXLlzA77//jnfffRcajQbz5s3D999/j+vXr6OkpATFxcVwcqrd7bZnzpxBUFCQIfwAQLdu3Sq1W7duHRYtWoSLFy8iPz8fZWVl93xYVVW/Kzw83GgC9qOPPgqtVotz584ZAlD79u2hUNwZ8vH390dSUtKdh49pSnU9MpryZ4kUFunugvruDSDjBFCSZ9jXDsA/9N9cqqIomVw3d+ZeQ1FNfDm/hoioEWAAMgelk643Rorfa6KxY8di8uTJWLJkCVasWIGWLVviiSeewAcffIDPPvsMCxcuRFhYGJydnTF16lSUlJjvybP79+/H8OHDMXfuXERHR8PNzQ1r167FJ598cv8H15bfbl5aCBRmA2VFUMo0QHaKIejICm5BW5QLpCdXfYwyobvFNvvKnfBj5wi4+OJSYROcVTvByy8IXR9qWzngOHtxfg0RkQVhADIHmcxihisGDx6MKVOmYPXq1fjmm2/w8ssvQyaT4Y8//kBsbCxeeOEFALo5PX/++SfatWtXq+O2bdsWV69eRWpqKvz9dU/3PHDggFGbffv2ITg4GDNmzDBsu3LlilEbe3t7aDTlT5wV4s4j4QHDnVFtQ/ywcsUxqK+cgLOjEtCU4Y8dv0EulyPUSwHcvqwbviorBgpu3jl4xSfZVnzomEKpe8ZJKQAnAQz4AnArv1tK5QJ1iQb9/m8HCks1SOj/KBDkXqu/CRERNV4MQDamSZMmGDJkCKZPn47c3FyMHj0aANC6dWv88MMP2LdvHzw8PLBgwQKkp6fXOgBFRUXhwQcfxKhRo/DRRx8hNzfXKOjof0dKSgrWrlmNLg93xObNP2Pjxg0ABJCbCmhLEdLUCZcvXcLxHT+gmV9TuDg7QaUqHzJSZwK5NzC8Xw/MnqfEqFdex5zX/47Mm7cx+Z0PMWJgP/j6+d95EJrCXjf0pA85jh6A0hnwD9cNWd2tqAiwzwUC2wMV1gL79XQaCks1CGnqhPBmlSdlExGR5eGSvjZo7NixuH37NqKjow1zdmbOnImHH34Y0dHR6NmzJ/z8/Ex66rJcJsPGH9ejsECNrl27YtzYMfjnzDd1b+ZnAFnn0f+R1nht/AuYNHEiIjp1xr7fduCdV1/UreGTnwYU3MTAZ7qhd89u6PXci/AOexJrErbqnl8D6NYAcvSAk1cwtm1aj1v5xejSbySee2k6nno6GouXrQJ82wPeoYDKRbfit4u/bnjKwa38kfGyqsNPDTYe0w1vxkYEmm/JCSIikhRXg68CV4OvQGiNVy2uNIG4ws+m3AkFWYVH1pcPQRl9rbDdxMBSV1Vd28y8YkTO2wGtAHa90RPNvSxjqJOIyBZxNXiqmRC6YKMPMVXdEaUPNtp7L9ZpRKa4E2L0AUYfZioGHrnCIp5d8/PJG9AKIDzIneGHiMiKMABZEyGqDjP6QGP4uUwXgExRqXemYu+N8s6EYrl1jaomHNcNf8VFSPCcJyIiqjcMQJZAfyeUoXemYi/NXcHGFDJ5FYGmqmBjZxG9NeZ2OUuNE1ezoZDL8GwHBiAiImvCACQVfW9NVcNOdwcbk3trquupuWs7n1tTo03HdUtfPNrKC94uKomrISIic2IAqqM6zR1XZwEFWXeCjSlk8srPrZErq+7BscHeGnOoeE2FENjE4S8iIqvFAGQi/UriBQUFcHR0NG1nodE9qbgi+d13P911F5Q+2MjkDDb1rKBAt6CtUqnEiWs5uJylhoNSjmfaV78uGRERWSYGIBMpFAq4u7sjIyMDAODk5GTCs2EcAOdmgMwOUCjKe2tqmDQsAGhQfos51RchBAoKCpCRkQF3d3coFArDyu/PtPNDExX/Z0JEZG34X/Y60K9Urg9BZB3c3d3h5+eHMo0WP58sH/7qyOEvIiJrxABUBzKZDP7+/vDx8UFpKXtnrIFSqTSsHP/HxSxk5ZfA09kej7X2lrgyIiKqDwxA90GhUBg+NMl6bCof/uoX5g+lwrqea0RERDr8rztRBQUlZdh2Kg0Ah7+IiKwZAxBRBdtPp0NdokGQpyMefsBD6nKIiKieMAARVaB/9k9sOFd+JyKyZgxAROVuqUuw589MABz+IiKydgxAROU2n7yBMq3AQ4GuaOXjInU5RERUjxiAiMrdWfk9UOJKiIiovjEAEQG4eqsAR67chkwGxIRz+IuIyNoxABHhzsrv3Vs2ha+rg8TVEBFRfWMAIpsnhMDG8ocfxnL4i4jIJjAAkc07dSMXFzPVUNnJ0fshrvxORGQLGIDI5ulXfo9q6wtXB6XE1RARUUNgACKbptEK/HSi/OGHEZz8TERkKxiAyKYduHQTGXnFcHNUomeoj9TlEBFRA2EAIpumH/7qG+YPezv+z4GIyFbwv/hks4pKNdiaXL7yO4e/iIhsCgMQ2azEMxnIKy5DgJsDuoR4Sl0OERE1IAYgslkJ5Q8/jO0YCLmcK78TEdkSBiCySdkFJdh9LgMA1/4iIrJFDEBkk7YkpaFUI9DGzwWhflz5nYjI1jAAkU3SD3/FdWTvDxGRLWIAIptzPbsQhy7fgkwG9OfK70RENokBiGyOfuX3riGeCHB3lLgaIiKSAgMQ2ZxNx3RLXwzg8BcRkc1iACKbciY1F+fS82CvkKNPmL/U5RARkUQYgMim6Cc/92rjDTdHrvxORGSrJA9AS5YsQUhICBwcHBAZGYlDhw5V27a0tBTvvvsuWrZsCQcHB4SHh2Pr1q33dUyyHVqtwH+P64a/+OwfIiLbJmkAWrduHeLj4zF79mwcPXoU4eHhiI6ORkZGRpXtZ86ciS+++AL/+te/cPr0abz00ksYMGAAjh07Vudjku049Nct3MgpgouDHXq14crvRES2TCaEEFL98sjISHTp0gWLFy8GAGi1WgQFBWHy5MmYNm1apfYBAQGYMWMGJk6caNg2cOBAODo64rvvvqvTMauSm5sLNzc35OTkwNXV9X5PkxqJ6RtOYs2hqxjcuRk+fC5c6nKIiMjMTPn8lqwHqKSkBEeOHEFUVNSdYuRyREVFYf/+/VXuU1xcDAcHB6Ntjo6O2Lt3b52PqT9ubm6u0YusS3GZBptPpgLg8BcREUkYgLKysqDRaODr62u03dfXF2lpaVXuEx0djQULFuD8+fPQarXYvn07NmzYgNTU1DofEwDmz58PNzc3wysoKOg+z44am11nM5FbVAY/VwdEtmgqdTlERCQxySdBm+Kzzz5D69at0aZNG9jb22PSpEkYM2YM5PL7O43p06cjJyfH8Lp69aqZKqbGQv/ww/4RAVBw5XciIpsnWQDy8vKCQqFAenq60fb09HT4+flVuY+3tzcSEhKgVqtx5coVnD17Fk2aNEGLFi3qfEwAUKlUcHV1NXqR9cgtKkXiWd0k+NgILn1BREQSBiB7e3t06tQJiYmJhm1arRaJiYno1q1bjfs6ODggMDAQZWVl+PHHHxEbG3vfxyTrtTUpDSVlWrT2aYJ2/gy3REQE2En5y+Pj4zFq1Ch07twZXbt2xcKFC6FWqzFmzBgAwMiRIxEYGIj58+cDAA4ePIjr168jIiIC169fx5w5c6DVavHWW2/V+phkeyqu/C6TcfiLiIgkDkBDhgxBZmYmZs2ahbS0NERERGDr1q2GScwpKSlG83uKioowc+ZMXLp0CU2aNEHfvn3x7bffwt3dvdbHJNuSllOE/ZduAuDK70REdIekzwFqrPgcIOvx5Z6LmLflLLqEeGD9S92lLoeIiOqRRTwHiKghJJSv/B7LZ/8QEVEFDEBktc6n5+F0ai7s5DL048rvRERUAQMQWS395Oeeod7wcLaXuBoiImpMGIDIKgkhsOk4h7+IiKhqDEBklY5cuY1rtwvhbK9AVFveAUhERMYYgMgqbTymG/6KfsgPjvYKiashIqLGhgGIrE5JmRabk3QL5A7oyOEvIiKqjAGIrM6ePzORXVAKbxcVurf0krocIiJqhBiAyOro7/6K6cCV34mIqGoMQGRV8ovLsONMOgAgriOXviAioqoxAJFV2ZachqJSLVp4OSMs0E3qcoiIqJFiACKroh/+io3gyu9ERFQ9BiCyGhl5RfjjQhYAIDaCw19ERFQ9BiCyGv89kQqtADo+4I4QL2epyyEiokaMAYisxqby4a84Ln1BRET3wABEVuFSZj5OXsuBQi5Dvw5c+Z2IiGrGAERWIaF84dPHWnvBq4lK4mqIiKixYwAii6db+Z3DX0REVHsMQGTxjl3NxpWbBXBUKvB0O678TkRE98YARBZvk37l9/a+cFbZSVwNERFZAgYgsmilGi1+Pqlb+T2WK78TEVEtMQCRRdt7IQs31SVo6myPx1px5XciIqodBiCyaPrhr2c7+MNOwX/ORERUO/zEIIulLi7DtlO6ld85/EVERKZgACKLtf10OgpLNQhu6oSOQe5Sl0NERBaEAYgslmHl9/AArvxOREQmYQAii5SVX4zfz5ev/M7hLyIiMhEDEFmkzSdTodEKdGjmhpbeTaQuh4iILAwDEFkkw/AXl74gIqI6YAAii3PlphrHUrIhlwEx4Vz5nYiITMcARBZnU/nK74+28oKPi4PE1RARkSViACKLIoRAwjEOfxER0f1hACKLknQ9B5ey1HBQyhHdniu/ExFR3TAAkUVJOKYb/opq6wsXB6XE1RARkaViACKLodEK/PekLgDFcfiLiIjuAwMQWYx9F7OQmVcMdyclHn/QW+pyiIjIgjEAkcXQD3/1C/OHvR3/6RIRUd3xU4QsQmGJBluTUwEAcVz6goiI7hMDEFmEHWfSoS7RINDdEZ0e8JC6HCIisnAMQGQRNpUvfRHXMQByOVd+JyKi+8MARI3ebXUJdp/LBMC7v4iIyDwYgKjR25yUijKtQDt/V7T2dZG6HCIisgIMQNToVRz+IiIiMgcGIGrUrt4qwOG/bkMmA/qHc/iLiIjMgwGIGrWfTuie/fNI86bwc+PK70REZB4MQNRoVVz5fQCf/UNERGbEAESN1unUXJzPyIe9nRy9w/ykLoeIiKwIAxA1WpuO64a/nmrjA1eu/E5ERGYkeQBasmQJQkJC4ODggMjISBw6dKjG9gsXLkRoaCgcHR0RFBSE1157DUVFRYb358yZA5lMZvRq06ZNfZ8GmZlGK/BTeQCK5bN/iIjIzOyk/OXr1q1DfHw8li5disjISCxcuBDR0dE4d+4cfHx8KrVfvXo1pk2bhuXLl6N79+74888/MXr0aMhkMixYsMDQrn379tixY4fhZzs7SU+T6uDg5ZtIyy2Cq4MderXhyu9ERGRekvYALViwAOPHj8eYMWPQrl07LF26FE5OTli+fHmV7fft24dHH30Uzz//PEJCQvDMM89g2LBhlXqN7Ozs4OfnZ3h5eXk1xOmQGeknP/cN84fKTiFxNUREZG0kC0AlJSU4cuQIoqKi7hQjlyMqKgr79++vcp/u3bvjyJEjhsBz6dIlbNmyBX379jVqd/78eQQEBKBFixYYPnw4UlJSaqyluLgYubm5Ri+STlGpBr8kpQHg8BcREdUPycaGsrKyoNFo4Ovra7Td19cXZ8+erXKf559/HllZWejRoweEECgrK8NLL72Et99+29AmMjISK1euRGhoKFJTUzF37lw89thjSE5OhotL1csozJ8/H3PnzjXfydF92XU2A3nFZfB3c0Bkc0+pyyEiIisk+SRoU+zevRvz5s3Dv//9bxw9ehQbNmzA5s2b8d577xna9OnTB4MGDUKHDh0QHR2NLVu2IDs7G99//321x50+fTpycnIMr6tXrzbE6VA1EsqXvugfwZXfiYiofkjWA+Tl5QWFQoH09HSj7enp6fDzq/qZL++88w5GjBiBcePGAQDCwsKgVqsxYcIEzJgxA3J55Tzn7u6OBx98EBcuXKi2FpVKBZVKdR9nQ+aSU1CKXWe58jsREdUvyXqA7O3t0alTJyQmJhq2abVaJCYmolu3blXuU1BQUCnkKBS6CbJCiCr3yc/Px8WLF+Hv72+myqk+/ZKcihKNFqG+Lmjr7yp1OUREZKUkvT88Pj4eo0aNQufOndG1a1csXLgQarUaY8aMAQCMHDkSgYGBmD9/PgAgJiYGCxYsQMeOHREZGYkLFy7gnXfeQUxMjCEIvfHGG4iJiUFwcDBu3LiB2bNnQ6FQYNiwYZKdJ9Wefvgrliu/ExFRPZI0AA0ZMgSZmZmYNWsW0tLSEBERga1btxomRqekpBj1+MycORMymQwzZ87E9evX4e3tjZiYGPzzn/80tLl27RqGDRuGmzdvwtvbGz169MCBAwfg7c1nyTR2N7ILceDSLQBA/3AGICIiqj8yUd3YkQ3Lzc2Fm5sbcnJy4OrKYZiGsvS3i3j/l7PoGuKJ71+qehiUiIioOqZ8flvUXWBk3fQPP4zjyu9ERFTPGICoUTiXloezaXlQKmToy5XfiYionjEAUaOgn/zcM9QH7k72EldDRETWjgGIJKetsPI7n/1DREQNgQGIJHf4r1u4nl2IJio7PNXWR+pyiIjIBpgcgEJCQvDuu+/ec4FRotpKKO/96f2QHxyUXPmdiIjqn8kBaOrUqdiwYQNatGiBp59+GmvXrkVxcXF91EY2oKRMiy1JqQCAAbz7i4iIGkidAtDx48dx6NAhtG3bFpMnT4a/vz8mTZqEo0eP1keNZMV2n8tATmEpfFxUeKRFU6nLISIiG1HnOUAPP/wwFi1aZFhu4j//+Q+6dOmCiIgILF++vNq1uYgq2lQ+/NU/PAAKrvxOREQNpM5LYZSWlmLjxo1YsWIFtm/fjkceeQRjx47FtWvX8Pbbb2PHjh1YvXq1OWslK5NXVIodZ9IB8OGHRETUsEwOQEePHsWKFSuwZs0ayOVyjBw5Ep9++inatGljaDNgwAB06dLFrIWS9dmanIbiMi1aejujfQCXHCEiooZjcgDq0qULnn76aXz++eeIi4uDUqms1KZ58+YYOnSoWQok66V/+GFcRCBkMg5/ERFRwzE5AF26dAnBwcE1tnF2dsaKFSvqXBRZv/TcIuy7eBMAEMuHHxIRUQMzeRJ0RkYGDh48WGn7wYMH8b///c8sRZH1+++JGxAC6BTsgQeaOkldDhER2RiTA9DEiRNx9erVStuvX7+OiRMnmqUosn53hr8CJK6EiIhskckB6PTp03j44Ycrbe/YsSNOnz5tlqLIul3IyEfy9VzYyWXo14EBiIiIGp7JAUilUiE9Pb3S9tTUVNjZ1fmuerIhm8p7fx5/0Buezlz5nYiIGp7JAeiZZ57B9OnTkZOTY9iWnZ2Nt99+G08//bRZiyPrI4QwDH/FcviLiIgkYnKXzccff4zHH38cwcHB6NixIwDg+PHj8PX1xbfffmv2Asm6HE25jau3CuFkr8DT7XylLoeIiGyUyQEoMDAQJ0+exKpVq3DixAk4OjpizJgxGDZsWJXPBCKqKOFY+crv7f3gZM8hUyIikkadPoGcnZ0xYcIEc9dCVq5Uo8Xm8pXfY7n0BRERSajO/xf89OnTSElJQUlJidH2/v3733dRZJ1+P5+JW+oSeDWxx6MtufI7ERFJp05Pgh4wYACSkpIgk8kMq77rlzLQaDTmrZCshn7469kOAbBTmDz/noiIyGxM/hSaMmUKmjdvjoyMDDg5OeHUqVPYs2cPOnfujN27d9dDiWQN8ovL8OvpNABc+Z2IiKRncg/Q/v37sXPnTnh5eUEul0Mul6NHjx6YP38+Xn31VRw7dqw+6iQL9+upNBSVahHS1AnhzdykLoeIiGycyT1AGo0GLi4uAAAvLy/cuKEb1ggODsa5c+fMWx1ZjYTjun8nsVz5nYiIGgGTe4AeeughnDhxAs2bN0dkZCQ+/PBD2Nvb48svv0SLFi3qo0aycJl5xdh7PhMAh7+IiKhxMDkAzZw5E2q1GgDw7rvv4tlnn8Vjjz2Gpk2bYt26dWYvkCzfzydvQCuA8CB3NPdylrocIiIi0wNQdHS04ftWrVrh7NmzuHXrFjw8PDi0QVXSD39x5XciImosTJoDVFpaCjs7OyQnJxtt9/T0ZPihKl3OUuPE1Wwo5DI8y5XfiYiokTApACmVSjzwwAN81g/VWsIx3cKnj7bygreLSuJqiIiIdEy+C2zGjBl4++23cevWrfqoh6yIEAKbyld+5/AXERE1JibPAVq8eDEuXLiAgIAABAcHw9nZeFLr0aNHzVYcWbYT13Lw180COCoViG7vJ3U5REREBiYHoLi4uHoog6yRfvjr6Xa+cFZx5XciImo8TP5Umj17dn3UQVamTKPFzyfL7/7qyOEvIiJqXLgiJdWLPy7eRFZ+CTyd7fFYa2+pyyEiIjJicg+QXC6v8ZZ33iFGALCpfPirX5g/lFz5nYiIGhmTA9DGjRuNfi4tLcWxY8fw9ddfY+7cuWYrjCxXQUkZtp7Sr/zO4S8iImp8TA5AsbGxlbY999xzaN++PdatW4exY8eapTCyXNtPp6OgRIMgT0c8/ICH1OUQERFVYraxiUceeQSJiYnmOhxZsE2GpS+48jsRETVOZglAhYWFWLRoEQIDudK3rbulLsGeP3Urv8dG8N8DERE1TiYPgd296KkQAnl5eXBycsJ3331n1uLI8mw+eQNlWoGHAl3RyqeJ1OUQERFVyeQA9OmnnxoFILlcDm9vb0RGRsLDg/M9bF1CheEvIiKixsrkADR69Oh6KIOsQcrNAhy5chsyGRATzru/iIio8TJ5DtCKFSuwfv36StvXr1+Pr7/+2ixFkWXSL3zavWVT+Lo6SFwNERFR9UwOQPPnz4eXl1el7T4+Ppg3b55ZiiLLI4RAQnkA4uRnIiJq7EwOQCkpKWjevHml7cHBwUhJSTFLUWR5Tt3IxcVMNVR2cvR+iCu/ExFR42ZyAPLx8cHJkycrbT9x4gSaNm1qlqLI8uhXfo9q6wtXB6XE1RAREdXM5AA0bNgwvPrqq9i1axc0Gg00Gg127tyJKVOmYOjQoSYXsGTJEoSEhMDBwQGRkZE4dOhQje0XLlyI0NBQODo6IigoCK+99hqKioru65h0fzRagZ9O6O7+io3g5GciImr8TA5A7733HiIjI/HUU0/B0dERjo6OeOaZZ/Dkk0+aPAdo3bp1iI+Px+zZs3H06FGEh4cjOjoaGRkZVbZfvXo1pk2bhtmzZ+PMmTNYtmwZ1q1bh7fffrvOx6T7d+DSTWTkFcPNUYmeoT5Sl0NERHRPMiGEqMuO58+fx/Hjx+Ho6IiwsDAEBwebfIzIyEh06dIFixcvBgBotVoEBQVh8uTJmDZtWqX2kyZNwpkzZ4yW3Hj99ddx8OBB7N27t07HrEpubi7c3NyQk5MDV1dXk8/L1ryx/gR+OHINw7o+gPl/C5O6HCIislGmfH7XeSmM1q1bY9CgQXj22WfrFH5KSkpw5MgRREVF3SlGLkdUVBT2799f5T7du3fHkSNHDENaly5dwpYtW9C3b986H5PuT1GpBluTy1d+5/AXERFZCJMD0MCBA/HBBx9U2v7hhx9i0KBBtT5OVlYWNBoNfH19jbb7+voiLS2tyn2ef/55vPvuu+jRoweUSiVatmyJnj17GobA6nJMACguLkZubq7Ri2on8UwG8ovLEOjuiC4hnlKXQ0REVCsmB6A9e/YYelwq6tOnD/bs2WOWoqqze/duzJs3D//+979x9OhRbNiwAZs3b8Z77713X8edP38+3NzcDK+goCAzVWz99M/+6R8RALmcK78TEZFlMHkpjPz8fNjb21farlQqTeo58fLygkKhQHp6utH29PR0+PlV/RyZd955ByNGjMC4ceMAAGFhYVCr1ZgwYQJmzJhRp2MCwPTp0xEfH2/4OTc3lyGoFrILSrD7nG5yOdf+IiIiS2JyD1BYWBjWrVtXafvatWvRrl27Wh/H3t4enTp1MprQrNVqkZiYiG7dulW5T0FBAeRy45IVCgUA3ZOI63JMAFCpVHB1dTV60b1tSUpDqUagjZ8LQv1cpC6HiIio1kzuAXrnnXfwt7/9DRcvXsSTTz4JAEhMTMTq1avxww8/mHSs+Ph4jBo1Cp07d0bXrl2xcOFCqNVqjBkzBgAwcuRIBAYGYv78+QCAmJgYLFiwAB07dkRkZCQuXLiAd955BzExMYYgdK9jkvnoH34Y15G9P0REZFlMDkAxMTFISEjAvHnz8MMPP8DR0RHh4eHYuXMnPD1NmwQ7ZMgQZGZmYtasWUhLS0NERAS2bt1qmMSckpJi1OMzc+ZMyGQyzJw5E9evX4e3tzdiYmLwz3/+s9bHJPO4drsAh/66BZkM6M+V34mIyMLU+TlAerm5uVizZg2WLVuGI0eOQKPRmKs2yfA5QPf2790X8OHWc4hs7ol1f69+eJGIiKihNMhzgPbs2YNRo0YhICAAn3zyCZ588kkcOHCgrocjC7PpmG7piwEc/iIiIgtk0hBYWloaVq5ciWXLliE3NxeDBw9GcXExEhISTJoATZbtTGouzqXnwV4hR58wf6nLISIiMlmte4BiYmIQGhqKkydPYuHChbhx4wb+9a9/1Wdt1Ejpn/3Tq4033By58jsREVmeWvcA/fLLL3j11Vfx8ssvo3Xr1vVZEzViWq3AT8d1w1989g8REVmqWvcA7d27F3l5eejUqRMiIyOxePFiZGVl1Wdt1AgdvHwLqTlFcHGwQ682XPmdiIgsU60D0COPPIKvvvoKqamp+Pvf/461a9ciICAAWq0W27dvR15eXn3WSY3EpvLhrz4P+cFBqZC4GiIiorox+S4wZ2dnvPjii9i7dy+SkpLw+uuv4/3334ePjw/69+9fHzVSI1FcpsGWpFQAfPghERFZtjrfBg8AoaGh+PDDD3Ht2jWsWbPGXDVRI7XrbCZyi8rg5+qAR5o3lbocIiKiOruvAKSnUCgQFxeHn376yRyHo0ZqE1d+JyIiK2GWAETWL6ewFIlndSu/x0Zw6QsiIrJsDEBUK1uTU1FSpkVrnyZo58/lQYiIyLIxAFGtJJQvfRHXMRAyGYe/iIjIsjEA0T2l5RThwOWbALjyOxERWQcGILqnn05chxBAlxAPBHk6SV0OERHRfWMAonvSD3/FcukLIiKyEgxAVKPz6Xk4nZoLO7kM/bjyOxERWQkGIKqRfuX3nqHe8HC2l7gaIiIi82AAompptYLDX0REZJUYgKhaR1Ju43p2IZztFYhq6yt1OURERGbDAETVSjimG/6KfsgPjvZc+Z2IiKwHAxBVqaRMi83lK78P4MrvRERkZRiAqEp7/sxEdkEpvF1U6N7SS+pyiIiIzIoBiKqkv/srpkMAFFz5nYiIrAwDEFWSV1SK7afTAQBxHbn0BRERWR8GIKpk26l0FJdp0cLLGWGBblKXQ0REZHYMQFTJpvLhr9gIrvxORETWiQGIjGTkFeGPC1kAOPxFRETWiwGIjPz3RCq0Auj4gDuCmzpLXQ4REVG9YAAiI/rhrzgufUFERFaMAYgMLmbm4+S1HCjkMvTrwJXfiYjIejEAkcGm8qUvHmvtBa8mKomrISIiqj8MQAQAEEIg4bhu5XcOfxERkbVjACIAwLGr2Ui5VQBHpQJPt+PK70REZN0YgAjAneGv6Pa+cFbZSVwNERFR/WIAIpRqtPj5pG7l91iu/E5ERDaAAYiw90IWbqpL0NTZHo+14srvRERk/RiACAnlw1/PdvCHnYL/JIiIyPrx087GqYvL8Osp3crvHP4iIiJbwQBk47afTkdhqQbBTZ3QMchd6nKIiIgaBAOQjUvgyu9ERGSDGIBsWFZ+MX4/X77yewRXficiItvBAGTDNp9MhUYr0KGZG1p4N5G6HCIiogbDAGTDKg5/ERER2RIGIBv1V5Yax1KyIZcBMeFc+Z2IiGwLA5CN2lS+8Omjrbzg4+IgcTVEREQNiwHIBgkhsInDX0REZMMYgGxQ0vUcXMpSw0EpR3R7rvxORES2hwHIBiUc0w1/RbX1hYuDUuJqiIiIGh4DkI0p02jx35O6ABTH4S8iIrJRjSIALVmyBCEhIXBwcEBkZCQOHTpUbduePXtCJpNVevXr18/QZvTo0ZXe7927d0OcSqO37+JNZOYVw91Jiccf9Ja6HCIiIknYSV3AunXrEB8fj6VLlyIyMhILFy5EdHQ0zp07Bx8fn0rtN2zYgJKSEsPPN2/eRHh4OAYNGmTUrnfv3lixYoXhZ5VKVX8nYUH0z/7pF+YPe7tGkX+JiIganOSfgAsWLMD48eMxZswYtGvXDkuXLoWTkxOWL19eZXtPT0/4+fkZXtu3b4eTk1OlAKRSqYzaeXh4NMTpNGqFJRpsS04DAMRx5XciIrJhkgagkpISHDlyBFFRUYZtcrkcUVFR2L9/f62OsWzZMgwdOhTOzs5G23fv3g0fHx+Ehobi5Zdfxs2bN6s9RnFxMXJzc41e1mjHmXSoSzRo5uGITg8wEBIRke2SNABlZWVBo9HA19f4VmxfX1+kpaXdc/9Dhw4hOTkZ48aNM9reu3dvfPPNN0hMTMQHH3yA3377DX369IFGo6nyOPPnz4ebm5vhFRQUVPeTasTuPPsnAHI5V34nIiLbJfkcoPuxbNkyhIWFoWvXrkbbhw4davg+LCwMHTp0QMuWLbF792489dRTlY4zffp0xMfHG37Ozc21uhB0W12C3ecyAfDuLyIiIkl7gLy8vKBQKJCenm60PT09HX5+fjXuq1arsXbtWowdO/aev6dFixbw8vLChQsXqnxfpVLB1dXV6GVtNielokwr0M7fFa19XaQuh4iISFKSBiB7e3t06tQJiYmJhm1arRaJiYno1q1bjfuuX78excXFeOGFF+75e65du4abN2/C3992F/1MOKYb/orrGCBxJURERNKT/C6w+Ph4fPXVV/j6669x5swZvPzyy1Cr1RgzZgwAYOTIkZg+fXql/ZYtW4a4uDg0bdrUaHt+fj7efPNNHDhwAH/99RcSExMRGxuLVq1aITo6ukHOqbG5eqsA/7tyGzIZ0D+cw19ERESSzwEaMmQIMjMzMWvWLKSlpSEiIgJbt241TIxOSUmBXG6c086dO4e9e/fi119/rXQ8hUKBkydP4uuvv0Z2djYCAgLwzDPP4L333rPZZwH9dEL35OdHmjeFnxtXficiIpIJIYTURTQ2ubm5cHNzQ05OjsXPBxJC4JlP9+B8Rj4+HNgBg7tY1+RuIiIiPVM+vyUfAqP6dTo1F+cz8mFvJ0fvsJonlhMREdkKBiArt+m4bvjrqTY+cOXK70RERAAYgKyaRisqPPyQk5+JiIj0GICs2MFLN5GeWwxXBzv0asOV34mIiPQYgKyYfuX3vmH+UNkpJK6GiIio8WAAslJFpRr8kqRbT43DX0RERMYYgKzUrrMZyCsug7+bAyKbe0pdDhERUaPCAGSl9MNf/bnyOxERUSUMQFYop6AUu85y5XciIqLqMABZoS3JqSjRaBHq64K2/pb9JGsiIqL6wABkhfQrv8dy5XciIqIqMQBZmRvZhTh4+RYAoH84AxAREVFVGICsjH7l967NPdHMw0niaoiIiBonBiArox/+4uRnIiKi6jEAWZGzabk4m5YHpUKGvlz5nYiIqFoMQFYk4Zhu+KtnqA/cnewlroaIiKjxYgCyElqtwE/HOfxFRERUGwxAVuLwX7dwI6cITVR2eKqtj9TlEBERNWoMQFYi4bhu+Kv3Q35wUHLldyIiopowAFmBkjIttiSlAgAGdOTwFxER0b0wAFmB3ecykFNYCh8XFR5p0VTqcoiIiBo9BiArsKl8+Kt/eAAUXPmdiIjonhiALFxuUSm2n0kHAMRx+IuIiKhWGIAs3NbkNJSUadHS2xntA7jyOxERUW0wAFm4TRWe/SOTcfiLiIioNhiALFh6bhH2XbwJAIjlww+JiIhqjQHIgv33xA0IAXQK9sADTbnyOxERUW0xAFmwBMPwV4DElRAREVkWBiALdSEjD8nXc2Enl6FfBwYgIiIiUzAAWSj9yu+PP+gNT2eu/E5ERGQKBiALJITAphO64a9YDn8RERGZjAHIAh1NuY2rtwrhZK/A0+18pS6HiIjI4jAAWSD98Ffv9n5wsreTuBoiIiLLwwBkYUo1WmwuX/k9lktfEBER1QkDkIX5/XwmbqlL4NXEHo+25MrvREREdcEAZGE2lg9/PdshAHYKXj4iIqK64CeoBckvLsP202kAuPI7ERHR/WAAsiC/nkpDUakWIU2dEN7MTepyiIiILBYDkAVJOK4b/orryJXfiYiI7gcDkIXIzCvG3vOZAIA4rvxORER0XxiALMTPJ29AK4DwIHeEeDlLXQ4REZFFYwCyEIbhLy59QUREdN8YgCzA5Sw1TlzNhkIuw7Nc+Z2IiOi+MQBZgIRjuoVPH23lBW8XlcTVEBERWT4GoEZOCIFNx3UBiMNfRERE5sEA1MiduJaDv24WwFGpQHR7P6nLISIisgoMQI2cfvjr6Xa+cFZx5XciIiJzYABqxMo0Wvx8Uv/wQw5/ERERmUujCEBLlixBSEgIHBwcEBkZiUOHDlXbtmfPnpDJZJVe/fr1M7QRQmDWrFnw9/eHo6MjoqKicP78+YY4FbPaeyELWfkl8HS2x2OtvaUuh4iIyGpIHoDWrVuH+Ph4zJ49G0ePHkV4eDiio6ORkZFRZfsNGzYgNTXV8EpOToZCocCgQYMMbT788EMsWrQIS5cuxcGDB+Hs7Izo6GgUFRU11GmZxabyZ//0C/OHkiu/ExERmY3kn6oLFizA+PHjMWbMGLRr1w5Lly6Fk5MTli9fXmV7T09P+Pn5GV7bt2+Hk5OTIQAJIbBw4ULMnDkTsbGx6NChA7755hvcuHEDCQkJDXhm96egpAzbTulXfufwFxERkTlJGoBKSkpw5MgRREVFGbbJ5XJERUVh//79tTrGsmXLMHToUDg765aHuHz5MtLS0oyO6ebmhsjIyFofszHYfjodBSUaBHk64uEHPKQuh4iIyKpIeltRVlYWNBoNfH19jbb7+vri7Nmz99z/0KFDSE5OxrJlywzb0tLSDMe4+5j69+5WXFyM4uJiw8+5ubm1Pof6ssmw9AVXficiIjI3yYfA7seyZcsQFhaGrl273tdx5s+fDzc3N8MrKCjITBXWzS11Cfb8qVv5PZYrvxMREZmdpAHIy8sLCoUC6enpRtvT09Ph51fzQ//UajXWrl2LsWPHGm3X72fKMadPn46cnBzD6+rVq6aeilltPnkDZVqBhwJd0cqniaS1EBERWSNJA5C9vT06deqExMREwzatVovExER069atxn3Xr1+P4uJivPDCC0bbmzdvDj8/P6Nj5ubm4uDBg9UeU6VSwdXV1eglpY3H9EtfsPeHiIioPkj+aOH4+HiMGjUKnTt3RteuXbFw4UKo1WqMGTMGADBy5EgEBgZi/vz5RvstW7YMcXFxaNq0qdF2mUyGqVOn4v/+7//QunVrNG/eHO+88w4CAgIQFxfXUKdVZyk3C3A0JRsyGRATzru/iIiI6oPkAWjIkCHIzMzErFmzkJaWhoiICGzdutUwiTklJQVyuXFH1blz57B37178+uuvVR7zrbfeglqtxoQJE5CdnY0ePXpg69atcHBwqPfzuV/6hU+7t2wKX9fGXy8REZElkgkhhNRFNDa5ublwc3NDTk5Ogw6HCSEQteA3XMxU46PnOmBQZ2knYxMREVkSUz6/LfouMGtz6kYuLmaqobKTo/dDXPmdiIiovjAANSL6ld+j2vrCxUEpcTVERETWiwGokdBoBX46oXv4YWwEJz8TERHVJwagRmL/xZvIyCuGm6MSPUN9pC6HiIjIqjEANRIJ5Xd/9Q3zh70dLwsREVF94idtI1BUqsHW5PKV3zn8RUREVO8YgBqBxDMZyC8uQ6C7I7qEeEpdDhERkdVjAGoE9MNf/SMCIJdz5XciIqL6xgAkseyCEuw+lwGAa38RERE1FAYgiW1OSkWpRqCNnwtC/VykLoeIiMgmMABJbNMx3bN/4jqy94eIiKihMABJ6NrtAhz66xZkMqA/V34nIiJqMAxAEtI/+TmyuScC3B0lroaIiMh2MABJyDD8xcnPREREDYoBSCJnUnNxLj0P9go5+oT5S10OERGRTWEAkoh+5fdebbzh5siV34mIiBoSA5AEtBVWfufwFxERUcNjAJLAwcu3kJpTBBcHO/Rqw5XfiYiIGhoDkAQ2lS990echPzgoFRJXQ0REZHsYgBpYcZkGW5JSAfDhh0RERFJhAGpgu85mIreoDH6uDnikeVOpyyEiIrJJDEANbBNXficiIpIcA1ADyiksReIZ3crvsRFc+oKIiEgqDEANaGtyKko0WrT2aYJ2/q5Sl0NERGSzGIAa0E11CRyVCsR1DIRMxuEvIiIiqdhJXYAteaVnK4zqFgKNEFKXQkREZNMYgBqYs4p/ciIiIqlxCIyIiIhsDgMQERER2RwGICIiIrI5DEBERERkcxiAiIiIyOYwABEREZHNYQAiIiIim8MARERERDaHAYiIiIhsDgMQERER2RwGICIiIrI5DEBERERkcxiAiIiIyOZwafIqCCEAALm5uRJXQkRERLWl/9zWf47XhAGoCnl5eQCAoKAgiSshIiIiU+Xl5cHNza3GNjJRm5hkY7RaLW7cuAEXFxfIZDKzHjs3NxdBQUG4evUqXF1dzXrsxoDnZ/ms/Rx5fpbP2s+R51d3Qgjk5eUhICAAcnnNs3zYA1QFuVyOZs2a1evvcHV1tcp/2Ho8P8tn7efI87N81n6OPL+6uVfPjx4nQRMREZHNYQAiIiIim8MA1MBUKhVmz54NlUoldSn1gudn+az9HHl+ls/az5Hn1zA4CZqIiIhsDnuAiIiIyOYwABEREZHNYQAiIiIim8MARERERDaHAciM9uzZg5iYGAQEBEAmkyEhIeGe++zevRsPP/wwVCoVWrVqhZUrV9Z7nXVl6vnt3r0bMpms0istLa1hCjbR/Pnz0aVLF7i4uMDHxwdxcXE4d+7cPfdbv3492rRpAwcHB4SFhWHLli0NUG3d1OUcV65cWekaOjg4NFDFpvn888/RoUMHwwPWunXrhl9++aXGfSzp+gGmn6MlXb+qvP/++5DJZJg6dWqN7SztOurV5vws7RrOmTOnUr1t2rSpcR8prh8DkBmp1WqEh4djyZIltWp/+fJl9OvXD7169cLx48cxdepUjBs3Dtu2bavnSuvG1PPTO3fuHFJTUw0vHx+feqrw/vz222+YOHEiDhw4gO3bt6O0tBTPPPMM1Gp1tfvs27cPw4YNw9ixY3Hs2DHExcUhLi4OycnJDVh57dXlHAHdE1srXsMrV640UMWmadasGd5//30cOXIE//vf//Dkk08iNjYWp06dqrK9pV0/wPRzBCzn+t3t8OHD+OKLL9ChQ4ca21nidQRqf36A5V3D9u3bG9W7d+/eattKdv0E1QsAYuPGjTW2eeutt0T79u2Ntg0ZMkRER0fXY2XmUZvz27VrlwAgbt++3SA1mVtGRoYAIH777bdq2wwePFj069fPaFtkZKT4+9//Xt/lmUVtznHFihXCzc2t4YoyMw8PD/Gf//ynyvcs/frp1XSOlnr98vLyROvWrcX27dvFE088IaZMmVJtW0u8jqacn6Vdw9mzZ4vw8PBat5fq+rEHSEL79+9HVFSU0bbo6Gjs379foorqR0REBPz9/fH000/jjz/+kLqcWsvJyQEAeHp6VtvG0q9hbc4RAPLz8xEcHIygoKB79jY0FhqNBmvXroVarUa3bt2qbGPp16825whY5vWbOHEi+vXrV+n6VMUSr6Mp5wdY3jU8f/48AgIC0KJFCwwfPhwpKSnVtpXq+nExVAmlpaXB19fXaJuvry9yc3NRWFgIR0dHiSozD39/fyxduhSdO3dGcXEx/vOf/6Bnz544ePAgHn74YanLq5FWq8XUqVPx6KOP4qGHHqq2XXXXsLHOc6qotucYGhqK5cuXo0OHDsjJycHHH3+M7t2749SpU/W+aHBdJCUloVu3bigqKkKTJk2wceNGtGvXrsq2lnr9TDlHS7t+ALB27VocPXoUhw8frlV7S7uOpp6fpV3DyMhIrFy5EqGhoUhNTcXcuXPx2GOPITk5GS4uLpXaS3X9GICo3oSGhiI0NNTwc/fu3XHx4kV8+umn+PbbbyWs7N4mTpyI5OTkGsetLV1tz7Fbt25GvQvdu3dH27Zt8cUXX+C9996r7zJNFhoaiuPHjyMnJwc//PADRo0ahd9++63agGCJTDlHS7t+V69exZQpU7B9+/ZGPdG3rupyfpZ2Dfv06WP4vkOHDoiMjERwcDC+//57jB07VsLKjDEAScjPzw/p6elG29LT0+Hq6mrxvT/V6dq1a6MPFZMmTcLPP/+MPXv23PP/XVV3Df38/OqzxPtmyjneTalUomPHjrhw4UI9VXd/7O3t0apVKwBAp06dcPjwYXz22Wf44osvKrW11OtnyjnerbFfvyNHjiAjI8Ool1ij0WDPnj1YvHgxiouLoVAojPaxpOtYl/O7W2O/hndzd3fHgw8+WG29Ul0/zgGSULdu3ZCYmGi0bfv27TWO5Vu648ePw9/fX+oyqiSEwKRJk7Bx40bs3LkTzZs3v+c+lnYN63KOd9NoNEhKSmq01/FuWq0WxcXFVb5nadevOjWd490a+/V76qmnkJSUhOPHjxtenTt3xvDhw3H8+PEqw4ElXce6nN/dGvs1vFt+fj4uXrxYbb2SXb96nWJtY/Ly8sSxY8fEsWPHBACxYMECcezYMXHlyhUhhBDTpk0TI0aMMLS/dOmScHJyEm+++aY4c+aMWLJkiVAoFGLr1q1SnUKNTD2/Tz/9VCQkJIjz58+LpKQkMWXKFCGXy8WOHTukOoUavfzyy8LNzU3s3r1bpKamGl4FBQWGNiNGjBDTpk0z/PzHH38IOzs78fHHH4szZ86I2bNnC6VSKZKSkqQ4hXuqyznOnTtXbNu2TVy8eFEcOXJEDB06VDg4OIhTp05JcQo1mjZtmvjtt9/E5cuXxcmTJ8W0adOETCYTv/76qxDC8q+fEKafoyVdv+rcfZeUNVzHiu51fpZ2DV9//XWxe/ducfnyZfHHH3+IqKgo4eXlJTIyMoQQjef6MQCZkf6277tfo0aNEkIIMWrUKPHEE09U2iciIkLY29uLFi1aiBUrVjR43bVl6vl98MEHomXLlsLBwUF4enqKnj17ip07d0pTfC1UdW4AjK7JE088YThfve+//148+OCDwt7eXrRv315s3ry5YQs3QV3OcerUqeKBBx4Q9vb2wtfXV/Tt21ccPXq04YuvhRdffFEEBwcLe3t74e3tLZ566ilDMBDC8q+fEKafoyVdv+rcHRCs4TpWdK/zs7RrOGTIEOHv7y/s7e1FYGCgGDJkiLhw4YLh/cZy/WRCCFG/fUxEREREjQvnABEREZHNYQAiIiIim8MARERERDaHAYiIiIhsDgMQERER2RwGICIiIrI5DEBERERkcxiAiIhqQSaTISEhQeoyiMhMGICIqNEbPXo0ZDJZpVfv3r2lLo2ILBRXgycii9C7d2+sWLHCaJtKpZKoGiKydOwBIiKLoFKp4OfnZ/Ty8PAAoBue+vzzz9GnTx84OjqiRYsW+OGHH4z2T0pKwpNPPglHR0c0bdoUEyZMQH5+vlGb5cuXo3379lCpVPD398ekSZOM3s/KysKAAQPg5OSE1q1b46effqrfkyaiesMARERW4Z133sHAgQNx4sQJDB8+HEOHDsWZM2cAAGq1GtHR0fDw8MDhw4exfv167NixwyjgfP7555g4cSImTJiApKQk/PTTT2jVqpXR75g7dy4GDx6MkydPom/fvhg+fDhu3brVoOdJRGZS78utEhHdp1GjRgmFQiGcnZ2NXv/85z+FELpV7l966SWjfSIjI8XLL78shBDiyy+/FB4eHiI/P9/w/ubNm4VcLhdpaWlCCCECAgLEjBkzqq0BgJg5c6bh5/z8fAFA/PLLL2Y7TyJqOJwDREQWoVevXvj888+Ntnl6ehq+79atm9F73bp1w/HjxwEAZ86cQXh4OJydnQ3vP/roo9BqtTh37hxkMhlu3LiBp556qsYaOnToYPje2dkZrq6uyMjIqOspEZGEGICIyCI4OztXGpIyF0dHx1q1UyqVRj/LZDJotdr6KImI6hnnABGRVThw4ECln9u2bQsAaNu2LU6cOAG1Wm14/48//oBcLkdoaChcXFwQEhKCxMTEBq2ZiKTDHiAisgjFxcVIS0sz2mZnZwcvLy8AwPr169G5c2f06NEDq1atwqFDh7Bs2TIAwPDhwzF79myMGjUKc+bMQWZmJiZPnowRI0bA19cXADBnzhy89NJL8PHxQZ8+fZCXl4c//vgDkydPbtgTJaIGwQBERBZh69at8Pf3N9oWGhqKs2fPAtDdobV27Vq88sor8Pf3x5o1a9CuXTsAgJOTE7Zt24YpU6agS5cucHJywsCBA7FgwQLDsUaNGoWioiJ8+umneOONN+Dl5YXnnnuu4U6QiBqUTAghpC6CiOh+yGQybNy4EXFxcVKXQkQWgnOAiIiIyOYwABEREZHN4RwgIrJ4HMknIlOxB4iIiIhsDgMQERER2RwGICIiIrI5DEBERERkcxiAiIiIyOYwABEREZHNYQAiIiIim8MARERERDaHAYiIiIhszv8DRQLhMwf+5aYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQhklEQVR4nO3deXhU5d0//veZySyZLJN9JRJkD5pEiNBAVVQUhCIoIFUqSF1aRStSWuGnZdGvBatV2geLWwXtU5cGAX1cQIhoFVEQCJsBZU8gKyEzySSZmczcvz8mM2SyTsIkZ5b367rOxcyZc2Y+t6ffb97Pfd/nPpIQQoCIiIgoQCjkLoCIiIjImxhuiIiIKKAw3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCCsMNERERBRSGGyIiIgooDDdEREQUUBhuiMgnSZKEZcuWdfm8U6dOQZIkrFu3zus1EZF/YLghonatW7cOkiRBkiR8/fXXrT4XQiAtLQ2SJOEXv/iFDBV23xdffAFJkrB+/Xq5SyEiL2O4IaJOabVavP322632f/nllyguLoZGo5GhKiKitjHcEFGnJk6ciLy8PDQ2Nrrtf/vttzFixAgkJSXJVBkRUWsMN0TUqTvvvBPnz5/H1q1bXfssFgvWr1+Pu+66q81zTCYTfv/73yMtLQ0ajQaDBw/G888/DyGE23FmsxmPPfYY4uPjERERgVtvvRXFxcVtfufZs2fx61//GomJidBoNBg2bBjeeOMN7zW0DSdOnMCMGTMQExMDnU6Hn/3sZ/j4449bHfc///M/GDZsGHQ6HaKjo5GTk+PW21VTU4P58+cjPT0dGo0GCQkJuOmmm7B3794erZ8oGDHcEFGn0tPTkZubi3feece179NPP4XBYMAvf/nLVscLIXDrrbfixRdfxIQJE/DCCy9g8ODB+MMf/oAFCxa4HXvfffdh1apVuPnmm7Fy5UqoVCpMmjSp1XeWlZXhZz/7GbZt24aHH34Yf/vb3zBgwADce++9WLVqldfb7PzN0aNHY8uWLXjooYfwzDPPoKGhAbfeeis2btzoOu61117D7373O2RkZGDVqlVYvnw5srOz8d1337mO+e1vf4s1a9Zg2rRp+Mc//oGFCxciNDQUhYWFPVI7UVATRETtWLt2rQAgdu/eLVavXi0iIiJEXV2dEEKIGTNmiOuvv14IIUTfvn3FpEmTXOdt2rRJABD/7//9P7fvmz59upAkSRw7dkwIIURBQYEAIB566CG34+666y4BQCxdutS179577xXJycmisrLS7dhf/vKXQq/Xu+o6efKkACDWrl3bYdu2b98uAIi8vLx2j5k/f74AIL766ivXvpqaGtGvXz+Rnp4ubDabEEKIKVOmiGHDhnX4e3q9XsybN6/DY4jIO9hzQ0QeueOOO1BfX4+PPvoINTU1+Oijj9odkvrkk0+gVCrxu9/9zm3/73//ewgh8Omnn7qOA9DquPnz57u9F0Lg/fffx+TJkyGEQGVlpWsbP348DAZDjwzvfPLJJxg5ciR+/vOfu/aFh4fjgQcewKlTp/DDDz8AAKKiolBcXIzdu3e3+11RUVH47rvvcO7cOa/XSUTuGG6IyCPx8fEYN24c3n77bWzYsAE2mw3Tp09v89jTp08jJSUFERERbvuHDh3q+tz5r0KhQP/+/d2OGzx4sNv7iooKVFdX49VXX0V8fLzbNnfuXABAeXm5V9rZsh0ta2mrHY8//jjCw8MxcuRIDBw4EPPmzcOOHTvczvnLX/6CQ4cOIS0tDSNHjsSyZctw4sQJr9dMRECI3AUQkf+46667cP/996O0tBS33HILoqKieuV37XY7AOBXv/oV5syZ0+YxmZmZvVJLW4YOHYqjR4/io48+wubNm/H+++/jH//4B5YsWYLly5cDcPR8XXPNNdi4cSM+++wzPPfcc3j22WexYcMG3HLLLbLVThSI2HNDRB677bbboFAo8O2337Y7JAUAffv2xblz51BTU+O2/8iRI67Pnf/a7XYcP37c7bijR4+6vXfeSWWz2TBu3Lg2t4SEBG80sVU7WtbSVjsAICwsDDNnzsTatWtx5swZTJo0yTUB2Sk5ORkPPfQQNm3ahJMnTyI2NhbPPPOM1+smCnYMN0TksfDwcKxZswbLli3D5MmT2z1u4sSJsNlsWL16tdv+F198EZIkuXoqnP/+/e9/dzuu5d1PSqUS06ZNw/vvv49Dhw61+r2KioruNKdTEydOxK5du7Bz507XPpPJhFdffRXp6enIyMgAAJw/f97tPLVajYyMDAghYLVaYbPZYDAY3I5JSEhASkoKzGZzj9ROFMw4LEVEXdLesFBzkydPxvXXX48nnngCp06dQlZWFj777DN88MEHmD9/vmuOTXZ2Nu6880784x//gMFgwOjRo5Gfn49jx461+s6VK1di+/btGDVqFO6//35kZGSgqqoKe/fuxbZt21BVVdWt9rz//vuunpiW7Vy0aBHeeecd3HLLLfjd736HmJgYvPnmmzh58iTef/99KBSO//vw5ptvRlJSEsaMGYPExEQUFhZi9erVmDRpEiIiIlBdXY0+ffpg+vTpyMrKQnh4OLZt24bdu3fjr3/9a7fqJqIOyHuzFhH5sua3gnek5a3gQjhumX7sscdESkqKUKlUYuDAgeK5554Tdrvd7bj6+nrxu9/9TsTGxoqwsDAxefJkUVRU1OpWcCGEKCsrE/PmzRNpaWlCpVKJpKQkceONN4pXX33VdUxXbwVvb3Pe/n38+HExffp0ERUVJbRarRg5cqT46KOP3L7rlVdeEddee62IjY0VGo1G9O/fX/zhD38QBoNBCCGE2WwWf/jDH0RWVpaIiIgQYWFhIisrS/zjH//osEYi6h5JiBbLhRIRERH5Mc65ISIiooDCcENEREQBheGGiIiIAors4eall15Ceno6tFotRo0ahV27dnV4fHV1NebNm4fk5GRoNBoMGjTItYQ7ERERkay3gr/33ntYsGABXn75ZYwaNQqrVq3C+PHjcfTo0TYX5LJYLLjpppuQkJCA9evXIzU1FadPn+61VVKJiIjI98l6t9SoUaNw9dVXuxb6stvtSEtLwyOPPIJFixa1Ov7ll1/Gc889hyNHjkClUvV2uUREROQHZAs3FosFOp0O69evx9SpU13758yZg+rqanzwwQetzpk4cSJiYmKg0+nwwQcfID4+HnfddRcef/xxKJXKNn/HbDa7rQBqt9tRVVWF2NhYSJLk9XYRERGR9wkhUFNTg5SUFNcCmu2RbViqsrISNpsNiYmJbvsTExPbXC0UAE6cOIHPP/8cs2bNwieffIJjx47hoYcegtVqxdKlS9s8Z8WKFa4H1xEREZF/KyoqQp8+fTo8xq8ev2C325GQkIBXX30VSqUSI0aMwNmzZ/Hcc8+1G24WL16MBQsWuN4bDAZcdtllKCoqQmRkZG+VTkRERJfAaDQiLS0NERERnR4rW7iJi4uDUqlEWVmZ2/6ysjIkJSW1eU5ycjJUKpXbENTQoUNRWloKi8UCtVrd6hyNRgONRtNqf2RkJMMNERGRn/FkSolst4Kr1WqMGDEC+fn5rn12ux35+fnIzc1t85wxY8bg2LFjsNvtrn0//vgjkpOT2ww2REREFHxkXedmwYIFeO211/Dmm2+isLAQDz74IEwmE+bOnQsAmD17NhYvXuw6/sEHH0RVVRUeffRR/Pjjj/j444/x5z//GfPmzZOrCURERORjZJ1zM3PmTFRUVGDJkiUoLS1FdnY2Nm/e7JpkfObMGbcZ0WlpadiyZQsee+wxZGZmIjU1FY8++igef/xxuZpAREREPibongpuNBqh1+thMBg6nHNjs9lgtVp7sTLqKS3naRERkf/x9O834Gd3S/UGIQRKS0tRXV0tdynkRVFRUUhKSuLaRkREQYDhpgVnsElISIBOp+MfQz8nhEBdXR3Ky8sBOO64IyKiwMZw04zNZnMFm9jYWLnLIS8JDQ0FAJSXlyMhIYFDVEREAU72p4L7EuccG51OJ3Ml5G3Oa8p5VEREgY/hpg0cigo8vKZERMGD4YaIiIgCCsMNtSs9PR2rVq2SuwwiIqIuYbgJAJIkdbgtW7asW9+7e/duPPDAA94tloiIqIfxbikvstrsaLQJhKp7926ckpIS1+v33nsPS5YswdGjR137wsPDXa+FELDZbAgJ6fzSx8fHe7dQIiKiXsCeGy8x1FtwpKQGZ6vre/23k5KSXJter4ckSa73R44cQUREBD799FOMGDECGo0GX3/9NY4fP44pU6YgMTER4eHhuPrqq7Ft2za37205LCVJEl5//XXcdttt0Ol0GDhwID788MNebi0REVHHGG46IYRAnaWx0w0AGqw2VJnMqDKZPTqns82bT8ZYtGgRVq5cicLCQmRmZqK2thYTJ05Efn4+9u3bhwkTJmDy5Mk4c+ZMh9+zfPly3HHHHThw4AAmTpyIWbNmoaqqymt1EhERXSoOS3Wi3mpDxpItsvz2D0+Nh07tnUv01FNP4aabbnK9j4mJQVZWluv9008/jY0bN+LDDz/Eww8/3O733HPPPbjzzjsBAH/+85/x97//Hbt27cKECRO8UicREdGlYs9NkMjJyXF7X1tbi4ULF2Lo0KGIiopCeHg4CgsLO+25yczMdL0OCwtDZGSk69EGREREvoA9N50IVSnxw1PjPTrWLgR+LK1Fo92Oy2J0iAxVXfJve0tYWJjb+4ULF2Lr1q14/vnnMWDAAISGhmL69OmwWCwdfo9K5d4mSZJgt9u9VicREdGlYrjphCRJXRoaStJrUVlrhrnR7rUhpZ6wY8cO3HPPPbjtttsAOHpyTp06JW9RREREXsBhKS+L1qkBAMaGRjTafLdHY+DAgdiwYQMKCgqwf/9+3HXXXeyBISKigMBw42WhaiVCVUoIIVBd77sPaXzhhRcQHR2N0aNHY/LkyRg/fjyGDx8ud1lERESXTBLevN/YDxiNRuj1ehgMBkRGRrp91tDQgJMnT6Jfv37QarXd/o3KWjPOVdcjVKXEwMSISy2ZvMBb15aIiOTR0d/vlthz0wOiQlWQJAn1Vhvqm9bAISIiot7BcNMDQpQKRGodk4kv1Pnu0BQREVEgYrjpIc6JxdV1FtiDa+SPiIhIVgw3PSRCGwKVUoFGu0CND08sJiIiCjQMNz1EkiRE6RwL3nFoioiIqPcw3PQg59BUTYMVVh9e84aIiCiQMNz0IK1KCZ06BALAhbqOH2tARERE3sFw08Oiw5qGpkxWBNmSQkRERLJguOlhUaEqKCQJ5kYb6i02ucshIiIKeAw3PUypUEDf9HTwKh8emho7dizmz5/vep+eno5Vq1Z1eI4kSdi0adMl/7a3voeIiAhguOkV0U13TRnqrbDbvT80NXnyZEyYMKHNz7766itIkoQDBw506Tt3796NBx54wBvluSxbtgzZ2dmt9peUlOCWW27x6m8REVHwYrjpBWGaEKiVCtjsAsYG798Wfu+992Lr1q0oLi5u9dnatWuRk5ODzMzMLn1nfHw8dDqdt0rsUFJSEjQaTa/8FhERBT6Gm14gSRKiwxy3hVeZvD809Ytf/ALx8fFYt26d2/7a2lrk5eVh6tSpuPPOO5GamgqdTocrr7wS77zzToff2XJY6qeffsK1114LrVaLjIwMbN26tdU5jz/+OAYNGgSdTofLL78cf/rTn2C1OsLcunXrsHz5cuzfvx+SJEGSJFe9LYelDh48iBtuuAGhoaGIjY3FAw88gNraWtfn99xzD6ZOnYrnn38eycnJiI2Nxbx581y/RUREwS1E7gJ8nhCAte6SvyY6xIZyax1MVsASJqAO8SBXqnSAJHV6WEhICGbPno1169bhiSeegNR0Tl5eHmw2G371q18hLy8Pjz/+OCIjI/Hxxx/j7rvvRv/+/TFy5MhOv99ut+P2229HYmIivvvuOxgMBrf5OU4RERFYt24dUlJScPDgQdx///2IiIjAH//4R8ycOROHDh3C5s2bsW3bNgCAXq9v9R0mkwnjx49Hbm4udu/ejfLyctx33314+OGH3cLb9u3bkZycjO3bt+PYsWOYOXMmsrOzcf/993faHiIiCmwMN52x1gF/Trnkr1EDuLKrJ/1/5wB1mEeH/vrXv8Zzzz2HL7/8EmPHjgXgGJKaNm0a+vbti4ULF7qOfeSRR7Blyxb85z//8SjcbNu2DUeOHMGWLVuQkuL4b/HnP/+51TyZJ5980vU6PT0dCxcuxLvvvos//vGPCA0NRXh4OEJCQpCUlNTub7399ttoaGjAW2+9hbAwR9tXr16NyZMn49lnn0ViYiIAIDo6GqtXr4ZSqcSQIUMwadIk5OfnM9wQERGHpQLFkCFDMHr0aLzxxhsAgGPHjuGrr77CvffeC5vNhqeffhpXXnklYmJiEB4eji1btuDMmTMefXdhYSHS0tJcwQYAcnNzWx333nvvYcyYMUhKSkJ4eDiefPJJj3+j+W9lZWW5gg0AjBkzBna7HUePHnXtGzZsGJRKpet9cnIyysvLu/RbREQUmNhz0xmVztGD4gU2u8DR0hrYhEC/uDCEazr5z6/q2oTee++9F4888gheeuklrF27Fv3798d1112HZ599Fn/729+watUqXHnllQgLC8P8+fNhsXhv/s/OnTsxa9YsLF++HOPHj4der8e7776Lv/71r177jeZUKpXbe0mSYLfzERdERMRw0zlJ8nhoqDNKAJGRClTVWXDBqkJ4hHfvRrrjjjvw6KOP4u2338Zbb72FBx98EJIkYceOHZgyZQp+9atfAXDMofnxxx+RkZHh0fcOHToURUVFKCkpQXJyMgDg22+/dTvmm2++Qd++ffHEE0+49p0+fdrtGLVaDZut44UMhw4dinXr1sFkMrl6b3bs2AGFQoHBgwd7VC8REQU3Dkv1MuddU4Z6K2xeXvMmPDwcM2fOxOLFi1FSUoJ77rkHADBw4EBs3boV33zzDQoLC/Gb3/wGZWVlHn/vuHHjMGjQIMyZMwf79+/HV1995RZinL9x5swZvPvuuzh+/Dj+/ve/Y+PGjW7HpKen4+TJkygoKEBlZSXMZnOr35o1axa0Wi3mzJmDQ4cOYfv27XjkkUdw9913u+bbEBERdYThppfp1EpoQpSwCwFDfc+seXPhwgWMHz/eNUfmySefxPDhwzF+/HiMHTsWSUlJmDp1qsffqVAosHHjRtTX12PkyJG477778Mwzz7gdc+utt+Kxxx7Dww8/jOzsbHzzzTf405/+5HbMtGnTMGHCBFx//fWIj49v83Z0nU6HLVu2oKqqCldffTWmT5+OG2+8EatXr+76fwwiIgpKkgiypzkajUbo9XoYDAZERka6fdbQ0ICTJ0+iX79+0Gq1PVZDubEBpcYGhKlD0D8hvMd+hy7qrWtLREQ9o6O/3y2x50YG0To1JAAmSyPMVj5Mk4iIyJsYbmSgClEgXOu42+eCDz9Mk4iIyB8x3MjE+TDNC3VWBNnIIBERUY9iuJFJpFYFpUKC1WZHrblR7nKIiIgCBsNNG3qjJ0WhkBClc9wWfsHEBz72NPaOEREFD4abZpyr3tbVXfqDMj3hHJoyNFjRaOPquj3JeU1brmxMRESBhysUN6NUKhEVFeV6RpFOp3M9YbsnSEJABRssVhsqqiXXAn/kPUII1NXVoby8HFFRUW7PoyIiosDEcNOC84nVvfUQxpqGRhjqragOkZAQwfVXekpUVFSHTyMnIqLAwXDTgiRJSE5ORkJCAqzWnp8Lc8FkwcJXd8JmF3h9ztXoF+ed51jRRSqVij02RERBhOGmHUqlslf+ICZrtRiSGovPfijDhv1leGKSZw+zJCIiorZxQrEPmJGTBgDYuO8srJxYTEREdEkYbnzA2MHxiAtXo7LWgi+OVshdDhERkV9juPEBKqUCt12VCgDI+75I5mqIiIj8G8ONj3AOTX1+pByVtWaZqyEiIvJfDDc+YlBiBLL66NFoF9i076zc5RAREfkthhsfMn1EHwDA+j3FfFwAERFRNzHc+JBbs1KhDlHgSGkNDp01yl0OERGRX2K48SF6nQo3ZyQCAPL2cGIxERFRdzDc+BjnxOIPCs6hwWqTuRoiIiL/w3DjY34+IA7Jei0M9VZsKyyTuxwiIiK/w3DjY5QKCbcPd655UyxzNURERP6H4cYHTR/hGJr66qcKlBoaZK6GiIjIvzDc+KB+cWG4Oj0adgFs2MfeGyIioq5guPFRM5p6b9Z/zzVviIiIuoLhxkdNzExGqEqJE5Um7D1zQe5yiIiI/AbDjY8K14Rg4pXJADixmIiIqCsYbnzYjBzH4xg+OlCCOkujzNUQERH5B58INy+99BLS09Oh1WoxatQo7Nq1q91j161bB0mS3DatVtuL1faeUf1icFmMDrXmRmw+VCp3OURERH5B9nDz3nvvYcGCBVi6dCn27t2LrKwsjB8/HuXl5e2eExkZiZKSEtd2+vTpXqy490iS5HqYJoemiIiIPCN7uHnhhRdw//33Y+7cucjIyMDLL78MnU6HN954o91zJElCUlKSa0tMTOzFinvXtBF9IEnAzhPnUVRVJ3c5REREPk/WcGOxWLBnzx6MGzfOtU+hUGDcuHHYuXNnu+fV1taib9++SEtLw5QpU3D48OF2jzWbzTAajW6bP0mNCsWY/nEAgPV72HtDRETUGVnDTWVlJWw2W6uel8TERJSWtj3HZPDgwXjjjTfwwQcf4H//939ht9sxevRoFBe3/Yd/xYoV0Ov1ri0tLc3r7ehpzonF6/cUw27nmjdEREQdkX1Yqqtyc3Mxe/ZsZGdn47rrrsOGDRsQHx+PV155pc3jFy9eDIPB4NqKiop6ueJLN35YEiK0IThbXY9vT5yXuxwiIiKfJmu4iYuLg1KpRFmZ+9Ovy8rKkJSU5NF3qFQqXHXVVTh27Fibn2s0GkRGRrpt/karUmJyVgoAII9DU0RERB2SNdyo1WqMGDEC+fn5rn12ux35+fnIzc316DtsNhsOHjyI5OTknirTJzjvmvr0UAmMDVaZqyEiIvJdsg9LLViwAK+99hrefPNNFBYW4sEHH4TJZMLcuXMBALNnz8bixYtdxz/11FP47LPPcOLECezduxe/+tWvcPr0adx3331yNaFXXJUWhf7xYWiw2vHxgRK5yyEiIvJZIXIXMHPmTFRUVGDJkiUoLS1FdnY2Nm/e7JpkfObMGSgUFzPYhQsXcP/996O0tBTR0dEYMWIEvvnmG2RkZMjVhF4hSRJm5KRh5adHkPd9Ee4ceZncJREREfkkSQTZI6eNRiP0ej0MBoPfzb8pNzYgd+XnsNkFti24DgMSwuUuiYiIqFd05e+37MNS5LmESC2uGxQPgGveEBERtYfhxs/MaJpYvGFvMRptdpmrISIi8j0MN37mxqGJiNapUF5jxlfHKuUuh4iIyOcw3PgZdYgCU7JTAQDr+TBNIiKiVhhu/JDzcQxbfyhDdZ1F5mqIiIh8C8ONHxqWokdGciQsNjs+KDgndzlEREQ+heHGTzl7b/L2+N+zsoiIiHoSw42fmpKdCpVSwqGzRhSWGOUuh4iIyGcw3PipmDA1xg11rOKcx4nFRERELgw3fsw5NLWp4CwsjVzzhoiICGC48WvXDoxHQoQGVSYLPj9SLnc5REREPoHhxo+FKBW4bXjTmjecWExERASA4cbvzRiRBgDYfrQC5TUNMldDREQkP4YbPzcgIRxXXRYFm11g076zcpdDREQkO4abAODsvcn7vhhCCJmrISIikhfDTQD4RVYyNCEK/FRei/3FBrnLISIikhXDTQCI1Kow4YokAEDe95xYTEREwY3hJkA4h6Y+3H8ODVabzNUQERHJh+EmQIzuH4vUqFDUNDRiy+FSucshIiKSDcNNgFAoJExzrXnDxzEQEVHwYrgJINObhqa+PlaJc9X1MldDREQkD4abAHJZrA6j+sVACGDDXvbeEBFRcGK4CTAzchy9N+v3cM0bIiIKTgw3AWbilUkIUytx6nwddp+6IHc5REREvY7hJsDo1CGYlJkMgGveEBFRcGK4CUDOoamPD5bAZG6UuRoiIqLexXATgHL6RqNfXBjqLDZ8crBE7nKIiIh6FcNNAJIkCdNH9AEA5HHNGyIiCjIMNwHq9uGpUEjArpNVOH3eJHc5REREvYbhJkAl60Px84HxALhiMRERBReGmwA2o2lo6v09xbDZueYNEREFB4abAHZTRiIitSE4Z2jAN8cr5S6HiIioVzDcBDCtSokp2Y6HaeZ9z6EpIiIKDgw3AW5GjmNoasvhUhjqrTJXQ0RE1PMYbgLclal6DE6MgLnRjv/bf07ucoiIiHocw02A45o3REQUbBhugsDUq1KhVEjYX1SNn8pq5C6HiIioRzHcBIH4CA2uH5wAgL03REQU+BhugoRzYvGGvWfRaLPLXA0REVHPYbgJEjcMSUBsmBqVtWZ8+WOF3OUQERH1GIabIKFSKjD1Kq55Q0REgY/hJog4h6byj5ShymSRuRoiIqKewXATRIYkReLKVD2sNoFN+87KXQ4REVGPYLgJMs7eG941RUREgYrhJsjcmpUCtVKBwhIjDp01yF0OERGR1zHcBJkonRo3DUsEAKxn7w0REQUghpsgNKPpcQybCs7C3GiTuRoiIiLvYrgJQtcMjEdSpBbVdVbkF5bLXQ4REZFXMdwEIaVCwu3DnWveFMlcDRERkXcx3AQp55PCv/yxAmXGBpmrISIi8h6GmyB1eXw4cvpGwy4cz5siIiIKFAw3QezimjdFEELIXA0REZF3MNwEsUmZKQhVKXGiwoS9Z6rlLoeIiMgrGG6CWLgmBLdcmQQAWL+HE4uJiCgwMNwEOefE4v/bX4J6C9e8ISIi/8dwE+R+1i8WfaJDUWtuxObDJXKXQ0REdMkYboKcQiG5em/4OAYiIgoEDDeEacMd4eab4+dRfKFO5mqIiIguDcMNIS1Gh9H9YyEE8P4ernlDRET+jeGGAFxc82b93iLY7VzzhoiI/BfDDQEAJgxLRoQmBEVV9fjuZJXc5RAREXUbww0BAELVSvwiKxmAY8ViIiIif8VwQy7TR6QBAD49WIpac6PM1RAREXUPww25DL8sCpfHh6HeasPHB87JXQ4REVG3MNyQiyRJmNHUe5P3Pde8ISIi/+QT4eall15Ceno6tFotRo0ahV27dnl03rvvvgtJkjB16tSeLTCI3D48FQoJ+P70BZyoqJW7HCIioi6TPdy89957WLBgAZYuXYq9e/ciKysL48ePR3l5eYfnnTp1CgsXLsQ111zTS5UGh8RILa4bFA+AKxYTEZF/kj3cvPDCC7j//vsxd+5cZGRk4OWXX4ZOp8Mbb7zR7jk2mw2zZs3C8uXLcfnll/ditcFhRo5jaGrD3rOwcc0bIiLyM7KGG4vFgj179mDcuHGufQqFAuPGjcPOnTvbPe+pp55CQkIC7r333k5/w2w2w2g0um3UsRuHJiBKp0KpsQFf/VQhdzlERERdImu4qayshM1mQ2Jiotv+xMRElJaWtnnO119/jX/+85947bXXPPqNFStWQK/Xu7a0tLRLrjvQaUKUmJqdCgDI49AUERH5GdmHpbqipqYGd999N1577TXExcV5dM7ixYthMBhcW1ERF6jzhPNJ4VsPl6G6ziJzNURERJ4LkfPH4+LioFQqUVZW5ra/rKwMSUlJrY4/fvw4Tp06hcmTJ7v22e12AEBISAiOHj2K/v37u52j0Wig0Wh6oPrAdkWqHkOTI1FYYsSH+89hdm663CURERF5RNaeG7VajREjRiA/P9+1z263Iz8/H7m5ua2OHzJkCA4ePIiCggLXduutt+L6669HQUEBh5y8bEZT7w3XvCEiIn8ia88NACxYsABz5sxBTk4ORo4ciVWrVsFkMmHu3LkAgNmzZyM1NRUrVqyAVqvFFVdc4XZ+VFQUALTaT5duSnYK/vxJIQ6eNeBIqRFDkiLlLomIiKhTsoebmTNnoqKiAkuWLEFpaSmys7OxefNm1yTjM2fOQKHwq6lBASM2XIMbhyZgy+EyrP++GE/+IkPukoiIiDolCSGCaiETo9EIvV4Pg8GAyEj2RHRm2w9luO+t7xEXrsbOxTdCpWTQJCKi3teVv9/8S0UdGjs4HnHhGlTWWrD9SMerRhMREfkChhvqUIhSgduHc80bIiLyHww31CnnXVPbj5SjstYsczVEREQdY7ihTg1MjEBWWhQa7QKb9p2VuxwiIqIOMdyQR5qveRNkc9CJiMjPMNyQRyZnpUATosDRshocPGuQuxwiIqJ2MdyQR/ShKowf5ngkBlcsJiIiX8ZwQx6bkeMYmvqg4CwarDaZqyEiImobww15bHT/OKTotTA2NGLrD2Wdn0BERCQDhhvymFIhYZpzYjHXvCEiIh/FcENdMr0p3Hz1UwVKDPUyV0NERNQaww11Sd/YMIzsFwMhgA17ueYNERH5HoYb6rKLa94Ucc0bIiLyOd0KN0VFRSguvjjnYteuXZg/fz5effVVrxVGvmvilcnQqZU4db4O35++IHc5REREbroVbu666y5s374dAFBaWoqbbroJu3btwhNPPIGnnnrKqwWS7wnThGDSlckAHL03REREvqRb4ebQoUMYOXIkAOA///kPrrjiCnzzzTf497//jXXr1nmzPvJRM3LSAAAfHyhBnaVR5mqIiIgu6la4sVqt0Gg0AIBt27bh1ltvBQAMGTIEJSUl3quOfNbV6dHoG6uDyWLDJwdL5S6HiIjIpVvhZtiwYXj55Zfx1VdfYevWrZgwYQIA4Ny5c4iNjfVqgeSbJEnC9OGOicXr93BoioiIfEe3ws2zzz6LV155BWPHjsWdd96JrKwsAMCHH37oGq6iwDdtRB9IEvDtiSqcOV8ndzlEREQAgJDunDR27FhUVlbCaDQiOjratf+BBx6ATqfzWnHk21KiQvHzAXH46qdKrN9bjAU3DZK7JCIiou713NTX18NsNruCzenTp7Fq1SocPXoUCQkJXi2QfJtzxeL39xTDbueaN0REJL9uhZspU6bgrbfeAgBUV1dj1KhR+Otf/4qpU6dizZo1Xi2QfNv4YUmI0IbgbHU9dp44L3c5RERE3Qs3e/fuxTXXXAMAWL9+PRITE3H69Gm89dZb+Pvf/+7VAsm3aVVK3JqVAoBr3hARkW/oVripq6tDREQEAOCzzz7D7bffDoVCgZ/97Gc4ffq0Vwsk3+dc8+bTQ6UwNlhlroaIiIJdt8LNgAEDsGnTJhQVFWHLli24+eabAQDl5eWIjIz0aoHk+7L66DEwIRzmRjs+2s91joiISF7dCjdLlizBwoULkZ6ejpEjRyI3NxeAoxfnqquu8mqB5PskScKMnKaHaXLNGyIikpkkuvlY59LSUpSUlCArKwsKhSMj7dq1C5GRkRgyZIhXi/Qmo9EIvV4Pg8HAXiYvKq9pQO6Kz2GzC2xbcC0GJETIXRIREQWQrvz97lbPDQAkJSXhqquuwrlz51xPCB85cqRPBxvqOQkRWlw/OB4AkLenuJOjiYiIek63wo3dbsdTTz0FvV6Pvn37om/fvoiKisLTTz8Nu93u7RrJT0wf4ZhYvGHvWTTa+L8DIiKSR7dWKH7iiSfwz3/+EytXrsSYMWMAAF9//TWWLVuGhoYGPPPMM14tkvzDDUMSEBOmRkWNGf/9qQI3DEmUuyQiIgpC3Qo3b775Jl5//XXX08ABIDMzE6mpqXjooYcYboKUOkSBqdmpeGPHSeR9X8xwQ0REsujWsFRVVVWbc2uGDBmCqqqqSy6K/JfzrqlthWWoMllkroaIiIJRt8JNVlYWVq9e3Wr/6tWrkZmZeclFkf8amhyJK1IjYbUJfFBwVu5yiIgoCHVrWOovf/kLJk2ahG3btrnWuNm5cyeKiorwySefeLVA8j8zRqTh0NnDyPu+GHPH9JO7HCIiCjLd6rm57rrr8OOPP+K2225DdXU1qqurcfvtt+Pw4cP417/+5e0ayc9MyU6BWqnADyVGHD5nkLscIiIKMt1exK8t+/fvx/Dhw2Gz2bz1lV7HRfx6x7x/78XHB0swd0w6lk4eJnc5RETk53plET+ijkwf4ZhY/EHBOVgaueYNERH1HoYb6hHXDIxDQoQGVSYLPj9SJnc5REQURBhuqEeEKBW4fXjTwzS/5+MYiIio93Tpbqnbb7+9w8+rq6svpRYKMDNy+uDlL4/jix8rUF7TgIQIrdwlERFREOhSuNHr9Z1+Pnv27EsqiAJH//hwDL8sCnvPVGPj3rP4zXX95S6JiIiCQJfCzdq1a3uqDgpQM3LSsPdMNfL2FOOBay+HJElyl0RERAGOc26oR/0iMxlalQLHymtRUFQtdzlERBQEGG6oR0VoVbjlimQAQN4eTiwmIqKex3BDPW5G05o3/7f/HBqsvrvAIxERBQaGG+pxP7s8Fn2iQ1HT0Igth0vlLoeIiAIcww31OIVCwjSueUNERL2E4YZ6hfNxDDuOV+Jsdb3M1RARUSBjuKFekRajQ+7lsRACeJ8Ti4mIqAcx3FCvmZHj6L1Zv6cYdrvXHkZPRETkhuGGes0tVyQjXBOCM1V12HWqSu5yiIgoQDHcUK8JVSvxi8ymNW84sZiIiHoIww31KufQ1CcHS1BrbpS5GiIiCkQMN9Srhl8Wjcvjw1BvteGTgyVyl0NERAGI4YZ6lSRJrtvC13NoioiIegDDDfW626/qA4UE7DpVhVOVJrnLISKiAMNwQ70uSa/FNQPjAThuCyciIvImhhuShXNi8ft7i2HjmjdERORFDDcki3FDE6EPVaHE0IAdxyrlLoeIiAIIww3JQqtSYkp2CgAgj0NTRETkRQw3JJsZI9IAAFsOl8JQZ5W5GiIiChQMNySbK1IjMSQpApZGOz48cE7ucoiIKEAw3JBs3Ne8KZK5GiIiChQMNySr265KRYhCwv5iA34sq5G7HCIiCgAMNySr2HANbhiSAADIY+8NERF5AcMNyW5GjmNi8cZ9Z2G12WWuhoiI/J1PhJuXXnoJ6enp0Gq1GDVqFHbt2tXusRs2bEBOTg6ioqIQFhaG7Oxs/Otf/+rFasnbxg6OR1y4GpW1FnxxtELucoiIyM/JHm7ee+89LFiwAEuXLsXevXuRlZWF8ePHo7y8vM3jY2Ji8MQTT2Dnzp04cOAA5s6di7lz52LLli29XDl5i0qpwG1XpQLg0BQREV06SQgh69r3o0aNwtVXX43Vq1cDAOx2O9LS0vDII49g0aJFHn3H8OHDMWnSJDz99NOdHms0GqHX62EwGBAZGXlJtZP3/FhWg5tf/C9CFBK+/f9uRFy4Ru6SiIjIh3Tl77esPTcWiwV79uzBuHHjXPsUCgXGjRuHnTt3dnq+EAL5+fk4evQorr322jaPMZvNMBqNbhv5nkGJEcjqo0ejXWDTvrNyl0NERH5M1nBTWVkJm82GxMREt/2JiYkoLS1t9zyDwYDw8HCo1WpMmjQJ//M//4ObbrqpzWNXrFgBvV7v2tLS0rzaBvKe6U0Ti9fvKYbMHYpEROTHZJ9z0x0REREoKCjA7t278cwzz2DBggX44osv2jx28eLFMBgMrq2oiHM6fNWtmSlQhyhwpLQGh8+xh42IiLonRM4fj4uLg1KpRFlZmdv+srIyJCUltXueQqHAgAEDAADZ2dkoLCzEihUrMHbs2FbHajQaaDScv+EP9DoVxg9Lwv/tP4e874twRape7pKIiMgPydpzo1arMWLECOTn57v22e125OfnIzc31+PvsdvtMJvNPVEi9bIZTY9j+GD/OZgbbTJXQ0RE/kjWnhsAWLBgAebMmYOcnByMHDkSq1atgslkwty5cwEAs2fPRmpqKlasWAHAMYcmJycH/fv3h9lsxieffIJ//etfWLNmjZzNIC8ZMyAOyXotSgwN2PZDOSZlJstdEhER+RnZw83MmTNRUVGBJUuWoLS0FNnZ2di8ebNrkvGZM2egUFzsYDKZTHjooYdQXFyM0NBQDBkyBP/7v/+LmTNnytUE8iKlQsLtw1Px0vbjyNtTxHBDRERdJvs6N72N69z4vpOVJlz//BdQSMA3i25Ekl4rd0lERCQzv1nnhqgt/eLCcHV6NOwC2LCvWO5yiIjIzzDckE+aMaJpzZvvueYNERF1DcMN+aSJmckIVSlxotKEvWcuyF0OERH5EYYb8knhmhBMvNIxmTjvew5NERGR5xhuyGfNyHGsefPRgRLUWRplroaIiPwFww35rFH9YnBZjA615kZsPtT+s8aIiIiaY7ghnyVJEqY3rVjMoSkiIvIUww35tGkj+kCSgJ0nzqOoqk7ucoiIyA8w3JBPS40KxZj+cQCA9XvYe0NERJ1juCGf55xYvH5PMex2rnlDREQdY7ghnzd+WBIitCE4W12Pb0+cl7scIiLycQw35PO0KiUmZ6UAAPI4NEVERJ1guCG/MKPprqlPD5WgpsEqczVEROTLGG7IL2SnRWFAQjgarHZ8fKBE7nKIiMiHMdyQX5AkydV7w6EpIiLqCMMN+Y3bhqdCqZCw5/QFHK+olbscIiLyUQw35DcSIrQYOygeANe8ISKi9jHckF9xPo5hw95i2LjmDRERtYHhhvzKjUMTEa1Tocxoxn9/qpC7HCIi8kEMN+RX1CEKTMlOBQCs58M0iYioDQw35Hecj2PY+kMZqussMldDRES+huGG/M6wFD0ykiNhsdnxQcE5ucshIiIfw3BDfsnZe5O3p0jmSoiIyNcw3JBfmpKdCpVSwqGzRhSWGOUuh4iIfAjDDfmlmDA1xg1NBADkcWIxERE1w3BDfss5NLWp4CwsjXaZqyEiIl/BcEN+69qB8UiI0KDKZMHnR8rlLoeIiHwEww35rRClArcNb1rzhhOLiYioCcMN+bUZI9IAANuPVqC8pkHmaoiIyBcw3JBfG5AQjqsui4LNLrBp31m5yyEiIh/AcEN+z9l7s35PMYTgwzSJiIIdww35vV9kJUOrUuDHslocKDbIXQ4REcmM4Yb8XqRWhQnDkgBwxWIiImK4oQAxI8cxNPVhwTk0WG0yV0NERHJiuKGAkHt5LFKjQmFsaMRnP5TJXQ4REcmI4YYCgkIhYdqIpodpfs+hKSKiYMZwQwFj+nBHuPn6WCXOVdfLXA0REcmF4YYCxmWxOozqFwMhgA17+TBNIqJgxXBDAcU5sZhr3hARBS+GGwooE69MQphaiVPn67D71AW5yyEiIhkw3FBA0alDMCkzGQAnFhMRBSuGGwo4zqGpjw+WwGRulLkaIiLqbQw3FHBy+kajX1wY6iw2fHKwRO5yiIiolzHcUMCRJAnTnWve7OFdU0REwYbhhgLS7cNToZCAXSercPq8Se5yiIioFzHcUEBK1ofi5wPjAThuCyciouDBcEMBa0bT0NT7e4phs3PNGyKiYMFwQwHrpoxERGpDcM7QgG+OV8pdDhER9RKGGwpYWpUSU7JTAXBoiogomDDcUECbkeMYmtp8qBSGeqvM1RARUW9guKGAdmWqHoMTI2ButOOjA+fkLoeIiHoBww0FNEmSXL03ed9zaIqIKBgw3FDAm3pVKkIUEgqKqnGsvEbucoiIqIcx3FDAiwvX4PohCQDYe0NEFAwYbigoONe82bDvLBptdpmrISKinsRwQ0Hh+iEJiA1To6LGjC9/rJC7HCIi6kEMNxQUVEoFpl7lWPOGQ1NERIGN4YaChvOuqfwjZagyWWSuhoiIegrDDQWNIUmRuDJVD6tNYNO+s3KXQ0REPYThhoKKa80bPo6BiChgMdxQULk1KwVqpQKFJUYcOmuQuxwiIuoBDDcUVKJ0atw0LBEAH6ZJRBSoGG4o6DjXvNlUcBbmRpvM1RARkbcx3FDQuWZgPJIitaiusyK/sFzucoiIyMsYbijoKBUSbh/uXPOmSOZqiIjI23wi3Lz00ktIT0+HVqvFqFGjsGvXrnaPfe2113DNNdcgOjoa0dHRGDduXIfHE7VletPQ1Jc/VqDM2CBzNURE5E2yh5v33nsPCxYswNKlS7F3715kZWVh/PjxKC9ve7jgiy++wJ133ont27dj586dSEtLw80334yzZ7luCXnu8vhw5PSNhl0AG7nmDRFRQJGEEELOAkaNGoWrr74aq1evBgDY7XakpaXhkUcewaJFizo932azITo6GqtXr8bs2bM7Pd5oNEKv18NgMCAyMvKS6yf/9d7uM3j8/YPoHx+GbQuugyRJcpdERETt6Mrfb1l7biwWC/bs2YNx48a59ikUCowbNw47d+706Dvq6upgtVoRExPTU2VSgJqUmYJQlRLHK0zYV1QtdzlEROQlsoabyspK2Gw2JCYmuu1PTExEaWmpR9/x+OOPIyUlxS0gNWc2m2E0Gt02IgAI14TgliuTAPBhmkREgUT2OTeXYuXKlXj33XexceNGaLXaNo9ZsWIF9Hq9a0tLS+vlKsmXzRjh+N/DR/vPod7CNW+IiAKBrOEmLi4OSqUSZWVlbvvLysqQlJTU4bnPP/88Vq5cic8++wyZmZntHrd48WIYDAbXVlTEW3/polH9YpAWE4oacyO2HPast5CIiHybrOFGrVZjxIgRyM/Pd+2z2+3Iz89Hbm5uu+f95S9/wdNPP43NmzcjJyenw9/QaDSIjIx024icFAoJ04c7em/y9jD4EhEFAtmHpRYsWIDXXnsNb775JgoLC/Hggw/CZDJh7ty5AIDZs2dj8eLFruOfffZZ/OlPf8Ibb7yB9PR0lJaWorS0FLW1tXI1gfzctBGOBf2+OX4exRfqZK6GiIgulezhZubMmXj++eexZMkSZGdno6CgAJs3b3ZNMj5z5gxKSkpcx69ZswYWiwXTp09HcnKya3v++eflaoKDtR4oPQjUlAG2RnlroS7pE63D6P6xEAJ4fw/XvCEi8neyr3PT23psnZuS/cAr1158HxoDhCcAYfFAWBwQ1ux1y/3qMIBrrMhq475iPPbefqTFhOLLhddDoeD1ICLyJV35+x3SSzUFPmu9I7DUnQeEHaivcmwVRzo/NyTUcW54fBthqPn+eEAXCyiUPd+eIDNhWDKWaA6jqKoe/951BjcNTURipIYL+xER+SH23Hib3QbUXwBqywFTReut1vm63PG6sb6LPyA5Ak7L0NN8C09oCkjxjl4h8sjiDQfwzq6Lk4pjwtQYmhyBjORIZKREYmhyJPrHh0OllH00l4go6HTl7zfDjdwspqYgVHkx9JgqHO9rm702lQN1VQC6eLlUYReDTvPQE5bQYogs3jGUpgjeP9ylhgY8t+UoDp6txvEKE2z21v+t1UoFBiWFY2iSI/BkJEdiaEokIrUqGSomIgoeDDcd8Llw0xW2RsdQV8vQ06pXqGl/Yxefdi0pAF1cG71C7QyTqUJ7pp0+oMFqw09ltfihxIAfzhnxQ4kRhSU1qDW3PVm8T3SoWw9PRnIk+kSHcliLiMhLGG464NfhpiuEACy1LUJPe0NkFY7Q1FXq8BbDYR0Mk2mj/L5XyG4XKL5Q7wg8JTX44ZwRhSVGnK1ue2gxQhviCjrOXp6BieHQhHDOFBFRVzHcdCBowk1X2ayOydBt9gq1MURms3Tt+xUhF3uF2rpjrPl+XRygavtxGr6ous6CwpIa/FBidAWen8prYLW1/n9aIQoJAxLC3ULP0ORIxISpZaiciMh/MNx0gOHGC4QAzMYWoaeDXqGG6q7/hibSfVis+dyglr1F2iifu5Xe0mjHsfJaFJYYXaHnhxIjDPXWNo9PitRenMPTFHr6xuh4SzoRUROGmw4w3Mig0QLUVbYxRNZsInXzSdX2tgNAuxSqZhOl2xoiS3D/PESeXhIhBEoMDa7enR+attPn214VWadWYkhSRFPo0SMjJRKDEyMQquawFhEFH4abDjDc+DghHD09HvUKVQJmQ9d/Q6tvHXqa30mmi3O81sUCodE9vq5QTYMVR0trmiYtO3p5jpTWwNxob3WsQgL6xYUhI0Xvdpt6QoT/DOMREXUHw00HGG4CjLWhnV6hdobIhK1r3y8pHAFH1xR2wmLdw48urmlfs/0hmktuVqPNjpOVJlfvjrO3p7K27blOceFq13BWRtN8nn5xYQjhmjxE5G1COO7GtZgcN65YTIClrtlrExAaBQwa79WfZbjpAMNNELPbm3qFKloPhTmHyGrLHROr6yqBhm70CgGAOgLQxTQFIA9CkSbS4zlD5TXOYS3nBGYDTlaa0MaSPNCEKDA4yX0RwiFJEYjgmjxEwcPW6B46rKaLr5vvt9Q2BZR2PrO2+Ey07ll2k/Yz4N4tXm0Kw00HGG7IYzarY+HEukpH8KmrdLx3vT7f9LrZv13tGQIApfpi4PEkFOli3IbK6i02HC2raZq0bEBhSQ0KS4yos7RdS99Y3cWJy03BJ1mv5Zo8RHISokWA8DBktHpd5/7eZu7ZukNCHSvhq8Mcy4M4XydkABP+7NWfYrjpAMMN9RjXfKHzF3t/2g1FTZ9b255M3DHJ0eXrFnpi3UKRPTQWJY1hOFqjwYHzShwot+CHc0aUGtte2FEfqmq1COGAhHCoQzisRdRKo6WDHpCWvSBtBBBrXRvnmNDlFei7QhHSOoA4X6t07X/Wamu2X6Xr1WcdMtx0gOGGfIqlrlkQ8iAU1V/o3u+owoCwWDRqY2BU6FFpj8BZSxhO1mnwU60WFfYIVIkIVCECVSISRuigUiowIKH5sJbjdZSOa/KQn7Dbm/V0tBFA2vysjdDR8rOu3tHZVap2woRa10EACW8npDS9l+kuUW9iuOkAww35NecjOJzDYK4g1N7w2flu/X/EVihxQUTgvHCEnQu4+NoWGovw6ETEJiQjOaUP0tP6IiUlFYoQzuWhLhLCsSBoo9kxDGwzO167TVbtJIBY2wkgzh6SnqRUtx0m2g0nHfSCOF+HhPr9au49pSt/v0N6qSYi8gZliOO29fAEz45vvuBi87lBHYUiSy1UsCFBqkaCVN36OxsBVDRthy/urpXC0aCOhtDFQh2ZgLDoRISExzUbPmsxp0itu/T/HuQZu90RImxmx5BKq9fOgNEUMhrNLfa3eN0yjLheN32vzdLstbXt724093wPiIvUdm+GuoOejg6HanSOABMAvSGBiuGGKJBJkmNdH60eiO3v2TnW+qYA1HrCtNlYDtOFUliMlZDqK6G1VCPCXgOFJBAuahFurgXMRcAFAKc7+Z2Q0ItzhlrdRRbXYh5RjH88n8xu6zwYtHrdRiBoM4C0FUY8/D572w989TmKEECpcSynoAnvfKils6EaZw+KKtTnVjGnnsVwQ0TuVKGAvo9ja0HTtDVntVpxovgsTp05hZJzxaiqKEXthVJoLRcQI9U4NhgRK9UgWqpBrGSEGo1AYz1gKHJsnpCULYJQW6Go6dZ6Z0+Cpz0IbiGhGz0SztDRnbvl5KBQOQKEUtUUJtSOf5XqZq+dxzR/rb74r+u16mIgcduvbvF9zV6HNH3m9lrdq5NTKbAx3BDRJVGpVBjQLx0D+qW79gkhUGY0u25N/6zp2VqnzpsghEA46h1BBzWIkYxICqnFoAgLLtc1IEVtQpyiFhG2aijrm+4ss9Q4goOp3LH5i7b+gLcbAroZCFoFkBZhpPl3h2gcwcbXe8CILhHDDRF5nSRJSNJrkaTX4oYhia79JnMjjrR41MQ3pUY0WOzAeTg213cA6bFhyOgbiSuStMiMbsTgCAtiFTWQXENlLecSnQfMNS16JDwJBB2EjVa9Ex31drTo+eBQCJEseLcUEcnKZhc4dd7kenK6M/SU17S9+FhMmLppEcKLDxW9PD4MKj5qgiig8VbwDjDcEPmHihozCkuaPUH9nBEnKk2wtfGsCbVSgUFJ4chIjsSgxAjEhqsRE6ZBjE6NmHA1YnRqPk2dyM8x3HSA4YbIfzVYbfix6VETztBTWFKDWnPndwNpVQrEhmkQHaZqCj4qRIepERumvvivTo2YMMcWpVNDqeCwEpGv4Do3RBSQtColMvtEIbNPlGuf3S5QfKEeP5QYXL07F+osOF9rwYU6C6pMFlhtAg1WO85W1+Nsdb1HvyVJjsdSxIQ5en6cocctCIW7f6ZTK/mMLiIfwJ4bIgpoQgjUmhtxwWTFeZO5KfBYUWUyo8pkxQWTBedNF4NQlckCQ333FpdThyjcwo4rELURhKLDVIjWqTlXiMhD7LkhImoiSRIitCpEaFW4LNazVZEbbXZcqLO6BZ7mW/P9znBkbrTD0mhHqbGh3QeUtiVSG4LYcA2idSq33qE2Q1KYGhGaEPYOEXWC4YaIqIUQpQLxERrER7RcsrBtQgjUW21uQ2HthSHHe0dwEgIwNjTC2NCIkx7WplJKbnOD2pov1LLXiE93p2DDcENEdIkkSYJOHQJdTAjSYjzrHbLZBQz1F4fH2g9CF+cP1VlssNoEymvM7d4q35YITYijN6hZ4IkNdwaipgnWronWakRoQ6DgZGryYww3REQyUCokV9jwVIPV1mGPUMv9F+qssNkFasyNqDE34kyVZ0/JViqkZsGnWSByDpm1EZK0Kt5qT76D4YaIyE9oVUqkRIUiJSrUo+PtdgFjg7VVD1DzCdVVJjOq6hwTq6tMFtSaG2GzC1TWmlFZ63nvkE6tdB8S07kHoZYhSR+qYu8Q9RiGGyKiAKVQSIjSOdbs8ZS50YbqOqsrCJ1vmjTt6hmqc39/oc5xq32dxYY6Sz2KL3h2q71CAqJ0F4OQayJ1011k0TrHHWVRztc6FSK1DETkGYYbIiJy0YQokRipRGKk1qPjhXAMe7luqW8RhKramGRtbGiEXcD13lOKprWHonVqROmc/zqCT5TOPQhF6S7ebs8hs+DDcENERN0mSRIitY5elb6xYR6dY7XZcaHOcnHtIZPVFYSqTGbX3WTVzf6tNTsCkeOzrq1DpFUp3IKQezhSsZcoADHcEBFRr1IpFUiI0CIhQgsgwqNzLI12VNc3BZ6mydLVdc3/bb2vus6KRrtjdeoSQwNKDJ6vP9RRL1F0WBvhqOk1e4l8A8MNERH5PHVI80DkGeeQmaGpB8gVflqEI2/2EoWqlM2GyNhLJBeGGyIiCkjNh8w8XX8IuLReonqrDfUGG3uJZMZwQ0RE1Myl9BJVm5y9RBd7g9oMRybHa5PFdkm9RM0nT0fp1IgKZS8RwHBDRER0yZr3Enn6DDOgqZeozQDUfi+Rc3FGZy/ROfYStcJwQ0REJBN1iAIJkVokeHjrPeA7vUTRLcORTg19078xTQs1yoXhhoiIyI90t5fI3GhrmlztnDzdYkK1yT0UVddZUV3fvV6ijORIfPLoNd1t4iVjuCEiIgoCmhAlEiKVXe4lMjY0tghCzp6i9nuJosPk67UBGG6IiIioHZIkQR+qgj5Uhb6xnp9ns4ueK8oDCll/nYiIiAKOUuY7shhuiIiIKKAw3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCCsMNERERBRSGGyIiIgooDDdEREQUUBhuiIiIKKAw3BAREVFAYbghIiKigMJwQ0RERAGF4YaIiIgCSojcBfQ2IRyPYTcajTJXQkRERJ5y/t12/h3vSNCFm5qaGgBAWlqazJUQERFRV9XU1ECv13d4jCQ8iUABxG6349y5c4iIiIAkSV79bqPRiLS0NBQVFSEyMtKr3+0LAr19QOC3ke3zf4HeRrbP//VUG4UQqKmpQUpKChSKjmfVBF3PjUKhQJ8+fXr0NyIjIwP2f7RA4LcPCPw2sn3+L9DbyPb5v55oY2c9Nk6cUExEREQBheGGiIiIAgrDjRdpNBosXboUGo1G7lJ6RKC3Dwj8NrJ9/i/Q28j2+T9faGPQTSgmIiKiwMaeGyIiIgooDDdEREQUUBhuiIiIKKAw3BAREVFAYbjx0H//+19MnjwZKSkpkCQJmzZt6vScL774AsOHD4dGo8GAAQOwbt26Hq/zUnS1jV988QUkSWq1lZaW9k7BXbRixQpcffXViIiIQEJCAqZOnYqjR492el5eXh6GDBkCrVaLK6+8Ep988kkvVNt13WnfunXrWl0/rVbbSxV3zZo1a5CZmelaGCw3Nxeffvpph+f4y7Vz6mob/en6tWXlypWQJAnz58/v8Dh/u45OnrTP367hsmXLWtU7ZMiQDs+R4/ox3HjIZDIhKysLL730kkfHnzx5EpMmTcL111+PgoICzJ8/H/fddx+2bNnSw5V2X1fb6HT06FGUlJS4toSEhB6q8NJ8+eWXmDdvHr799lts3boVVqsVN998M0wmU7vnfPPNN7jzzjtx7733Yt++fZg6dSqmTp2KQ4cO9WLlnulO+wDHKqLNr9/p06d7qeKu6dOnD1auXIk9e/bg+++/xw033IApU6bg8OHDbR7vT9fOqattBPzn+rW0e/duvPLKK8jMzOzwOH+8joDn7QP87xoOGzbMrd6vv/663WNlu36CugyA2LhxY4fH/PGPfxTDhg1z2zdz5kwxfvz4HqzMezxp4/bt2wUAceHChV6pydvKy8sFAPHll1+2e8wdd9whJk2a5LZv1KhR4je/+U1Pl3fJPGnf2rVrhV6v772ivCw6Olq8/vrrbX7mz9euuY7a6K/Xr6amRgwcOFBs3bpVXHfddeLRRx9t91h/vI5daZ+/XcOlS5eKrKwsj4+X6/qx56aH7Ny5E+PGjXPbN378eOzcuVOminpOdnY2kpOTcdNNN2HHjh1yl+Mxg8EAAIiJiWn3GH++jp60DwBqa2vRt29fpKWlddpL4CtsNhveffddmEwm5ObmtnmMP187wLM2Av55/ebNm4dJkya1uj5t8cfr2JX2Af53DX/66SekpKTg8ssvx6xZs3DmzJl2j5Xr+gXdgzN7S2lpKRITE932JSYmwmg0or6+HqGhoTJV5j3Jycl4+eWXkZOTA7PZjNdffx1jx47Fd999h+HDh8tdXofsdjvmz5+PMWPG4Iorrmj3uPauo6/OK3LytH2DBw/GG2+8gczMTBgMBjz//PMYPXo0Dh8+3OMPmO2OgwcPIjc3Fw0NDQgPD8fGjRuRkZHR5rH+eu260kZ/u34A8O6772Lv3r3YvXu3R8f723Xsavv87RqOGjUK69atw+DBg1FSUoLly5fjmmuuwaFDhxAREdHqeLmuH8MNddvgwYMxePBg1/vRo0fj+PHjePHFF/Gvf/1Lxso6N2/ePBw6dKjDsWJ/5mn7cnNz3XoFRo8ejaFDh+KVV17B008/3dNldtngwYNRUFAAg8GA9evXY86cOfjyyy/b/ePvj7rSRn+7fkVFRXj00UexdetWn540213daZ+/XcNbbrnF9TozMxOjRo1C37598Z///Af33nuvjJW5Y7jpIUlJSSgrK3PbV1ZWhsjIyIDotWnPyJEjfT4wPPzww/joo4/w3//+t9P/y6i965iUlNSTJV6SrrSvJZVKhauuugrHjh3roeoujVqtxoABAwAAI0aMwO7du/G3v/0Nr7zySqtj/fHaAV1rY0u+fv327NmD8vJyt55dm82G//73v1i9ejXMZjOUSqXbOf50HbvTvpZ8/Rq2FBUVhUGDBrVbr1zXj3Nuekhubi7y8/Pd9m3durXDsfNAUFBQgOTkZLnLaJMQAg8//DA2btyIzz//HP369ev0HH+6jt1pX0s2mw0HDx702WvYkt1uh9lsbvMzf7p2HemojS35+vW78cYbcfDgQRQUFLi2nJwczJo1CwUFBW3+4fen69id9rXk69ewpdraWhw/frzdemW7fj06XTmA1NTUiH379ol9+/YJAOKFF14Q+/btE6dPnxZCCLFo0SJx9913u44/ceKE0Ol04g9/+IMoLCwUL730klAqlWLz5s1yNaFTXW3jiy++KDZt2iR++ukncfDgQfHoo48KhUIhtm3bJlcTOvTggw8KvV4vvvjiC1FSUuLa6urqXMfcfffdYtGiRa73O3bsECEhIeL5558XhYWFYunSpUKlUomDBw/K0YQOdad9y5cvF1u2bBHHjx8Xe/bsEb/85S+FVqsVhw8flqMJHVq0aJH48ssvxcmTJ8WBAwfEokWLhCRJ4rPPPhNC+Pe1c+pqG/3p+rWn5d1EgXAdm+usff52DX//+9+LL774Qpw8eVLs2LFDjBs3TsTFxYny8nIhhO9cP4YbDzlve265zZkzRwghxJw5c8R1113X6pzs7GyhVqvF5ZdfLtauXdvrdXdFV9v47LPPiv79+wutVitiYmLE2LFjxeeffy5P8R5oq20A3K7Ldddd52qv03/+8x8xaNAgoVarxbBhw8THH3/cu4V7qDvtmz9/vrjsssuEWq0WiYmJYuLEiWLv3r29X7wHfv3rX4u+ffsKtVot4uPjxY033uj6oy+Ef187p6620Z+uX3ta/vEPhOvYXGft87drOHPmTJGcnCzUarVITU0VM2fOFMeOHXN97ivXTxJCiJ7tGyIiIiLqPZxzQ0RERAGF4YaIiIgCCsMNERERBRSGGyIiIgooDDdEREQUUBhuiIiIKKAw3BAREVFAYbghoqAnSRI2bdokdxlE5CUMN0Qkq3vuuQeSJLXaJkyYIHdpROSn+FRwIpLdhAkTsHbtWrd9Go1GpmqIyN+x54aIZKfRaJCUlOS2RUdHA3AMGa1Zswa33HILQkNDcfnll2P9+vVu5x88eBA33HADQkNDERsbiwceeAC1tbVux7zxxhsYNmwYNBoNkpOT8fDDD7t9XllZidtuuw06nQ4DBw7Ehx9+2LONJqIew3BDRD7vT3/6E6ZNm4b9+/dj1qxZ+OUvf4nCwkIAgMlkwvjx4xEdHY3du3cjLy8P27Ztcwsva9aswbx58/DAAw/g4MGD+PDDDzFgwAC331i+fDnuuOMOHDhwABMnTsSsWbNQVVXVq+0kIi/p8UdzEhF1YM6cOUKpVIqwsDC37ZlnnhFCOJ52/tvf/tbtnFGjRokHH3xQCCHEq6++KqKjo0Vtba3r848//lgoFApRWloqhBAiJSVFPPHEE+3WAEA8+eSTrve1tbUCgPj000+91k4i6j2cc0NEsrv++uuxZs0at30xMTGu17m5uW6f5ebmoqCgAABQWFiIrKwshIWFuT4fM2YM7HY7jh49CkmScO7cOdx4440d1pCZmel6HRYWhsjISJSXl3e3SUQkI4YbIpJdWFhYq2EibwkNDfXoOJVK5fZekiTY7faeKImIehjn3BCRz/v2229bvR86dCgAYOjQodi/fz9MJpPr8x07dkChUGDw4MGIiIhAeno68vPze7VmIpIPe26ISHZmsxmlpaVu+0JCQhAXFwcAyMvLQ05ODn7+85/j3//+N3bt2oV//vOfAIBZs2Zh6dKlmDNnDpYtW4aKigo88sgjuPvuu5GYmAgAWLZsGX77298iISEBt9xyC2pqarBjxw488sgjvdtQIuoVDDdEJLvNmzcjOTnZbd/gwYNx5MgRAI47md5991089NBDSE5OxjvvvIOMjAwAgE6nw5YtW/Doo4/i6quvhk6nw7Rp0/DCCy+4vmvOnDloaGjAiy++iIULFyIuLg7Tp0/vvQYSUa+ShBBC7iKIiNojSRI2btyIqVOnyl0KEfkJzrkhIiKigMJwQ0RERAGFc26IyKdx5JyIuoo9N0RERBRQGG6IiIgooDDcEBERUUBhuCEiIqKAwnBDREREAYXhhoiIiAIKww0REREFFIYbIiIiCigMN0RERBRQ/n/HM7xr1jQLOgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plotLearningCurve(history,5)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "model.save(\"malaria.h5\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kaggle": { "accelerator": "gpu", "dataSources": [ { "datasetId": 87153, "sourceId": 200743, "sourceType": "datasetVersion" } ], "dockerImageVersionId": 29943, "isGpuEnabled": true, "isInternetEnabled": false, "language": "python", "sourceType": "notebook" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 4 }