File size: 4,592 Bytes
15b0eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid

from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path

from PIL import Image
import math


def split_list(lst, n):
    """Split a list into n (roughly) equal-sized chunks"""
    chunk_size = math.ceil(len(lst) / n)  # integer division
    return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]


def get_chunk(lst, n, k):
    chunks = split_list(lst, n)
    return chunks[k]


def eval_model(args):
    # Model
    disable_torch_init()
    model_path = os.path.expanduser(args.model_path)
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)

    questions = json.load(open(os.path.expanduser(args.question_file), "r"))
    questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
    answers_file = os.path.expanduser(args.answers_file)
    os.makedirs(os.path.dirname(answers_file), exist_ok=True)
    ans_file = open(answers_file, "w")
    for i, line in enumerate(tqdm(questions)):
        idx = line["id"]
        question = line['conversations'][0]
        qs = question['value'].replace('<image>', '').strip()
        cur_prompt = qs

        if 'image' in line:
            image_file = line["image"]
            image = Image.open(os.path.join(args.image_folder, image_file))
            image_tensor = process_images([image], image_processor, model.config)[0]
            images = image_tensor.unsqueeze(0).half().cuda()
            image_sizes = [image.size]
            if getattr(model.config, 'mm_use_im_start_end', False):
                qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
            else:
                qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
            cur_prompt = '<image>' + '\n' + cur_prompt
        else:
            images = None
            image_sizes = None

        if args.single_pred_prompt:
            qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
            cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."

        conv = conv_templates[args.conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=images,
                image_sizes=image_sizes,
                do_sample=True if args.temperature > 0 else False,
                temperature=args.temperature,
                max_new_tokens=1024,
                use_cache=True,
            )

        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()

        ans_id = shortuuid.uuid()
        ans_file.write(json.dumps({"question_id": idx,
                                   "prompt": cur_prompt,
                                   "text": outputs,
                                   "answer_id": ans_id,
                                   "model_id": model_name,
                                   "metadata": {}}) + "\n")
        ans_file.flush()
    ans_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--image-folder", type=str, default="")
    parser.add_argument("--question-file", type=str, default="tables/question.json")
    parser.add_argument("--answers-file", type=str, default="answer.jsonl")
    parser.add_argument("--conv-mode", type=str, default="llava_v0")
    parser.add_argument("--num-chunks", type=int, default=1)
    parser.add_argument("--chunk-idx", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--answer-prompter", action="store_true")
    parser.add_argument("--single-pred-prompt", action="store_true")
    args = parser.parse_args()

    eval_model(args)