Spaces:
Sleeping
Sleeping
File size: 4,287 Bytes
b99882a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import torch
import torch.nn.functional as F
from transformers.generation import TopKLogitsWarper, TopPLogitsWarper
from ..utils.infer_utils import CustomRepetitionPenaltyLogitsProcessorRepeat
def infer_code(
models,
text,
spk_emb = None,
top_P = 0.7,
top_K = 20,
temperature = 0.3,
repetition_penalty = 1.05,
max_new_token = 2048,
**kwargs
):
device = next(models['gpt'].parameters()).device
if not isinstance(text, list):
text = [text]
if not isinstance(temperature, list):
temperature = [temperature] * models['gpt'].num_vq
if spk_emb is not None:
text = [f'[Stts][spk_emb]{i}[uv_break][Ptts]' for i in text]
else:
text = [f'[Stts][empty_spk]{i}[uv_break][Ptts]' for i in text]
text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device)
input_ids = text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq)
text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device)
inputs = {
'input_ids': input_ids,
'text_mask': text_mask,
'attention_mask': text_token['attention_mask'],
}
emb = models['gpt'].get_emb(**inputs)
if spk_emb is not None:
emb[inputs['input_ids'][..., 0] == models['tokenizer'].convert_tokens_to_ids('[spk_emb]')] = \
F.normalize(spk_emb.to(device).to(emb.dtype)[None].expand(len(text), -1), p=2.0, dim=1, eps=1e-12)
num_code = models['gpt'].emb_code[0].num_embeddings - 1
LogitsWarpers = []
if top_P is not None:
LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
if top_K is not None:
LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
LogitsProcessors = []
if repetition_penalty is not None and repetition_penalty != 1:
LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(\
repetition_penalty, num_code, 16))
result = models['gpt'].generate(
emb, inputs['input_ids'],
temperature = torch.tensor(temperature, device=device),
attention_mask = inputs['attention_mask'],
LogitsWarpers = LogitsWarpers,
LogitsProcessors = LogitsProcessors,
eos_token = num_code,
max_new_token = max_new_token,
infer_text = False,
**kwargs
)
return result
def refine_text(
models,
text,
top_P = 0.7,
top_K = 20,
temperature = 0.7,
repetition_penalty = 1.0,
max_new_token = 384,
prompt = '',
**kwargs
):
device = next(models['gpt'].parameters()).device
if not isinstance(text, list):
text = [text]
assert len(text), 'text should not be empty'
text = [f"[Sbreak]{i}[Pbreak]{prompt}" for i in text]
text_token = models['tokenizer'](text, return_tensors='pt', add_special_tokens=False, padding=True).to(device)
text_mask = torch.ones(text_token['input_ids'].shape, dtype=bool, device=device)
inputs = {
'input_ids': text_token['input_ids'][...,None].expand(-1, -1, models['gpt'].num_vq),
'text_mask': text_mask,
'attention_mask': text_token['attention_mask'],
}
LogitsWarpers = []
if top_P is not None:
LogitsWarpers.append(TopPLogitsWarper(top_P, min_tokens_to_keep=3))
if top_K is not None:
LogitsWarpers.append(TopKLogitsWarper(top_K, min_tokens_to_keep=3))
LogitsProcessors = []
if repetition_penalty is not None and repetition_penalty != 1:
LogitsProcessors.append(CustomRepetitionPenaltyLogitsProcessorRepeat(repetition_penalty, len(models['tokenizer']), 16))
result = models['gpt'].generate(
models['gpt'].get_emb(**inputs), inputs['input_ids'],
temperature = torch.tensor([temperature,], device=device),
attention_mask = inputs['attention_mask'],
LogitsWarpers = LogitsWarpers,
LogitsProcessors = LogitsProcessors,
eos_token = torch.tensor(models['tokenizer'].convert_tokens_to_ids('[Ebreak]'), device=device)[None],
max_new_token = max_new_token,
infer_text = True,
**kwargs
)
return result |