Spaces:
Runtime error
Runtime error
import os | |
import io | |
from PIL import Image,ImageDraw | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
import streamlit as st | |
import torch | |
import requests | |
def input_image_setup(uploaded_file): | |
if uploaded_file is not None: | |
bytes_data = uploaded_file.getvalue() | |
image = Image.open(io.BytesIO(bytes_data)) # Convert bytes data to PIL image | |
return image | |
else: | |
raise FileNotFoundError("No file uploaded") | |
#Streamlit App | |
st.set_page_config(page_title="Image Detection") | |
st.header("Object Detection Application") | |
#Select your model | |
models = ["facebook/detr-resnet-50","ciasimbaya/ObjectDetection","hustvl/yolos-tiny","microsoft/table-transformer-detection","valentinafeve/yolos-fashionpedia"] # List of supported models | |
model_name = st.selectbox("Select model", models) | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
model = AutoModelForObjectDetection.from_pretrained(model_name) | |
#Upload an image | |
uploaded_file = st.file_uploader("choose an image...", type=["jpg","jpeg","png"]) | |
image="" | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image.", use_column_width=True) | |
submit = st.button("Detect Objects ") | |
if submit: | |
image_data = input_image_setup(uploaded_file) | |
st.subheader("The response is..") | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
bboxes = outputs.pred_boxes | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0] | |
# Draw bounding boxes on the image | |
drawn_image = image.copy() | |
draw = ImageDraw.Draw(drawn_image) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [int(i) for i in box.tolist()] | |
draw.rectangle(box, outline="red", width=2) | |
label_text = f"{model.config.id2label[label.item()]} ({round(score.item(), 2)})" | |
draw.text((box[0], box[1]), label_text, fill="red") | |
st.image(drawn_image, caption="Detected Objects", use_column_width=True) | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
st.write( | |
f"Detected :orange[{model.config.id2label[label.item()]}] with confidence " | |
f":green[{round(score.item(), 3)}] at location :violet[{box}]" | |
) |