#!/usr/bin/env python #patch 0.04 #Func() Dalle Collage Moved Midjourney Space #Pruned DalleCollage Space import os import random import uuid import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import DiffusionPipeline from typing import Tuple #BaseConditions-- bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]")) default_negative = os.getenv("default_negative","") def check_text(prompt, negative=""): for i in bad_words: if i in prompt: return True for i in bad_words_negative: if i in negative: return True return False js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ style_list = [ { "name": "3840 x 2160", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "2560 x 1440", "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "HD+", "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "Style Zero", "prompt": "{prompt}", "negative_prompt": "", }, ] collage_style_list = [ { "name": "Hi-Res", "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic", "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly", }, { "name": "B & W", "prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast", "negative_prompt": "colorful, vibrant, bright, flashy", }, { "name": "Polaroid", "prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic", "negative_prompt": "digital, modern, low quality, blurry", }, { "name": "Watercolor", "prompt": "watercolor collage of {prompt}. soft edges, translucent colors, painterly effects", "negative_prompt": "digital, sharp lines, solid colors", }, { "name": "Cinematic", "prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting", "negative_prompt": "static, lifeless, mundane", }, { "name": "Nostalgic", "prompt": "nostalgic collage of {prompt}. retro imagery, vintage objects, sentimental journey", "negative_prompt": "contemporary, futuristic, forward-looking", }, { "name": "Vintage", "prompt": "vintage collage of {prompt}. aged paper, sepia tones, retro imagery, antique vibes", "negative_prompt": "modern, contemporary, futuristic, high-tech", }, { "name": "Scrapbook", "prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles", "negative_prompt": "clean, digital, modern, low quality", }, { "name": "NeoNGlow", "prompt": "neon glow collage of {prompt}. vibrant colors, glowing effects, futuristic vibes", "negative_prompt": "dull, muted colors, vintage, retro", }, { "name": "Geometric", "prompt": "geometric collage of {prompt}. abstract shapes, colorful, sharp edges, modern design, high quality", "negative_prompt": "blurry, low quality, traditional, dull", }, { "name": "Thematic", "prompt": "thematic collage of {prompt}. cohesive theme, well-organized, matching colors, creative layout", "negative_prompt": "random, messy, unorganized, clashing colors", }, { "name": "No Style", "prompt": "{prompt}", "negative_prompt": "", }, ] filters = { "Vivid": { "prompt": "extra vivid {prompt}", "negative_prompt": "washed out, dull" }, "Playa": { "prompt": "{prompt} set in a vast playa", "negative_prompt": "forest, mountains" }, "Desert": { "prompt": "{prompt} set in a desert landscape", "negative_prompt": "ocean, city" }, "West": { "prompt": "{prompt} with a western theme", "negative_prompt": "eastern, modern" }, "Blush": { "prompt": "{prompt} with a soft blush color palette", "negative_prompt": "harsh colors, neon" }, "Minimalist": { "prompt": "{prompt} with a minimalist design", "negative_prompt": "cluttered, ornate" }, "Zero filter": { "prompt": "{prompt}", "negative_prompt": "" }, } styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} collage_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in collage_style_list} filter_styles = {k: (v["prompt"], v["negative_prompt"]) for k, v in filters.items()} STYLE_NAMES = list(styles.keys()) COLLAGE_STYLE_NAMES = list(collage_styles.keys()) FILTER_NAMES = list(filters.keys()) DEFAULT_STYLE_NAME = "3840 x 2160" DEFAULT_COLLAGE_STYLE_NAME = "Hi-Res" DEFAULT_FILTER_NAME = "Vivid" def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]: if style_name in styles: p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) elif style_name in collage_styles: p, n = collage_styles.get(style_name, collage_styles[DEFAULT_COLLAGE_STYLE_NAME]) elif style_name in filter_styles: p, n = filter_styles.get(style_name, filter_styles[DEFAULT_FILTER_NAME]) else: p, n = styles[DEFAULT_STYLE_NAME] if not negative: negative = "" return p.replace("{prompt}", positive), n + negative DESCRIPTION = """## IMAGINEO 4K 🏞️ """ if not torch.cuda.is_available(): DESCRIPTION += "\n
⚠️Running on CPU, This may not work on CPU.
" MAX_SEED = np.iinfo(np.int32).max CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): pipe = DiffusionPipeline.from_pretrained( "SG161222/RealVisXL_V4.0", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False, variant="fp16" ).to(device) if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() else: pipe.to(device) print("Loaded on Device!") if USE_TORCH_COMPILE: pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) print("Model Compiled!") def save_image(img, path): img.save(path) def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU(enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, style: str = DEFAULT_STYLE_NAME, collage_style: str = DEFAULT_COLLAGE_STYLE_NAME, filter_name: str = DEFAULT_FILTER_NAME, grid_size: str = "2x2", seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3, randomize_seed: bool = False, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): if check_text(prompt, negative_prompt): raise ValueError("Prompt contains restricted words.") if collage_style != "No Style": prompt, negative_prompt = apply_style(collage_style, prompt, negative_prompt) elif filter_name != "No Filter": prompt, negative_prompt = apply_style(filter_name, prompt, negative_prompt) else: prompt, negative_prompt = apply_style(style, prompt, negative_prompt) seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) if not use_negative_prompt: negative_prompt = "" # type: ignore negative_prompt += default_negative grid_sizes = { "2x1": (2, 1), "1x2": (1, 2), "2x2": (2, 2), "2x3": (2, 3), "3x2": (3, 2), "1x1": (1, 1) } grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2)) num_images = grid_size_x * grid_size_y options = { "prompt": prompt, "negative_prompt": negative_prompt, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": 20, "generator": generator, "num_images_per_prompt": num_images, "use_resolution_binning": use_resolution_binning, "output_type": "pil", } torch.cuda.empty_cache() # Clear GPU memory images = pipe(**options).images grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y)) for i, img in enumerate(images[:num_images]): grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height)) unique_name = str(uuid.uuid4()) + ".png" save_image(grid_img, unique_name) return [unique_name], seed examples = [ "Portrait of a beautiful woman in a hat, summer outfit, with freckles on her face, in a close up shot, with sunlight, outdoors, in soft light, with a beach background, looking at the camera, with high resolution photography, in the style of Hasselblad X2D50c --ar 85:128 --v 6.0 --style raw", "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic", "Closeup of blonde woman depth of field, bokeh, shallow focus, minimalism, fujifilm xh2s with Canon EF lens, cinematic --ar 85:128 --v 6.0 --style raw" ] css = ''' .gradio-container{max-width: 640px !important} h1{text-align:center} ''' with gr.Blocks(css=css, theme="bethecloud/storj_theme", js=js_func) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") result = gr.Gallery(label="Grid", columns=1, preview=True) with gr.Row(visible=True): grid_size_selection = gr.Dropdown( choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"], value="2x2", label="Grid Size" ) with gr.Row(visible=True): filter_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=FILTER_NAMES, value=DEFAULT_FILTER_NAME, label="Filter Type", ) with gr.Row(visible=True): style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style", ) with gr.Row(visible=True): collage_style_selection = gr.Radio( show_label=True, container=True, interactive=True, choices=COLLAGE_STYLE_NAMES, value=DEFAULT_COLLAGE_STYLE_NAME, label="Collage Template", ) with gr.Accordion("Advanced options", open=False): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) with gr.Row(): num_inference_steps = gr.Slider( label="Steps", minimum=10, maximum=30, step=1, value=15, ) with gr.Row(): num_images_per_prompt = gr.Slider( label="Images", minimum=1, maximum=5, step=1, value=2, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, visible=True ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(visible=True): width = gr.Slider( label="Width", minimum=512, maximum=2048, step=8, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=2048, step=8, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=6, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=generate, #cache_examples=True, cache_examples=CACHE_EXAMPLES, ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, style_selection, collage_style_selection, filter_selection, grid_size_selection, seed, width, height, guidance_scale, randomize_seed, ], outputs=[result, seed], api_name="run", ) gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.") if __name__ == "__main__": demo.queue(max_size=20).launch()