Spaces:
Sleeping
Sleeping
praysimanjuntak
commited on
Commit
•
9d496b5
1
Parent(s):
4c44204
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import supervision as sv
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from tqdm import tqdm
|
5 |
+
import re
|
6 |
+
from collections import defaultdict
|
7 |
+
from paddleocr import PaddleOCR
|
8 |
+
from pdf2image import convert_from_path
|
9 |
+
import json
|
10 |
+
import cv2
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# Initialize YOLO model
|
14 |
+
model_yolo = YOLO(model="runs/detect/train/weights/best.pt")
|
15 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False, show_log=False)
|
16 |
+
|
17 |
+
def process_pdf(file):
|
18 |
+
images = convert_from_path(file.name)
|
19 |
+
|
20 |
+
# Function to process each slice of the image
|
21 |
+
def slicer_callback(slice: np.ndarray) -> sv.Detections:
|
22 |
+
result = model_yolo.predict(slice, conf=0.85)[0]
|
23 |
+
detections = sv.Detections.from_ultralytics(result)
|
24 |
+
return detections
|
25 |
+
|
26 |
+
# Initialize the slicer
|
27 |
+
slicer = sv.InferenceSlicer(
|
28 |
+
callback=slicer_callback,
|
29 |
+
slice_wh=(2000, 800),
|
30 |
+
overlap_ratio_wh=(0.6, 0.6),
|
31 |
+
overlap_filter_strategy=sv.OverlapFilter.NON_MAX_MERGE,
|
32 |
+
iou_threshold=0.05,
|
33 |
+
)
|
34 |
+
|
35 |
+
results = []
|
36 |
+
for pil_image in images:
|
37 |
+
opencvImage = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
38 |
+
opencvImage = cv2.rotate(opencvImage, cv2.ROTATE_90_CLOCKWISE)
|
39 |
+
# Perform inference on the entire image
|
40 |
+
detections = slicer(opencvImage)
|
41 |
+
|
42 |
+
# Function to run the TrOCR model with detections
|
43 |
+
def run_example(detections):
|
44 |
+
for detection in tqdm(detections):
|
45 |
+
# Extract bounding box coordinates
|
46 |
+
bbox = detection[0]
|
47 |
+
x_min, y_min, x_max, y_max = bbox
|
48 |
+
x_min, y_min, x_max, y_max = int(x_min), int(y_min), int(x_max), int(y_max)
|
49 |
+
|
50 |
+
# Crop the detected region from the image
|
51 |
+
cropped_image = opencvImage[y_min:y_max, x_min:x_max]
|
52 |
+
result = ocr.ocr(cropped_image, cls=True)[0]
|
53 |
+
if result is not None:
|
54 |
+
text = ''
|
55 |
+
|
56 |
+
if re.match(r"([A-Z])(\d+)-(\d+)", result[0][1][0]):
|
57 |
+
text = result[0][1][0]
|
58 |
+
elif re.match(r"([A-Z])(\d+)-(\d+)", ''.join([line[1][0] for line in result])):
|
59 |
+
text = ''.join([line[1][0] for line in result])
|
60 |
+
|
61 |
+
# Print the generated text
|
62 |
+
results.append(text)
|
63 |
+
|
64 |
+
# Run example with detections
|
65 |
+
run_example(detections)
|
66 |
+
|
67 |
+
detected_numbers = defaultdict(list)
|
68 |
+
for result in results:
|
69 |
+
match = re.match(r"([A-Z])(\d+)-(\d+)", result)
|
70 |
+
if match:
|
71 |
+
letter = match.group(1)
|
72 |
+
x = int(match.group(2))
|
73 |
+
y = int(match.group(3))
|
74 |
+
detected_numbers[(letter, x)].append(y)
|
75 |
+
|
76 |
+
# Generate the desired JSON output
|
77 |
+
output = {}
|
78 |
+
|
79 |
+
for (letter, x) in sorted(detected_numbers.keys()):
|
80 |
+
key = f"CB-{letter}{x}"
|
81 |
+
value = [f"{letter}{x}-{i}" for i in sorted(detected_numbers[(letter, x)])]
|
82 |
+
output[key] = value
|
83 |
+
|
84 |
+
return json.dumps(output, indent=4)
|
85 |
+
|
86 |
+
# Create the Gradio interface
|
87 |
+
iface = gr.Interface(
|
88 |
+
fn=process_pdf,
|
89 |
+
inputs=gr.File(label="Upload PDF"),
|
90 |
+
outputs="json",
|
91 |
+
title="Extract Data from PDF",
|
92 |
+
description="Upload a PDF file and get the JSON output of detected numbers."
|
93 |
+
)
|
94 |
+
|
95 |
+
# Launch the Gradio app
|
96 |
+
iface.launch()
|